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Abstract

We define the (3, §)-liars’ domination number of G, denoted by
LR ;)(G), to be the minimum cardinality of a set L C V(G) such
that detection devices placed at the vertices in L can precisely de-
termine the set of intruder locations when there are between 1 and i
intruders and at most j detection devices that might “lie”.

We also define the X(c1, ¢z, ..., ¢, ...)-domination number, denoted
bY ¥x(cy,c0,mscer...) (G); to be the minimum cardinality of a set D C
V(G) such that , if § C V(G) with |S| = k, then |[(UsesN[s]) N D| >
cx. Thus, D dominates each set of k vertices at least cx times making
V(1 c2yemmce,) (G) 2 set-sized dominating parameter. We consider
the relations between these set-sized dominating parameters and the

liars’ dominating parameters.
Keywords: liars’ domination, set-sized domination, fault-tolerant

reporting
AMS Subject Classification: 05C69, 05C90, 94C15

1 Introduction

In this paper we assume that each vertex of a graph G is the possible lo-
cation for an “intruder” such as a thief, a saboteur, a fire in a facility or
some possible processor malfunction in a multiprocessor network. Here a
detection device at a vertex v is assumed to be able to detect any intruders
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situated at vertices in its closed neighborhood N[v] and to identify at which
vertices in N[v] the intruders are located. When a detector at v functions
properly and the intruders are located at S C V(G), then v reports intrud-
ers at SN N[v], denoted v — SN N[v]. Note that SN N[v] is the empty set
if there are no intruders in N[v]. Thus v reporting the empty set, denoted
v+ @, is equivalent to v reporting that there are no intruders in N|[v].

The reliability problem considered here involves the situation in which a
device in the neighborhood of an intruder vertex can misidentify (lie about)
location(s) of the intruder(s). If a detector at v might lie, when there is
at least one intruder in N[v], then v can report any I, C N[v] as the set
of intruder locations in N[v] including the v — @ possibility that I, = &.
We use the notation v — I, to indicate that v is reporting I, as its set of
intruder locations. We assume there are no false alarms, that is, a detection
device at v, whether or not v is a liar, with no intruder in N[v] will report

V= 9.

n ys

Figure 1: Graph T with LR,1)(T) =6.

Consider the graph T in Figure 1 and the set Ls = {y1, Y2, ¥3, ¥4, w, z}.
As will be seen in Theorem 1, assuming at most one intruder and at most
one liar, detection devices located at the vertices in Lg will precisely de-
termine the location of the single intruder. As will be illustrated, if it
is possible to have more than one liar or intruder, there will be problems.
First, consider Lg still assuming at most one liar but possibly with multiple
intruders, suppose y1 — {y1}, w = {v, 1}, = {ya}, va - {ya}, 12— 2,
and y3 — @. We can determine that there are intruders at y; and y4, but
we cannot decide if v is also an intruder location. Either w lies and there
are intruders only at y; and y4, or z lies and there are intruders at vy, v4,
and v. That is, the possibility of at most three intruders and at most one
liar leads to incomplete information. Likewise, if w — {w, 11}, yo — {w},
y1 — {w}, y3 = 9, y4 — &, ¢ — &, then there is an intruder at w, and it
is unknown if there is one at ;. Either w lies and there is an intruder only
at w, or y; lies and there are intruders at w and y;. That is, the possibility
of at most two intruders and at most one liar leads to incomplete informa-
tion. As a third example, assume that there can be at most two liars. If
ne g, we {wuyl}, o~ {w}, z— &, y3s = &, and y4 — G, then
we cannot precisely locate any of the intruders. There are three disjoint
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possible sets of intruders. Either y2 and w both lie and there is an intruder
only at yo, or only y; lies and there are intruders at y; and w, or y; and w
lie and there is an intruder only at w. That is, the possibility of at most
two intruders and at most two liars leads to incomplete information. That
is, Lg can precisely determine the location of a single intruder but cannot
precisely determine the locations for a set of more than one intruder.

