Packing the crowns with cycles and stars

Jenq-Jong Lin and Min-Jen Jou* Ling Tung University, Taichung 40852, Taiwan

Abstract

Let F, G and H be graphs. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. For $L \subseteq F$, a (G, H)-packing of F with leave L is a (G, H)-decomposition of F - E(L). A (G, H)-packing of F with the largest cardinality is a maximum (G, H)-packing. This paper gives the solution of finding the maximum (C_k, S_k) -packing of the crown $C_{n,n-1}$.

1 Introduction

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable. A (G,H)-decomposition of F is a partition of the edge set of F into copies of G and copies of G with at least one copy of G and at least one copy of G. If G has a composition, we say that G is a function of G has a composition of G has a composition of G has a confidence of G has a composition of G has a confidence of G has

The degree of a vertex x of G, denoted by $\deg_G x$, is the number of edges incident with x. As usual K_n denotes the complete graph with n vertices and $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. A k-star, denoted by S_k , is the complete bipartite graph $K_{1,k}$. The vertex of degree k in S_k is the center of S_k and any vertex of degree 1 is an endvertex of S_k . Let $(x; y_1, y_2, \ldots, y_k)$ denote the k-star with center x and endvertices y_1, y_2, \ldots, y_k . A k-cycle (respectively, k-path and k-matching), denoted by C_k (respectively, P_k and M_k), is a cycle (respectively, path and matching) with k edges. Let (v_1, v_2, \ldots, v_k) and $v_1 v_2 \ldots, v_k$ denote the k-cycle and

E-mail address: mjjou@teamail.ltu.edu.tw

^{*}Corresponding author.

(k-1)-path through vertices v_1, \ldots, v_k in order, respectively. A spanning subgraph H of a graph G is a subgraph of G with V(H) = V(G). A 1-factor of G is a spanning subgraph of G with each vertex incident with exactly one edge. For positive integers ℓ and n with $1 \leq \ell \leq n$, the crown $C_{n,\ell}$ is a bipartite graph with bipartition (A,B) where $A=\{a_0,a_1,\ldots,a_{n-1}\}$ and $B=\{b_0,b_1,\ldots,b_{n-1}\}$, and edge set $\{a_ib_j: i=0,1,\ldots,n-1,\ j\equiv i+1,i+2,\ldots,i+\ell \pmod n\}$. Hereafter (A,B) always means the bipartition of $C_{n,\ell}$ defined here. Note that $C_{n,n-1}$ is the graph obtained from the complete bipartite graph $K_{n,n}$ with a 1-factor removed.

The existence problems for (C_k, S_k) -decomposition of $K_{m,n}$ and $C_{n,n-1}$ have been completely settled by Lee [4] and Lee and Lin [5], respectively. Abueida and Daven [2] obtained the maximum packing of the complete graph K_n with (K_k, S_k) . Abueida and Daven [1] and Abueida, Daven and Roblee [3] gave the maximum packing of K_n and λK_n with G and H, respectively, where (G, H) is a graph-pair of order 4 or 5. This paper gives the solution of finding the maximum (C_k, S_k) -packing of the crown $C_{n,n-1}$.

2 Preliminaries

We first collect some needed terminology and notation. Let G = (V, E) be a graph. For sets $A \subseteq V(G)$ and $B \subseteq E(G)$, we use G[A] to denote the subgraph of G induced by A and G - B (respectively, G + B) to denote the subgraph obtained from G by deleting (respectively, adding) the edges in G. When G_1, \ldots, G_t are graphs, not necessarily disjoint, we write $G_1 \cup \cdots \cup G_t$ or $\bigcup_{i=1}^t G_i$ for the graph with vertex set $\bigcup_{i=1}^t V(G_i)$ and edge set $\bigcup_{i=1}^t E(G_i)$. When the edge sets are disjoint, $G = \bigcup_{i=1}^t G_i$ expresses the decomposition of G into G_1, \ldots, G_t . For a graph G and a positive integer $\lambda \geq 2$, we use λG to denote the multigraph obtained from G by replacing each edge G by G edges, each of which has the same ends as G.

