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Abstract

Let F, G and H be graphs. A (G, H)-decomposition of F is a
partition of the edge set of F' into copies of G and copies of H with
at least one copy of G and at least one copy of H. For L C F,
a (G, H)-packing of F with leave L is a (G, H)-decomposition of
F — E(L). A (G, H)-packing of F with the largest cardinality is a
mazimum (G, H)-packing. This paper gives the solution of finding
the maximum (Ck, Sk)-packing of the crown Cp n-1.

1 Introduction

Let F, G and H be graphs. A G-decomposition of F' is a partition of the
edge set of F' into copies of G. If F' has a G-decomposition, we say that
F is G-decomposable. A (G, H)-decomposition of F is a partition of the
edge set of F' into copies of G and copies of H with at least one copy
of G and at least one copy of H. If F' has a (G, H)-decomposition, we
say that F'is (G, H)-decomposable. A (G, H)-decomposition of F' may not
exist, however, it is of interest to see just how “close” one can comne to a
(G, H)-decomposition. For L C F, a (G, H)-packing of F' with leave L is a
(G, H)-decomposition of F — E(L). A (G, H)-packing of F with the largest
cardinality is a mazimum (G, H)-packing. Moreover, the cardinality of the
maximum (G, H)-packing of F' is called the (G, H)-packing number of F,
denoted by p(F; G, H).

The degree of a vertex x of G, denoted by degg x, is the number of edges
incident with z. As usual K, denotes the complete graph with n vertices
and K, , denotes the complete bipartite graph with parts of sizes m and n.
A k-star, denoted by Sk, is the complete bipartite graph K 1,k- The vertex of
degree k in Sy is the center of Sk and any vertex of degree 1 is an endvertexr
of Sk. Let (z;y1,¥2,---,Yk) denote the k-star with center z and endvertices
Y1,Y2,--.,Yk. A k-cycle (respectively, k-path and k-matching), denoted by
Ck (respectively, P and My), is a cycle (respectively, path and matching)
with k edges. Let (v1,vs,...,vk) and vjvy..., v, denote the k-cycle and
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(k — 1)-path through vertices vi,..., vk in order, respectively. A spanning
subgraph H of a graph G is a subgraph of G with V(H) = V(G). A 1-factor
of G is a spanning subgraph of G with each vertex incident with exactly
one edge. For positive integers £ and n with 1 < ¢ < n, the crown Ch,e
is a bipartite graph with bipartition (A, B) where A = {ao,a;,... yGn-1}
and B = {bo,b1,...,bn_1}, and edge set {a;b; : i = 0,1,...,n -1, j =
i+1,i4+2,...,i+£ (mod n)}. Hereafter (A, B) always means the bipartition
of Cy ¢ defined here. Note that C, ,_; is the graph obtained from the
complete bipartite graph K, , with a 1-factor removed.

The existence problems for (Ck, Sk)-decomposition of Km,» and Cp, ,,_;
have been completely settled by Lee [4] and Lee and Lin (5], respectively.
Abueida and Daven [2] obtained the maximum packing of the comnplete
graph K, with (K}, Sk). Abueida and Daven [1] and Abueida, Daven and
Roblee [3] gave the maximum packing of K, and MK, with G and H,
respectively, where (G, H) is a graph-pair of order 4 or 5. This paper gives
the solution of finding the maximum (Cl, Sk)-packing of the crown Cy, ,,_;.

2 Preliminaries

We first collect some needed terminology and notation. Let G = (V, E) be
a graph. For sets A C V(G) and B C E(G), we use G[A] to denote the
subgraph of G induced by A and G — B (respectively, G 4+ B) to denote
the subgraph obtained from G by deleting (respectively, adding) the edges
in B. When Gy, ...,G; are graphs, not necessarily disjoint, we write G; U
UGy or U:=1 G; for the graph with vertex set Ule V(G;) and edge set
U:=1 E(G;). When the edge sets are disjoint, G = U:-=1 G; expresses the
decomposition of G into Gy, ...,G;. For a graph G and a positive integer
A > 2, we use AG to denote the multigraph obtained from G by Teplacing
each edge e by A edges, each of which has the same ends as e.
The following results are essential to our proof.