We call L C V(G) an (3, j)-liars’ dominating set or an LR(s, j)-set
if, when it is known that there are at most ¢ intruders, the detection de-
vices placed at the vertices in L can correctly identify any set I of intruder
locations with |I| <7, given that at most j devices are misreporting. In par-
ticular, when v — I, we can assume |I,| < i. The (i, j)-liars’ domination
number LR(; ;)(G) is the minimum cardinality of an LR(¢, j)-set for G.
An LR(1, 1)-set for G is called a liar’s dominating set. In particular, the
liar’s domination number is v, r(G) = LR(1,1)(G). Note that for i > 1 we
have LR(;0)(G) = 7(G), the domination number. We also let LR ;)(G)
be the minimum cardinality of a detection set L C V(G) that can identify
any intruder set I C V(G) assuming at most j liars. LR(1,1)-sets were
introduced in [10] and [8]. Cases with multiple liars and/or multiple in-
truders were first considered in [7]. Some related work appears in [1],[2] [4],
5], [6], and [11].

Theorem 1 [10]. Vertez set L C V(G) is a liar’s dominating set if and
only if (1) for each v € V(G) we have|N[v]NL| > 2 and (2) for every pair
u,v of distinct vertices we have |(N[u]U N[v])NL| > 3.

This theorem motivated the definition of the following set-sized dom-
ination parameters. Set-sized domination parameters are considered in
[7, 8, 9, 10]. By Theorem 1, L C V(G) is a liar’s dominating set if and
only if L double dominates each vertex and triple dominates each pair of
vertices, so we can also call a liar’s dominating set a X(2,3)(G)-set. Then
an alternate notation for LR 1)(G) is vx(2,3)(G). For § C V(G), let
N[S] = UsesN[s]. Given a sequence of nonnegative integers (c1, ¢z, . .., ),
aset D CV(G) is a X(cy, ¢y, . . ., c;)-dominating set if, for 1 < ¢ < ¢, every
S C V(G) with |S| =1 has [N[S]N D| > ¢;. The minimum cardinality of a
X(cy, €9, . . ., ct)-dominating set is called the X(cy, 2, .. ., ¢;)-domination
number, and it is denoted by ¥x(c, ,c;,...,c;)(G)- This is the first time that
the focus has been shifted from dominating single vertices to dominating
sets of k vertices at least cx times. Thus, Yx(c;,cz,....c;)(G) is a set-sized
domination parameter.

A similar definition for an infinite sequence (ci,c2,cs,...) of nonnega-
tive integers holds for ¥x(e;,cz,cs,...)(G). Note that requiring |N[S]ND| 2 ¢;



holds vacuously for i > |V(G)|. This infinite sequence gives us infinitely
many domination parameters, and the infinite dimensional lattice of dom-
ination parameters is referred to as the domination continuum.

As defined by Harary and Haynes (3], vertex set D C V(G) is a k-tuple
dominating set if |N[z] N D| > k for every z € V(G), and the minimum
cardinality of a k-tuple dominating set for G is denoted by yxx(G). A 2-
tuple dominating set is also called a double-dominating set, and yx2(G) is
also denoted by dd(G). Obviously, a 3-tuple dominating set is also called a
triple-dominating set. Note that for 7xx(G) to be defined one requires the
minimum degree of a vertex in G to satisfy 6(G) > k — 1.

Theorem 2 [10]. For every connected graph G of order n > 3 we have
'YX(2)(G) S ’YLR(G); and, ’if (5(G) > 2, then ’)‘x(z)(G) < ’)’LR(G) < YX(3) (G).
Observation 3 [7]. If ciy1 < ¢, then

VX(€1,€250+1CiyCi 41, Cig290-+) (G) = YX(C1,€29-+1C1 €3 1Cit21++) (G)

That is, we can assume that 0 < c; <cp<... <S¢ <1 ..
Observation 4 [7] 'YX(cl,cz,...,Cg)(G) = YX(€1,€2y+5Ct,Ct,Ctyee-) (G)
In particular, Yx(kk,....k) (G) = 1xk(G).

Observation 5 [7]. If ¢; < b; for every i, then

7)((61 ,62,...) (G) S ,)'X(bl ,bg,...) (G) .

In this paper we consider the relations between the liars’ dominating
parameters and set-sized dominating parameters.