The following results are essential to our proof.

Lemma 2.1. ([9]) For integers m and n with $m \ge n \ge 1$, the graph $K_{m,n}$ is S_k -decomposable if and only if $m \ge k$ and

$$\begin{cases} m \equiv 0 \pmod{k} & \text{if } n < k \\ mn \equiv 0 \pmod{k} & \text{if } n \ge k. \end{cases}$$

Lemma 2.2. ([6]) $\lambda C_{n,\ell}$ is S_k -decomposable if and only if $k \leq \ell$ and $\lambda n\ell \equiv 0 \pmod{k}$.

Lemma 2.3. ([6]) Let $\{a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}\}$ be the vertex set of the multicrown $\lambda C_{n,\ell}$. Suppose that p and q are positive integers such that $q . If <math>\lambda nq \equiv 0 \pmod{p}$, then there exists a spanning subgraph

G of $\lambda C_{n,\ell}$ such that $\deg_G b_j = \lambda q$ for $0 \leq j \leq n-1$ and G has an S_p -decomposition.

Lemma 2.4. ([8]) For positive integers m, n, and k, the graph $K_{m,n}$ is C_k -decomposable if and only if m, n, and k are even, $k \ge 4$, $\min\{m, n\} \ge k/2$, and $mn \equiv 0 \pmod{k}$.

Lemma 2.5. ([7]) For positive integers k and n, $C_{n,n-1}$ is C_k -decomposable if and only if n is odd, k is even, $4 \le k \le 2n$, and $n(n-1) \equiv 0 \pmod{k}$.

3 Packing numbers

In this section a complete solution to the maximum (C_k, S_k) -packing problem of $C_{n,n-1}$ is given.

Lemma 3.1. ([5]) If k is an even integer with $k \geq 4$, then there exist k/2-1 edge-disjoint k-cycles in $C_{k/2,k/2-1} \cup K_{k/2,k/2}$.

Lemma 3.2. ([5]) If k is an even integer with $k \geq 4$, then $C_{k+1,k}$ is not (C_k, S_k) -decomposable.

Lemma 3.3. If k is an even integer with $k \geq 4$, then $C_{k+1,k}$ has a (C_k, S_k) -packing with leave $S_{k/2} \cup M_{k/2}$.

Proof. By Lemma 3.2, we have that $C_{k+1,k}$ is not (C_k, S_k) -decomposable. Let $H_0 = C_{k+1,k}[\{a_0, a_1, \ldots, a_{k/2-1}\} \cup \{b_0, b_1, \ldots, b_{k-1}\}], H_1 = C_{k+1,k}[\{a_0, a_1, \ldots, a_{k/2-1}\} \cup \{b_k\}]$ and $H_2 = C_{k+1,k}[\{a_{k/2}, a_{k/2+1}, \ldots, a_k\} \cup \{b_0, b_1, \ldots, b_k\}]$. Clearly, $C_{k+1,k} = \bigcup_{i=0}^2 H_i$. Note that H_0 is isomorphic to $C_{k/2,k/2-1} \cup K_{k/2,k/2}$, H_1 is isomorphic to $S_{k/2}$ and H_2 is isomorphic to $K_{k/2+1,k/2} \cup C_{k/2+1,k/2}$. By Lemma 3.1, we have H_0 can be decomposed into k/2-1 edge-disjoint k-cycles and a k/2-matching. In addition, since $\deg_{H_2} a_i = k$ for $k/2 \leq i \leq k$, it follows that H_2 is S_k -decomposable. Hence $C_{k+1,k}$ has a (C_k, S_k) -packing with leave $S_{k/2} \cup M_{k/2}$.

Therefore, with the results of Lemmas 3.2 and 3.3, we have the following.

Corollary 3.4. $p(C_{k+1,k}; C_k, S_k) = k$.

Lemma 3.5. ([5]) If k is an even integer with $k \geq 4$, then $C_{2k,2k-1}$ is (C_k, S_k) -decomposable.

Lemma 3.6. Let k be a positive even integer and let n be a positive integer with $4 \le k < n-1 < 2k-1$. If (n-k)(n-k-1) < k, then $C_{n,n-1}$ has a (C_k, S_k) -packing with leave $C_{n-k,n-k-1}$.