Lemma 2.1. ([9]) For integers m and n with m > n > 1, the graph K, »
is Sk-decomposable if and only if m > k and

m=0 (mod k) ifn<k
mn =0 (mod k) ifn > k.

Lemma 2.2. ([6]) ACh ¢ is Sk-decomposable if and only if k < £ and Anl =
0 (mod k).

Lemma 2.3. ([6]) Let {ao,---,a@n-1,b0,...,bn_1} be the vertez set of the
multicrown \C,, s. Suppose that p and q are positive integers such that
g<p<¢tL Ifxg=0 (mod p), then there exists a spanning subgraph
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G of ACpn ¢ such that deggb; = Aq for 0 < 5 < n—1 and G has an
Sp-decomposition.

Lemma 2.4. ([8]) For positive integers m, n, and k, the graph K, ,, is C-
decomposable if and only if m,n, and k are even, k > 4, min{m,n} > k/2,
and mn =0 (mod k).

Lemma 2.5. ([7]) For positive integers k and n, Cp n—1 is Cx-decomposable
if and only if n is odd, k is even, 4 < k < 2n, and n(n — 1) =0 (mod k).

3 Packing numbers

In this section a complete solution to the maximum (C}, Sk)-packing prob-
lem of Cp, ,_; is given.

Lemma 3.1. ([5]) If k is an even integer with k > 4, then there exist
k/2 -1 edge-dz'sjoint k-cycles in Ck/2,k/2—1 U Kk/2,k/2-

Lemma 3.2. ([5]) If k is an even integer with k > 4, then Ck41,k is not
(Ck, Sk)-decomposable.

Lemma 3.3. Ifk is an even integer with k > 4, then Ci41,x has a (Ck, Sk)-
packing with leave Sx/3 U My /2.

Proof. By Lemma. 3.2, we have that Ck.1 k is not (Ck, Sk)-decomposable.
Let Hy = Cry1,k[{a0,1,...,0k/2-1}U{bo,b1,...,bk_1}], H1 = Cr41,k[{0,
a1, ..., ax/2-1}U{bk}| and Hz = Cit1k[{ak/2; ars2+15- -, ak}U{bo, b1,...,
br}]. Clearly, Cx.41,x = U2 oH;. Note that Hy is isomorphic to Ck/2,k/2-1U
K /2,k/2, Hy is isomorphic to S/, and H; is isomorphic to Ky z41,k/2 U
Ck/2+1,k/2- By Lemma 3.1, we have Hy can be decomposed into k/2 — 1
edge-disjoint k-cycles and a k/2-matching. In addition, since degy, a; = k
for k/2 < i <k, it follows that H is Sk-decomposable. Hence Ck41,x has
a (Ck, Sk)-packing with leave Sk/2 U My . O

Therefore, with the results of Lemmas 3.2 and 3.3, we have the following.
Corollary 3.4. P(Ck+1,k; Ck, Sk) = k.

Lemma 3.5. ([5]) If k is an even integer with k > 4, then Cakok—1 is
(Ck, Sk)-decomposable.

Lemma 3.6. Let k be a positive even integer and let n be a positive integer
withd<k<n-1<2k-1. If(n—k)(n—k—1) <k, then Chn_1 has a
(Ck, Sk)-packing with leave Cp_k n—_k—1.
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Proof. Let n — 1 = k + r. The assumption k < n — 1 < 2k — 1 implies
0 <r < k—-1. Let Hy = Cx4r+1,k+r[{a0,a1,...,ax}U{by, by,...,bx}], H} =
Crir+1,k+r[{a0,81y -y ak=1} U {Oks1,bks2. . beyr}], Hy = Crranesrl{
Qkt1,Qka2 .-« Qksr} U {bo,b1,...,bk—1}}] and Hj = Cryykl[{ar, ar+14. -,
ak.*.,-} U {bk,bk+1, £ ,bk+r}]- Clearly, Ck+r+1,k+r = U?=0H£. Note that
H} is isomorphic to Cr41,k, H{ and H} are isomorphic to Ky - and Hj is
isomorphic to Cr41,~. By Lemma 2.5, H}, is Cx-decomposable. In addition,
by Lemma 2.1, H| and Hj are Sk-decomposable. Note that |E(H3)| =
(n—k)(n—k—1) <k, Cnn-y has a (Ck, Sk)-packing with leave Hj, that
is, Cn—k,n—k-1. O

Lemma 3.7. Let k be a positive even integer and let n be a positive integer
withda<k<n—-1<2k—-1. If(n—k)(n—k—1) 2k, then Chn—1 has a
(Ck., Sk)-packing P with | 2| = [n(n —1)/k].