2 Relations Between Liars’ Dominating and
Set-sized Dominating Parameters '

We will show that for some values of ¢ and j, LR; ;(G) is equivalent to a
“domination continuum” or set-sized domination parameter yx(c, c,,...)(G)-
Note that Theorem 1 can be restated as LR 1y(G) = x(2,3)(G)- However,
for other values of < and j we will see that LR(; ;)(G) is not equivalent
to any set-sized domination parameter. First we consider relationships
between different liars’ domination numbers.

Observation 6 If i < h and j < k, then since an LR(h, k)-set for G
can protect against as many as h intruders and as many as k liars, it is
also an LR(i,7)-set for G. In particular, i < h and j < k implies that
LR jy(G) £ LR(p k) (G).
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Next we compare the (i, j)-liars’ domination numbers and the set-sized
domination continuum parameters.

Theorem 7 If an LR(i,j)-set L with 1 < i < j exists for graph G, then L
is @ X(i + j,27 + 1)-set for G and LR; j(G) > x(i+j2i+1)(G).

Proof. Assume that L is an LR(3, j)-dominating set for G with 1 <
i < j. First, notice that if at most j devices protect a vertex z, then all
of the devices protecting = could lie and we could not determine if there
is an intruder at z. Thus |[N[z]NL| > j +1 for every z € V(G). Now
we will show that [N[z] N L| > i+ j for every z € V(G). Consider a
graph G and a set L C V(G). Let v € V(G) with [N|NL| <i+j—1.
If v ¢ La let N(”) NL = {371,-'1127---,mj,$j+1,...,$k} and if v € L, let
N(v)r‘IL = {v =1,22y .y LTjy Tjply - - ,mk}. Note thatj+1 <k<it+j-1
Suppose that each vertex z; with 1 <% < j does not report v, and that each
vertex z; with j+ 1 <t < k reports an intruder at v and at some vertex
y¢ € N(x;) —v. Also every vertex in each N[y,| N L reports y;. Then either
the intruder set is I = {v,yj41,.-., Yk} With the j liars 2y, zo, ..., zj, or
I = {yj41,... Yk} with the liars ©j11, ..., k. Note that k —j <i—1 < .
Thus L is not an LR(:, j)-set of G. Hence, |N[z]NL| > i + j for every
z € V(Q).

Suppose {u,v} C V(G) with |(N[u] UNP])NL| < 2j. Let |(N[u] -
Np)) NL| =4, |(Nv]- Nu)NL|=s, and |(N[u] N N[v]) N L| =¢. Since
|(N[x] UNp])NL| <2, |[INu|NL| >j+41and [Nv]nL| > j+1, then
1<7—1,s<j5-1, and we can let t =%, 4+, wheret; > 1 and t2 > 1. If
t; and ¢, are taken such that :+¢; < j and s+1¢5 < 7, the t; vertices report
v, the to vertices report u and the ¢ and s vertices do not report, then the
intruder’s position cannot be determined. The intruder can either be at u
with the ¢ + ¢; vertices lying or at v with the s + ¢2 vertices lying. Hence,
we must have |(N[u]UN[]) N L| > 25+ 1. Thus Lis a X(j + 1,25 + 1)-
dominating set. Hence LR(Z,J) (G) > MX(3+5,25+41) (G) O

For completeness we include the next two proofs. The following theorem
is a generalization for the single intruder, multiple liars scenarios of the
characterization of a liar’s dominating set in Theorem 1.

Theorem 8 [7]. Vertez set L C V(G) is an LR(1, j)-dominating set for G
if and only if it is a X(j + 1,25 + 1)-dominating set for G. In particular,
LR(1,)(G) = M(i+1,2+1)(G)-

Proof. Assume that L is an LR(1, j)-dominating set for G. By Theo-
rem 7, L is a X(j + 1,27 + 1)-dominating set.

Next assume L is a X(j+1,2;+1)-dominating set for a graph G. We will
show that, when considering a pair of vertices which includes the intruder,