Proof. Let n-1=k+r. The assumption k < n-1 < 2k-1 implies 0 < r < k-1. Let $H'_0 = C_{k+r+1,k+r}[\{a_0,a_1,\ldots,a_k\} \cup \{b_0,b_1,\ldots,b_k\}], H'_1 = C_{k+r+1,k+r}[\{a_0,a_1,\ldots,a_{k-1}\} \cup \{b_{k+1},b_{k+2},\ldots,b_{k+r}\}], H'_2 = C_{k+r+1,k+r}[\{a_{k+1},a_{k+2},\ldots,a_{k+r}\} \cup \{b_0,b_1,\ldots,b_{k-1}\}]$ and $H'_3 = C_{k+1,k}[\{a_k,a_{k+1},\ldots,a_{k+r}\} \cup \{b_k,b_{k+1},\ldots,b_{k+r}\}]$. Clearly, $C_{k+r+1,k+r} = \bigcup_{i=0}^3 H'_i$. Note that H'_0 is isomorphic to $C_{k+1,k}$, H'_1 and H'_2 are isomorphic to $K_{k,r}$ and H'_3 is isomorphic to $C_{r+1,r}$. By Lemma 2.5, H'_0 is C_k -decomposable. In addition, by Lemma 2.1, H'_1 and H'_2 are S_k -decomposable. Note that $|E(H'_3)| = (n-k)(n-k-1) < k$, $C_{n,n-1}$ has a (C_k,S_k) -packing with leave H'_3 , that is, $C_{n-k,n-k-1}$. □

Lemma 3.7. Let k be a positive even integer and let n be a positive integer with $4 \le k < n-1 < 2k-1$. If $(n-k)(n-k-1) \ge k$, then $C_{n,n-1}$ has a (C_k, S_k) -packing $\mathscr P$ with $|\mathscr P| = \lfloor n(n-1)/k \rfloor$.

Proof. Let n-1=k+r. From the assumption k < n-1 < 2k, we have 0 < r < k-1. Since $(n-k)(n-k-1) \ge k$, let m=(n-k)(n-k-1)=r(r+1)=tk+s, where $t \ge 1$ and $0 \le s \le k-1$. The proof is divided into two parts according to the value of t.

Case 1. t = 1. Since $4 \le k \le r(r+1)$, we have $r \ge 2$. We distinguish two subcases.

Subcase 1.1. r=2, then k=4 or 6. For the case that k=4, then n=7. Let $E_0=C_{7,6}[\{a_0,a_1\}\cup B],\ E_1=C_{7,6}[\{a_2,a_3\}\cup B],\ E_2=C_{7,6}[\{a_4,a_5\}\cup B]$ and $E_3=C_{7,6}[\{a_6\}\cup B]$. Clearly, $C_{7,6}=\cup_{i=0}^3 E_i$. Note that E_i is isomorphic to $C_{2,1}\cup K_{2,5}$ for $i\in\{0,1,2\}$ and $E_3=S_4\cup S_2$. Since E_i can be decomposed into two copies of S_4 and one copy of C_4 for $i\in\{0,1,2\}$, it follows that $C_{7,6}$ has a (C_4,S_4) -packing \mathscr{P}_1 with leave S_2 and $|\mathscr{P}_1|=3\cdot(2+1)+1=10$.

For the other case that k = 6, then n = 9. We have that $C_{9,8} = \bigcup_{i=0}^{2} C_{9,8}[\{a_{3i}, a_{3i+1}, a_{3i+2}\} \cup B] = 3C_{3,2} \cup 3K_{3,6} = 3C_6 \cup 9S_6$ for $i \in \{0, 1, 2\}$. Hence, $C_{9,8}$ is (C_6, S_6) -decomposable, that is, $C_{9,8}$ has a (C_6, S_6) -packing \mathscr{P}_2 with leave \mathscr{Q} and $|\mathscr{P}_2| = 3 \cdot (1+3) = 12$.