Proof. Let n — 1 = k + r. From the assumption £k <n —1 < 2k, we have
0<r<k—1. Since(n—k)(n—k—-1)>k,letm=(n—-k)(n—k—1)=
r(r+1)=tk+s, wheret >1and 0<s< k-1 The proof is divided into
two parts according to the value of ¢.

Case 1. t = 1. Since 4 < k < r(r + 1), we have r > 2. We distinguish two
subcases.

Subcase 1.1. 7 = 2, then k = 4 or 6. For the case that £ = 4,
then n = 7. Let Ey = 07,6[{0,0,&1} U B], P, = 07,6[{0,2,0,3} U B], E, =
Cr6[{as,as} U B] and E5 = Cr,6[{as} U B]. Clearly, C76 = US_oE:. Note
that E; is isomorphic to Cy; U Ko 5 for ¢ € {0,1,2} and E; = S4U Ss.
Since F; can be decomposed into two copies of Sy and one copy of C4 for
i € {0,1,2}, it follows that C7¢ has a (Cs, Sq)-packing P, with leave S
and |#;|=3-(2+1)+1=10.

For the other case that k = 6, then n = 9. We have that Co g =
U?.:ng,s[{a;;i, azi+1, a3i+2}UB] = 303,2U3K3,6 = 3CsU9Sg for : € {0, 1; 2}.
Hence, Cy g is (Cs, S)-decomposable, that is, Co,g has a (Ce, Se)-packing
P, with leave @ and |P2| =3 (1+3) = 12.

Subcase 1.2. r > 3. Let Ag = {ao,a1,...,ap_1}, Bo = {bo,b1,..-,
bz_1}, Do = Cpn—1[Ao U Bo], D1 = Cnn-1[(A\ Ao) U Bo], and Dy =
Can-1[AU (B \ By)]. Clearly Chn—1 = Do U Dy U Da. Note that De
is isomorphic to O = _1, D; is isomorphic to K ktrelop m, and D5 is

isomorphic to Cryrt1-2 ktr—2 UKz pyry1-z.

Claim. C, ,_; can be decomposed into k-stars together with a m-cycle.
Check. Let C = (b17a07 b27 a‘17b3a A2y« vy b%‘-—la 022:_2, bO) a%—‘-—l) and
D = Do - E(C). Trivially, C is a m-cycle in Dp and D = C = _3. Note
that7—2 < Zt—r—1forr > 3and B (r-2) = r(r+1)(r-2)/2 = r(§ —r—1).
Thus there exists a spanning subgraph X of D such that degy b; = r — 2
for0 <j <% —1and X has an Sp_r—1-decomposition 2 with |2| = r by
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Lemma 2.3. Furtherinore, each Sg _r_; has its center in A since deg x b=
r—2 < Z —r—1. Suppose that the centers of the (3 —r—1)-stars in 9 are
L TRES ,a,,_ Let S(w) be the (3 —r — 1)-star with center a;, in 2, and let
Y = D-E(X)UD,. Note that degy bj = (F=8=(r-2))+(k+r+1-3) =k
for0<j < Z2-1 Hence Y is Sk-decomposable. For w € {1,...,r}, define
S'(w) = Dy[{ai, }U(B\Bo)] and Z = D; = E(,,_, §'(w)). Clearly §'(w)
isa (k+r+1— 3)-star with center a;, in Dj, and S(w) U §'(w) is a
k-star. Moreover, degzbj = k+r—r=kfor 2 <j<k+r. Thus Zis
Sk-decomposable. This completes the check of Claim.