209



the vertex without the intruder can be eliminated. So, by considering all
possible pairs of vertices, the intruder’s location can be determined. Let
(z,y} C V(G) with |(N[z] — N[y N L| =, |(Nly] — Nlz]) N L] = 5, and
(N[zZ) " N[y]) N L| = t. Then i+ s+t > 2j+1. Suppose the intruder
is at z. Note that the s vertices in (N[y] — N[z]) N L do not report any
intruder. If some v € (N[z] — N[y]) N L reports the intruder at one of its
neighbors, then the intruder is not at y since it is not adjacent to v and
there are no false alarms. Assume the ¢ and s vertices do not report, and
t = t; +1to+t3, where for the ¢ vertices in (N[z]N N[y])NL, we have that ¢,
vertices report z, to vertices report y, and t3 vertices either do not report or
report neighboring vertices other than z or y. Then since the intruder is at
z and there are at most j liars, we have i +¢2+¢3 < j. Hence s+%1 > j+1
with at least one of these vertices telling the truth that the intruder is not
at y. Hence, it will follow that L is an LR(1, j)-dominating set for G. O
Next we consider the characterization of an LR(c0,j)-dominating set.
For this case there can be arbitrarily many intruders and at most j liars.

Theorem 9 [7]. Vertez set L C V(G) is an LR(o0, j)-dominating set for
G if and only if it is a X(27 + 1)-dominating set for G. In particular,
LR(c0,j)(G) = 1x(2i+1)(G).

Proof. Assume L C V(G) is a X(2j + 1)-dominating set for G. Since
there are at most j liars, then, if 41 devices report z € V(G), one of them
must be telling the truth that the intruder is at z. Since L is a X(2j + 1)-
dominating set and there are at most j liars, then, if there is an intruder
at z € V(G), at least j + 1 devices will report z. Thus there is an intruder
at z if and only if at least 7 + 1 vertices in L report z. Hence L is an
LR (o0, j)-dominating set for G.

Next assume that L C V(G) is an LR(o0,j)-dominating set for G.
Assume |N[u]N L| < 2j. Let Nu|NL = Ly ULy, where LiNL; = &
and |L;| < j. If z = NJz] — u for every z € Ly and y — N[y] for every
y € L—L;, then the intruder set, I, cannot be determined. Either I = V(G)
with L; being the set of liars or I = V(G) — {u} with Ly being the set of
liars. Thus |[N[u] N L| > 2j + 1. Hence L is a X(2j + 1)-dominating set for
G. O

Clearly, if L is an LR(00, j)-dominating set for G, then L is an LR(z, 5)-
set for G. Thus we have the following corollary to Theorem 9.

Corollary 10 If an LR(3,j)-set ezists for graph G, then LR(; ;)(G) <
x(25+1)(G).

It was shown in [7] that vertex set L C V(G) is an LR(2, 1)-dominating
set for G if and only if it is a X3-dominating set for G. That is, LR 3 1)(G) =
vx3(G). This can be generalized to include any LR(3, j)-set with ¢ > j as
follows.
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Theorem 11 Vertez set L C V(G) is an LR(3, j)-dominating set with i >
j for G if and only if it is a X(2j + 1)-dominating set for G. That is, if
i> j, then LR ;(G) = 1x(2j+1)(G)-

Proof. Assume L C V(G) is a X(2j + 1)-dominating set for G. Since
L is an LR(co,j)-dominating set for G by Theorem 9, then clearly L is
an LR(3, j)-dominating set for G. Next assume that L C V(G) is an
LR (4, j)-dominating set for G with ¢ > j. Assume |N[u] N L| = 2j with
N[y N L = {z1,%2,...,22;}. For Case 1, assume that u ¢ L. If for
1 < i < j, each vertex in N[z;] N L reports z;, each vertex not adjacent
to any x; for 1 < ¢ < j does not report, and for 1 < i < j each z;
also reports u then the intruder set, I, cannot be determined. Either the
I = {u, T1,T9-. .,(Ej} with Tjt1y Tj42y --vy T2 lylng orl= {271,:82, fieg .’Ej}
with z1, %, ..., z; lying. For Case 2, assume that v € L and N[u]N L =
{u,1,%2,...,%2i-1}. If for 1 <4< j—1, each vertex in N{z;| N L reports
z;, each vertex not adjacent to any z; for 1 <4 < j — 1 does not report,
and for 1 <4 < j—1 each z; also reports u then the intruder set, I, cannot
be determined. Either I = {u,z1,%s,...,2;-1} with u, z;, Zj41, ..., T2j-1
lying or I = {z1,%y,...,2;_1} With z1, 2, ..., z;_; lying. Thus for every
u € V(G), |IN[u]nL| > 2j+1. Hence L is a X(2j+1)-dominating set for G.00

However, LR(;;)(G) is not always equivalent to a set-sized domina-
tion parameter for every ¢ and j. We next show (as discussed in [7))
that there does not exist a sequence (ci, ¢2,¢3, . --) such that LR 2)(G) =
Y(e1,e2,c5,...) (G) for all G. By Corollary 10, we have that LR(3,5)(G) <

7%(5)(G)-

Figure 2: Graph G*.