Subcase 1.2. $r \geq 3$. Let $A_0 = \{a_0, a_1, \ldots, a_{\frac{m}{2}-1}\}$, $B_0 = \{b_0, b_1, \ldots, b_{\frac{m}{2}-1}\}$, $D_0 = C_{n,n-1}[A_0 \cup B_0]$, $D_1 = C_{n,n-1}[(A \setminus A_0) \cup B_0]$, and $D_2 = C_{n,n-1}[A \cup (B \setminus B_0)]$. Clearly $C_{n,n-1} = D_0 \cup D_1 \cup D_2$. Note that D_0 is isomorphic to $C_{\frac{m}{2},\frac{m}{2}-1}$, D_1 is isomorphic to $K_{k+r+1-\frac{m}{2},\frac{m}{2}}$, and D_2 is isomorphic to $C_{k+r+1-\frac{m}{2},k+r-\frac{m}{2}} \cup K_{\frac{m}{2},k+r+1-\frac{m}{2}}$.

Claim. $C_{n,n-1}$ can be decomposed into k-stars together with a m-cycle. Check. Let $C=(b_1,a_0,b_2,a_1,b_3,a_2,\ldots,b_{\frac{m}{2}-1},a_{\frac{m}{2}-2},b_0,a_{\frac{m}{2}-1})$ and $D=D_0-E(C)$. Trivially, C is a m-cycle in D_0 and $D=C_{\frac{m}{2},\frac{m}{2}-3}$. Note that $r-2<\frac{m}{2}-r-1$ for $r\geq 3$ and $\frac{m}{2}(r-2)=r(r+1)(r-2)/2=r(\frac{m}{2}-r-1)$. Thus there exists a spanning subgraph X of D such that $\deg_X b_j=r-2$ for $0\leq j\leq \frac{m}{2}-1$ and X has an $S_{\frac{m}{2}-r-1}$ -decomposition $\mathscr D$ with $|\mathscr D|=r$ by

Lemma 2.3. Furthermore, each $S_{\frac{m}{2}-r-1}$ has its center in A_0 since $\deg_X b_j = r-2 < \frac{m}{2}-r-1$. Suppose that the centers of the $(\frac{m}{2}-r-1)$ -stars in $\mathscr D$ are a_{i_1},\ldots,a_{i_r} . Let S(w) be the $(\frac{m}{2}-r-1)$ -star with center a_{i_w} in $\mathscr D$, and let $Y=D-E(X)\cup D_1$. Note that $\deg_Y b_j=(\frac{m}{2}-3-(r-2))+(k+r+1-\frac{m}{2})=k$ for $0\leq j\leq \frac{m}{2}-1$. Hence Y is S_k -decomposable. For $w\in\{1,\ldots,r\}$, define $S'(w)=D_2[\{a_{i_w}\}\cup (B\setminus B_0)]$ and $Z=D_2-E(\bigcup_{w=1}^r S'(w))$. Clearly S'(w) is a $(k+r+1-\frac{m}{2})$ -star with center a_{i_w} in D_2 , and $S(w)\cup S'(w)$ is a k-star. Moreover, $\deg_Z b_j=k+r-r=k$ for $\frac{m}{2}\leq j\leq k+r$. Thus Z is S_k -decomposable. This completes the check of Claim.

Let S he the k-star containing the edge $a_{\frac{k}{2}-1}b_1$ in the decomposition in Claim. We can see that

$$C \cup S = (C - e + a_{\frac{k}{2} - 1}b_1) \cup (S - a_{\frac{k}{2} - 1}b_1 + e),$$

where
$$e \in E(C)$$
 and $e = \begin{cases} a_{\frac{k}{2}-1}b_{\frac{k}{2}+1}, & \text{if the center of } S \text{ in } A_0, \\ a_{\frac{m}{2}-1}b_1, & \text{if the center of } S \text{ in } B_0. \end{cases}$