Let S he the k-star containing the edge a;_lbl in the decornposition in
Claiin. We can see that

CuS=(C-e+ a;_lbl) u(S- a;:_lbl % &);

a§-1b§+1v if the center of S in Ay,

am_1by, if the center of S in By.

where e € E(C) and e = {
7

Then the graph C—e+a§_1b1 is the union of a k-cycle C’ : (b1, ao, b2, a1, b3,
az,---1b§_pa,§_2,b,§,a§_1) and a (mn — k)-path P/, where

—2boasp_1b;, if the center of S in Ay,

P’= b%+1akbl+2ak+l"'b? ,T
azg _oboazn 1, if the center of S in B,.

ak bl. 1a1b7+2 b

T F-1

On the other hand, the graph S —a k _1b1 +eisstill a k-star. Hence Cy,,,_1
has a (Ck, Sk)-packing &3 with leave P’ and |Z3| =7+ (k+7+1)+1=
k+2r+2=|n(n—1)/k], |P'| = s. This settles Case 1.

To illustrate the decomposition in Subcase 1.2 of Lemina 3.7, in Figure 1
we give the maximum (Ciq, Sjp)-packing of C7 1.

Step 1: Co0 (m = 20) Step 2: 4 copies of S5 (r =4, 5 -t —1=35)
012345678 910111213141516 012345678 910111213141516
0(X|ClC] 01X]|C]|C]
1{ IXIC} 1{_[X[C|C
2 X]CIC] 2 X|CIC]
3 X|C|Cl 3 X|C|C]
4 X|C|C] 4 X|C|C
5 X|C|C] 5 X|Cl
6 X|C\|C] 6 X|C|C
7 X 7 X|Cl1C]
8|C] (& 8(C] X
9{CIC X 9[{C|C X
10 X 10 X
11 X 11 X
12 X 12 X
13 X 13 X
14 X 1 X
13 X 15 X
16 X 16| X
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Step 3: the transformation of ashy and asby Step 4: the leave P’
0123456780910111213141516 012345678 0101112134156
= = X = o= 5o

01X Q0 = 0 C —[=—T=T—1—1—
e == & 1 [Xlclc EEEEE
2 x| O 2 Xlclc
3 x| 10 3 X|clc
4 x| C) 4 Xlcie
5 X]C1¢€ 5|=lc X|Cl= =
[ - C 6|— P[P’ T —
7 X C 7 X PP
B X 87 X
9|0 X 9(p’lp’ X
1 X 10 X
11 X 11 X
1 X 12 X
13 X 1 X
1 X 1 X
15 X 15 X
16 X 1 3
The rows are numbered 0,1,2, - - , 16 from top to bottom and the columns
are numbered 0, 1,2, , 16 from left to right. The mark x means no edge.
The (i, j)-position is marked “C”, “C", “P"™, “=" or “" according to a

edge of the m-cycle, k-cycle, leave, star a;b; with center ai, or bj.

Figure 1: The maximum (Cj2, S12)-packing of Ci7.16

Case 2. t 2 2.

Let Ay = {ao,al,...,a,}_l}, A= {a;,agjﬂ,...,ak_;}, Ay = A\
(43 U AD), By = {bo,br,...,bs s}, By = {by,byyr, ..., be-1} By = B\
(BoU By). Let G; = Cpn-1{Ai UByU Bf] for i € {0,1,2} and G3 =
Can-1[AU Bj]. Clearly Con—1 = U3_,Gi. Note that Go and G, are
isomorphic to Ci/g k/2-1 U Kk/2,k/2, G2 is isomorphic to Kr41.k, Which is
Sk-decomposable by Lemma 2.1 and G is isomorphic to Kk r41 U Cryyr.
Let po = [(t —1)/2] and py = [(t = 1)/2]. In the following, we will show
that for each i € {0,1}, G; can be decomposed into p; copies of Cy and k/2
copies of Sk—2p;—-1, and G3 can be decomposed into k/2 copies of Sgp,+1
and r + 1 copies of Sk, k' > k, such that the (k — 2p; — 1)-stars and
(2p; + 1)-stars have their centers in Aj.