Observation 12 For the graph G¥ which consists of a vertex of degree
four adjacent to one vertex in each of four disjoint Ks's, say wy, w2, w3,
and wy as in Figure 2 we have LR(22)(G*) = 20 < 1x5(G¥) = 21.

By Observation 12 and Observation 5 we see that LR(2,2)(G#) < yxs(G*) <
Y(e1,e,...) (G) whenever ¢; > 5.
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Figure 3: Graph G, with p =5.

By Theorem 7 we know that LR(3 2)(G) > ¥x(4,5)(G). Consider G}, con-
sisting of a vertex z adjacent to two vertices in each of two Kp’s as in Fig-
ure 3. When p > 5, we can see that LR 2 2)(G,) = 11 and v (4,5)(Gp) = 10.
Hence LR(2,2)(Gp) > 71x(4,5)(Gp). Now for any (4,cz,¢c3,...,¢,...) with
c2 > 9, some C > 6, and p = maw{t + 2, Ct}, we have LR(Z,Z) (Gp) =3l &
12<2¢; < VX(4,¢2,C3..+1Ct o) (Gp) Hence LR(2’2) (Gp) < VK (4,62,63,01-1C8---) (Gp)
whenever c; > 5 and some ¢; > 6. Thus there does not exist a sequence
(c1, €2, 3, - - -) for which LR 2 2)(G) = yx(ey ,en,0s,...) (G) for all G.

Our principal theorem generalizes this for all liars’ domination param-
eters with 2 <7 < 7.

Figure 4: Graph G* where LR; j)(G*) = (27)(27 +1)

Theorem 13 For 2 < i < j there does not exist a sequence (cy,c2,C3,---)
for which LR ; j)(G) = ¥x(c1,e2,¢3,...) (G) for all G.

Proof. By Theorem 7, LR ; ;)(G) > yx(i+j,2j+1)(G) for i < j. First, we
will show that there exists a graph G* such that for 2 < i < j, LR; ;(G*) <
V(e1,c20.pce) (GT), Where i+5 < ¢y < 2j+1 and ¢ > 25 +2. Let G* consist
of 2j K,’s, complete graphs on p vertices, each with one vertex v; adjacent
to z as seen in Figure 4. Let p > maz{t +1,¢}. Let L C V(G*) consist of
each v; and 2j other vertices from each of the K,'s. Thus |L| = (25)(27+1).
Notice that L is a yx(i+,2j+1)(G*)-set and hence LR; j)(G*) > (25)(27+1).

312



Now we will see that L is an LR(3, j)-set for G*. Since each vertex v in
any K, is dominated by 2;j + 1 vertices, then we can determine if there is
an intruder at v. The only vertex not dominated 25 + 1 times is z. If more
than ; of the v; agree about the presence of an intruder at z, then since
there are at most j liars, they must be telling the truth about z. Suppose
exactly j of the v;’s report that there is an intruder at z. If each of the K,'’s
corresponding to a v; which reported z also contains an identified intruder,
then since there are at most ¢ < j intruders, there is no intruder at z. If
one of the Kp's corresponding to a v; which reported = does not contain an
identified intruder, then since there are no false alarms, there is no intruder
at . Thus, L is an LR(3,j)-set for G* and LRy; ;(G*) < (27)(2j + 1).
Hence, LR; ;)(G*) = (27)(27 +1).