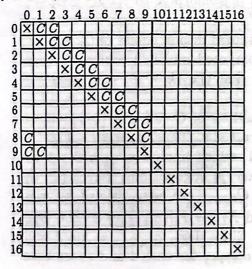
Then the graph $C-e+a_{\frac{k}{2}-1}b_1$ is the union of a k-cycle $C':(b_1,a_0,b_2,a_1,b_3,a_2,\ldots,b_{\frac{k}{2}-1},a_{\frac{k}{2}-2},b_{\frac{k}{2}},a_{\frac{k}{2}-1})$ and a (m-k)-path P', where

$$P' = \begin{cases} b_{\frac{k}{2}+1}a_{\frac{k}{2}}b_{\frac{k}{2}+2}a_{\frac{k}{2}+1}\cdots b_{\frac{m}{2}-1}a_{\frac{m}{2}-2}b_{0}a_{\frac{m}{2}-1}b_{1}, & \text{if the center of } S \text{ in } A_{0}, \\ a_{\frac{k}{2}-1}b_{\frac{k}{2}+1}a_{\frac{k}{2}}b_{\frac{k}{2}+2}\cdots b_{\frac{m}{2}-1}a_{\frac{m}{2}-2}b_{0}a_{\frac{m}{2}-1}, & \text{if the center of } S \text{ in } B_{0}. \end{cases}$$

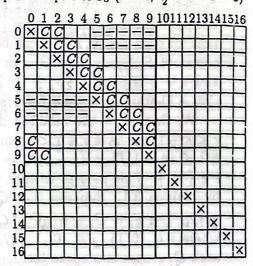
On the other hand, the graph $S - a_{\frac{k}{2}-1}b_1 + e$ is still a k-star. Hence $C_{n,n-1}$ has a (C_k, S_k) -packing \mathscr{P}_3 with leave P' and $|\mathscr{P}_3| = r + (k+r+1) + 1 = k + 2r + 2 = \lfloor n(n-1)/k \rfloor$, |P'| = s. This settles Case 1.

To illustrate the decomposition in Subcase 1.2 of Lemma 3.7, in Figure 1 we give the maximum (C_{12}, S_{12}) -packing of $C_{17.16}$.

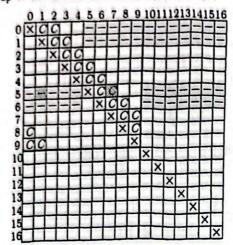
Step 1: C_{20} (m=20)



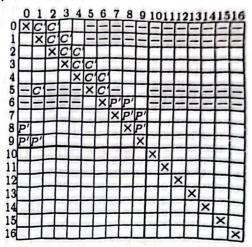
Step 2: 4 copies of S_5 $(r=4, \frac{m}{2}-r-1=5)$



Step 3: the transformation of asb1 and asb7



Step 4: the leave P'



The rows are numbered $0, 1, 2, \dots, 16$ from top to bottom and the columns are numbered $0, 1, 2, \dots, 16$ from left to right. The mark \times means no edge. The (i, j)-position is marked "C", "C'", "P'", "—", or " " according to a edge of the m-cycle, k-cycle, leave, star $a_i b_j$ with center a_i , or b_j .

Figure 1: The maximum (C_{12}, S_{12}) -packing of $C_{17,16}$

Case 2. $t \ge 2$.

Let $A'_0=\{a_0,a_1,\ldots,a_{\frac{k}{2}-1}\},\ A'_1=\{a_{\frac{k}{2}},a_{\frac{k}{2}+1},\ldots,a_{k-1}\},\ A'_2=A\setminus (A'_0\cup A'_1),\ B'_0=\{b_0,b_1,\ldots,b_{\frac{k}{2}-1}\},\ B'_1=\{b_{\frac{k}{2}},b_{\frac{k}{2}+1},\ldots,b_{k-1}\},\ B'_2=B\setminus (B'_0\cup B'_1).$ Let $G_i=C_{n,n-1}[A'_i\cup B'_0\cup B'_1]$ for $i\in\{0,1,2\}$ and $G_3=C_{n,n-1}[A\cup B'_2].$ Clearly $C_{n,n-1}=\cup_{i=0}^3G_i.$ Note that G_0 and G_1 are isomorphic to $C_{k/2,k/2-1}\cup K_{k/2,k/2},\ G_2$ is isomorphic to $K_{r+1,k}$, which is S_k -decomposable by Lemma 2.1 and G_3 is isomorphic to $K_{k,r+1}\cup C_{r+1,r}.$ Let $p_0=\lceil (t-1)/2\rceil$ and $p_1=\lfloor (t-1)/2\rfloor.$ In the following, we will show that for each $i\in\{0,1\}$, G_i can be decomposed into p_i copies of C_k and k/2 copies of S_{k-2p_i-1} , and G_3 can be decomposed into k/2 copies of S_{2p_i+1} and r+1 copies of $S_{k'}$, $k'\geq k$, such that the $(k-2p_i-1)$ -stars and $(2p_i+1)$ -stars have their centers in A'_i .