We first show the required decomposition of G; for i € {0,1}. Since
r<k-1,wehaver+1<k, andinturnt <r. Thus,po = [(t —1)/2] £
t/2< (r-1)/2 < (k-2)/2 = k/2 — 1, which implies p; < k/2 — 1 for
i € {0,1}. This assures us that there exist p; edge-disjoint k-cycles in G;
hy Lemma 3.1. Suppose that Qi 0,1 Qip;—1 are edge-disjoint k-cycles
in G,'. Let Fi = G,‘ = E( Z:OI Qi.h) and X-i'j = F,-[{a,-k/2+j} ) (B = Bé)]
where i € {0,1}, j € {0,...,k/2 — 1}. Since degg, ajx/24; = k — 1 and
each Qi uses two edges incident with a;y/g4; for each i and j, we have
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degr, @ik/2+5 = k — 2pi — 1. Hence X;; is a (k — 2p; — 1)-star with center
Qik/2+j

Next we show the required star decomposition of G3. For j € {0,...,k/2
—~1}, let
( (@53 bkt-(2po+1)5s Ok 4 (2p0+1)j411 -+ +» Dkt (2po+1)54+2p0 ) ,
i =0,

142 J (@5 453 Opo+ §)k+ (21 4+1)3 O(po+ § k-4 (21 +1)5 41

1 O(po 4 3)k+(2p1+1)542p1 )
ifi=1,

\

where the subscripts of b’s are taken modulo r 4 1 in the set of numbers
{k,k+1,...,k+r}. Since 2p; +1 < 2po+1 < t+1 < r, this assures us that
there are enough edges for the construction of X ; and Xi,;- Note that X{ .

is & (2p; + 1)-star and X; ; U X; ; is a k-star for i € {0, 1}, j € {0,.. k/2

=1}

On the other hand, let s =a(r+1)+ 8 wherea>0and 0 < B3 <7, we
have that

|E(G3)| —| E(Vie(o,1} Yjeqo,....k/2-1} Xi 4
= (k+7)(r+1) - (2po + 2p; + 2)(k/2)
= (k+r7)(r+1)—tk
(k+r)(r+1)—r(r+1)+s
= k(r+1)+a(r+1)+p
= (k+a)(r+1)+8.
Hence there exists a decomposition 2 of G3— E(Uic(0,1}Yje(o,...k/2—1} Xi ;)
into r+1—2 copies of (k+a)-star with center b,, forw =k, k+1,...,k+r—p
and f3 copies of (k + @ + 1)-star with center b, forw =k+r—- B8+ 1,k+
r—B+2,...k+r. Let

T Skt+a, fwelkk+1,...,k+r—p},
Sktat1, fwe{k+r—B+1,k+r—B+2,...k+7}

in 2. Note that any endvertex a; of Y,,, we have that : < k — 1.
Define a star Y, as follows:

( S(bw;aw+1,aw+2,...,aw+a),
ifwe{kk+1,....,k+r -8},
Y, = S(bw;auw+1,0uwi2,...,0wiat1),
fwel{k+r-p+1, :
b k+r—B8+2,...k+r},

where the subscripts of a’s are taken modulo 7 4+ 1 in the set of numbers
{k,k+1,....k+7}. Sincea(r+1)+B=s=r(r+1) -tk <r(r+1),
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it follows that a < r. This assures us that there are enough edges for
the construction of Y. It is easy to see that Y,, — E(Y,,) is a k-star.
Hence C, n—1 has a (Ck, Sk)-packing 24 with leave Uye(kk+1,...k+r} Yo
and |2y = (k+r+1)+(r+1)+(t-1)=k+2r+1+t=[n(n—1)/k].
This completes the proof. O

To illustrate the decomposition in Case 2 of Lemma 3.7, in Figure 2 we
give the maximum (Cyo, S10)-packing of Cy7,16. Note that n =17, k = 10,
r=26,t=4, po =2 and p; = 1. The number s in the row i, columnn j
indicates that the cycle Cyo contains the edge a;b;.