Now consider Yx(e, ,ca,...,c;)(G*), Where i+3 < ¢; < 2j+1 and ¢; > 2j+2.
Notice that since ¢; > 25 + 2, at least 25 + 2 vertices are needed in each
K, to c;-dominate any set of size ¢ in the K,. Thus Yx(c, c,,....c.)(G*) >
(2_7)ct > (27)(27 +2). Thus LR(; 4(G*) < o> R (clg

Second, we will show that there exists a graph G’ such that for 2 < i < j,
LR; j)(G") > ¥%(a1 2i+1)(G'), Where i + j < ¢; < 2j. Let G be the join of
a complete graph on 2j vertices and the complement of a complete graph
on 7 vertices. Thus G' = ng + K, Let V(K2J) = {a:l,a:g,.. y ,:Egj} and
V(K;) = {y1,%2,...,¥:}. Consider Y(e1,2i+1)(G’), where i +j < ¢1 < 2.
Notice that to 25+ 1-dominate any pair {yp, yq} either all of 25 vertices from
K; and at least one of y,, and y, is needed, or all but one of the vertices from
K3; and both y, and y, are needed. Thus for a X(c1,2j+1)-set L for G, at
most one vertex from V(G) is not in L. Also notice that for any v € V(G'),
V(G’) —v is a X(c1,25 + 1)-set for G'. Hence, yx(c,,2j+1)(G") = 2j +i — 1.

Now consider LRy; J)(G' ). By Theorem 7, LR(, HG') > Yx(i+4,25+1) (G).
Thus, LR(z #(G") > 2541 —1. Next we will show that any set L of size
27 + ¢ — 1 is not an LR(3, j)-set for G'. First, without loss of generality,
let L = V(G') —y;. Assume that zx — {y1,92,...,%:} for 1 < k < j,
T — {yl’y27°'°7yz'-1} fOI‘]-l—l S 2.7’ and Y {yk} for 1 < k S 1 —1.
Then either the intruder set I = {y1,92,...,¥%i-1} With zy, z,, ..., z; lying,

or I = {yl,yz, o -,yi} with Tit1y Tj42y ooy T25 lying. Thus, L is not an
LR (3, 7)-set for G'. Second, without loss of generality, let L = V(G') — zy;.
Assume that z = {y1,92,...,¥i} for 1 <k < 7, = & {y1,92,...,Yi-1}
for j +1 <k <2—1, and y, — {yk} for 1 < k < i—1. Then ei-
ther the intruder set is I = {y1,%2,.-.,¥%i-1} With z;, o, ..., z; lying,
or I = {y1,¥2,...,%:} With ¥, Tjy1, Tjy2, .., T2j—1 lying. Thus, L
is not an LR(3,j)-set for G'. Hence, LR(, HG") 2 2j +1i. By Corol-
lary 10, LR; ;(G') < Yx(2j+1)(G’) and since 'yX(gJJrl)(G) = 27 +1, then
LR, J)(G’) = 2j + 4. Thus, LR; ;(G") > Yx(1,25+1)(G'), where i + 3 <
¢ <2j.

Third, we will show that there exists a graph G such that for 2 < i < j,
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LR j(Gt) < vx(2j+1)(Gt). Let Gt consist of 2j complete graphs on p
vertices, each with one vertex v; adjacent to z similar to the graph in
Figure 4. Let p > 27+1. Notice that to dominate z 2j+1 times, z and each
of the v;’s are needed. To dominate each vertex in any one of the K,’s, 2j
more vertices are needed in that K. Thus yx(;+1)(G') = (25)(2 + 1) + 1.
However, as seen before with G*, LR(; ;(G") = (2§)(2j + 1). Hence,
LR ;(G*) < vx(2j+1)(G1). Therefore, for 2 < i < j there does not exist
a sequence (c1,¢2, 3, . ..) with LR(;,5)(G) = ¥x(e1,e2,e5,..)(G) for all G. 0

3 Summary

In brief, LR(3,0)(G) = ¥(G); from Theorem 1 we have that LR 1)(G) =
Yx(2,3)(G); more generally, from Theorem 8 we have that LR(; ;(G) =
Yx(i+1,2i+1) (G). Also we know that LR(2,1)(G) = 1x(3) (@); more generally,
from Theorem 11 we have LR(; ;)(G) = x(2;+1)(G) for i > j. Rather
surprisingly, for the remaining cases, by Theorem 13, if 2 < ¢ < j then
parameter LR; ;y is not equivalent to any set-sized domination parameter
Y(e1,c2,c5,...) (G). We can however, for example, bound LR 3 2)- Specifically,
by Theorem 7 and Corollary 10 we have yx(1,5)(G) < LR(22) < vx(5)(G)-
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