We first show the required decomposition of G_i for $i \in \{0,1\}$. Since r < k-1, we have r+1 < k, and in turn t < r. Thus, $p_0 = \lceil (t-1)/2 \rceil \le t/2 \le (r-1)/2 < (k-2)/2 = k/2-1$, which implies $p_i < k/2-1$ for $i \in \{0,1\}$. This assures us that there exist p_i edge-disjoint k-cycles in G_i by Lemma 3.1. Suppose that $Q_{i,0}, \ldots, Q_{i,p_i-1}$ are edge-disjoint k-cycles in G_i . Let $F_i = G_i - E(\bigcup_{h=0}^{p_i-1} Q_{i,h})$ and $X_{i,j} = F_i[\{a_{ik/2+j}\} \cup (B-B'_2)]$ where $i \in \{0,1\}$, $j \in \{0,\ldots,k/2-1\}$. Since $\deg_{G_i} a_{ik/2+j} = k-1$ and each $Q_{i,h}$ uses two edges incident with $a_{ik/2+j}$ for each i and j, we have

 $\deg_{F_i} a_{ik/2+j} = k - 2p_i - 1$. Hence $X_{i,j}$ is a $(k - 2p_i - 1)$ -star with center $a_{ik/2+j}$.

Next we show the required star decomposition of G_3 . For $j \in \{0, \ldots, k/2 - 1\}$, let

$$X'_{i,j} = \begin{cases} (a_j; b_{k+(2p_0+1)j}, b_{k+(2p_0+1)j+1}, \dots, b_{k+(2p_0+1)j+2p_0}), & \text{if } i = 0, \\ (a_{\frac{k}{2}+j}; b_{(p_0+\frac{3}{2})k+(2p_1+1)j}, b_{(p_0+\frac{3}{2})k+(2p_1+1)j+1}, & \dots, b_{(p_0+\frac{3}{2})k+(2p_1+1)j+2p_1}), & \text{if } i = 1, \end{cases}$$

where the subscripts of b's are taken modulo r+1 in the set of numbers $\{k, k+1, \ldots, k+r\}$. Since $2p_1+1 \leq 2p_0+1 \leq t+1 \leq r$, this assures us that there are enough edges for the construction of $X'_{0,j}$ and $X'_{1,j}$. Note that $X'_{i,j}$ is a $(2p_i+1)$ -star and $X_{i,j} \cup X'_{i,j}$ is a k-star for $i \in \{0,1\}, j \in \{0,\ldots,k/2-1\}$.

On the other hand, let $s = \alpha(r+1) + \beta$ where $\alpha \ge 0$ and $0 \le \beta \le r$, we have that

$$|E(G_3)| - |E(\cup_{i \in \{0,1\}} \cup_{j \in \{0,\dots,k/2-1\}} X'_{i,j})|$$

$$= (k+r)(r+1) - (2p_0 + 2p_1 + 2)(k/2)$$

$$= (k+r)(r+1) - tk$$

$$= (k+r)(r+1) - r(r+1) + s$$

$$= k(r+1) + \alpha(r+1) + \beta$$

$$= (k+\alpha)(r+1) + \beta.$$

Hence there exists a decomposition \mathscr{D} of $G_3 - E(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\dots,k/2-1\}} X'_{i,j})$ into $r+1-\beta$ copies of $(k+\alpha)$ -star with center b_w for $w=k,k+1,\dots,k+r-\beta$ and β copies of $(k+\alpha+1)$ -star with center b_w for $w=k+r-\beta+1,k+r-\beta+2,\dots k+r$. Let