Step 1: 3 copies of Cyo (k = 10,po + p1 = 3) Step 2: Xo; =S5 for0<j<4(2po+1=3

012345678 910111213141516 012345678910111213141516

Ofxj111]2|2 o[xlz1]z12{2 —
1{21X|1]1]12 1{2|X[1{1]|2 —]—

2(2(2|X|1|1 212/2]X]1]1 — —

311]2]2]X]!1 311]12]|2|X|1 —_|—

41111]2]2{X 41111[2{2]X —

5 X|S[8 5 X[{8]|38

6 X{ 38138 6 X]38|8

7 X[818 7 X|3]8

8 S X|8 8 3 X| 3

9 3(3 X 9 3|8 X

10 X 10 X

11 X 11 X

12 X 12 X

13 X 13 X

14 X 14 X

15 X 15 X

16 X 16 X

Step 3: X{; =Sz for0< j <4 (2p1+1=23) Step 4: the leave Y{s UY/s (the shaded regions)

012345678 910111213141516 01234567891011121314151

oiX|z]112({2 o|xl1{1{2|2

112(X|1]1]2 1(21X[1[1]2

212(2(X{1]|1 — 212|12|X| 1|1 —

311]12[2(X]1 — 31112|2iX|1

4[1] 1] 2] 2]X = 4[1]1]2]2[X =

5 X[3]3 5= X33 —= =

6 X313 6|— X|S|3

7 X| 318 7 —|X| 3|8

8 3 X|8 — 8 S X|38 =

9 33 X 9 313 X

10 X 1 X

11 X 11— X

12 X 12 X

13 X 13 X

14 X 14— X

15 X 1 x

16 X 1 s X

Figure 2: The maximum (Cio, S10)-packing of Ci7 6
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Theorem 3.8. Let k be a positive even integer and let n be a positive
integer with 4 < k <n —1, then

KCuncsOni) = { [0 =D/ <=1

Proof. Obviously, p(Cpnn_1;Ck, Sk) < [n(n —1)/k]. Let n —1 =gk +r,
where ¢ and r are integers with ¢ > 1, 0 < r < k — 1. We consider the
following two cases.

Case 1. r =0.
For ¢ = 1, the result follows from Corollary 3.4. If ¢ > 2, then

Cnin—1 = Clg—1)k+1,(g-1)k U K(g=1)k,k U K (g-1)k U Ck+1,k-

Trivially, |E(C(g—1)k+1,(g-1)k)|s |E(K(q=1)k k)| and |E(Kk,(g-1)k)| are
multiples of k. By Lemmas 2.1 and 2.2, we have that Cig—_1)k+1,(g-1)k>
K(g—1)k,x and K (q—1)x have Si-decompositions &, Z' and &£ with |Z#| =
(-1)((g=1k+1), |Z'| =|Z£"| = k(g —1). In addition, by Lemma 2.5,
Ci+1,x has a Cg-decomposition ¥ with || = k + 1. Hence Cpn-; is
(Cx, Sk)-decomposable, that is, Cp ,—1 has a (Ck, Sk)-packing & U £’ U
Z'"U¥ with cardinality (g—1)((g—1)k+1)+k(g—1)+k(g—1)+k+1 =
qg(gk +1) =n(n—1)/k.

Case 2. 7 > 0.
For ¢ = 1, the result follows from Lemmas 3.5, 3.6 and 3.7. If ¢ > 2,

then
Cnn-1= Clg-1)k+1,(g-1)k U K(g—1)k k47 U Kpr (g-1)k U Chtr1,k4re

Note that Ck4r41,k+r has a (Ck, Sk)-packing & with |2| = [(k+7r +
1)(k+7‘)/k_| Trivially, C(q—l)k+1,(q—1)ka K(q—l)k,k+r and Kk+r,(q—1)k have
Sx-decompositions 9, 2’ and 2" with |2| = (¢ —1)((¢ — 1)k +1), |2'| =
|2"| = (¢ —1)(k+ ). Hence U2 U 2'U 2" is a (Cy, Sk)-packing of
Cn,n—1 with cardinality |(k+7r+1)(k+7)/k| +(¢—1)((g—1)k+1)+(q—
k+7r)+(@—-1)(k+7)=|(gk+7+1)(gk+7r)/k] = [n(n—1)/k]|. This
completes the proof. O
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