$$Y_{w} = \begin{cases} S_{k+\alpha}, & \text{if } w \in \{k, k+1, \dots, k+r-\beta\}, \\ S_{k+\alpha+1}, & \text{if } w \in \{k+r-\beta+1, k+r-\beta+2, \dots k+r\} \end{cases}$$

in \mathcal{D} . Note that any endvertex a_i of Y_w , we have that $i \leq k-1$. Define a star Y'_w as follows:

Define a star
$$Y_w'$$
 as follows:
$$Y_w' = \begin{cases} S(b_w; a_{w+1}, a_{w+2}, \dots, a_{w+\alpha}), & \text{if } w \in \{k, k+1, \dots, k+r-\beta\}, \\ S(b_w; a_{w+1}, a_{w+2}, \dots, a_{w+\alpha+1}), & \text{if } w \in \{k+r-\beta+1, \\ k+r-\beta+2, \dots k+r\}, \end{cases}$$

where the subscripts of a's are taken modulo r+1 in the set of numbers $\{k, k+1, \ldots, k+r\}$. Since $\alpha(r+1) + \beta = s = r(r+1) - tk < r(r+1)$,

it follows that $\alpha < r$. This assures us that there are enough edges for the construction of Y'_w . It is easy to see that $Y_w - E(Y'_w)$ is a k-star. Hence $C_{n,n-1}$ has a (C_k, S_k) -packing \mathscr{P}_4 with leave $\bigcup_{w \in \{k, k+1, \dots, k+r\}} Y'_w$ and $|\mathscr{P}_4| = (k+r+1) + (r+1) + (t-1) = k+2r+1+t = \lfloor n(n-1)/k \rfloor$. This completes the proof.

To illustrate the decomposition in Case 2 of Lemma 3.7, in Figure 2 we give the maximum (C_{10}, S_{10}) -packing of $C_{17,16}$. Note that n = 17, k = 10, r = 6, t = 4, $p_0 = 2$ and $p_1 = 1$. The number s in the row i, column j indicates that the cycle C_{10} contains the edge a_ib_j .

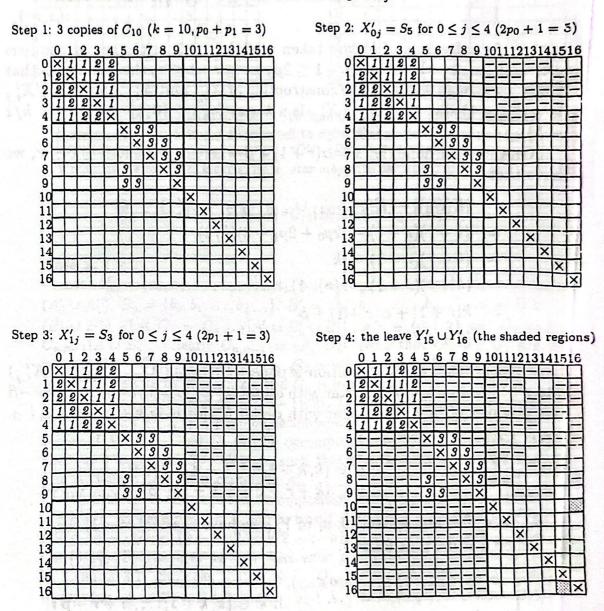


Figure 2: The maximum (C_{10}, S_{10}) -packing of $C_{17,16}$

Theorem 3.8. Let k be a positive even integer and let n be a positive integer with $4 \le k \le n-1$, then

$$p(C_{n,n-1}; C_k, S_k) = \begin{cases} \lfloor n(n-1)/k \rfloor, & \text{if } k < n-1, \\ k, & \text{if } k = n-1. \end{cases}$$

Proof. Obviously, $p(C_{n,n-1}; C_k, S_k) \leq \lfloor n(n-1)/k \rfloor$. Let n-1 = qk+r, where q and r are integers with $q \geq 1$, $0 \leq r \leq k-1$. We consider the following two cases.

Case 1. r = 0.

For q=1, the result follows from Corollary 3.4. If $q\geq 2$, then

$$C_{n,n-1} = C_{(q-1)k+1,(q-1)k} \cup K_{(q-1)k,k} \cup K_{k,(q-1)k} \cup C_{k+1,k}.$$

Trivially, $|E(C_{(q-1)k+1,(q-1)k})|$, $|E(K_{(q-1)k,k})|$ and $|E(K_{k,(q-1)k})|$ are multiples of k. By Lemmas 2.1 and 2.2, we have that $C_{(q-1)k+1,(q-1)k}$, $K_{(q-1)k,k}$ and $K_{k,(q-1)k}$ have S_k -decompositions \mathscr{F} , \mathscr{F}' and \mathscr{F}'' with $|\mathscr{F}| = (q-1)((q-1)k+1)$, $|\mathscr{F}'| = |\mathscr{F}''| = k(q-1)$. In addition, by Lemma 2.5, $C_{k+1,k}$ has a C_k -decomposition \mathscr{C} with $|\mathscr{C}| = k+1$. Hence $C_{n,n-1}$ is (C_k, S_k) -decomposable, that is, $C_{n,n-1}$ has a (C_k, S_k) -packing $\mathscr{F} \cup \mathscr{F}' \cup \mathscr{F}'' \cup \mathscr{C}$ with cardinality (q-1)((q-1)k+1)+k(q-1)+k(q-1)+k+1=q(qk+1)=n(n-1)/k.

Case 2. r > 0.

For q=1, the result follows from Lemmas 3.5, 3.6 and 3.7. If $q\geq 2$, then

$$C_{n,n-1} = C_{(q-1)k+1,(q-1)k} \cup K_{(q-1)k,k+r} \cup K_{k+r,(q-1)k} \cup C_{k+r+1,k+r}.$$

Note that $C_{k+r+1,k+r}$ has a (C_k, S_k) -packing $\mathscr P$ with $|\mathscr P| = \lfloor (k+r+1)(k+r)/k \rfloor$. Trivially, $C_{(q-1)k+1,(q-1)k}$, $K_{(q-1)k,k+r}$ and $K_{k+r,(q-1)k}$ have S_k -decompositions $\mathscr D$, $\mathscr D'$ and $\mathscr D''$ with $|\mathscr D| = (q-1)((q-1)k+1)$, $|\mathscr D'| = |\mathscr D''| = (q-1)(k+r)$. Hence $\mathscr P \cup \mathscr D \cup \mathscr D' \cup \mathscr D''$ is a (C_k, S_k) -packing of $C_{n,n-1}$ with cardinality $\lfloor (k+r+1)(k+r)/k \rfloor + (q-1)((q-1)k+1) + (q-1)(k+r) + (q-1)(k+r) = \lfloor (qk+r+1)(qk+r)/k \rfloor = \lfloor n(n-1)/k \rfloor$. This completes the proof.

References

- [1] A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003), 433-447.
- [2] A. Abueida and M. Daven, Multidecompositons of the complete graph, Ars Combin. 72 (2004), 17-22.

- [3] A. Abueida, M. Daven and K. J. Roblee, Multidesigns of the λ-fold complete graph for graph-pairs of order 4 and 5, Australas J. Combin., 32 (2005), 125-136.
- [4] H. C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013), 355-364.
- [5] H. C. Lee and J. J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars, Discrete Math. 313 (2013), 2354-2358.
- [6] C. Lin, J. J. Lin, T. W. Shyu, Isomorphic star decomposition of multicrowns and the power of cycles, Ars Combin. 53 (1999), 249-256.
- [7] J. Ma, L. Pu and H. Shen, Cycle decompositions of $K_{n,n} I$, SIAM J. Discrete Math. 20 (2006), 603-609.
- [8] D. Sotteau, Decomposition of $K_{m,n}$ $(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Theory, Ser. B 30 (1981), 75-81.
- [9] S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartie graphs, Hiroshima Math. J. 5 (1975), 33-42.