The existence of regular and quasi-regular bipartite self-complementary 3-uniform hypergraphs

Lata N. Kamble^a, C. M. Deshpande^b, B. P. Athawale^b

^aDepartment of Mathematics, Abasaheb Garware College, Pune-411004, India. ^bDepartment of Mathematics, College of Engineering Pune, Pune-411005, India.

Abstract

A hypergraph H with vertex set V and edge set E is called bipartite if V can be partitioned into two subsets V_1 and V_2 such that $e \cap V_1 \neq \phi$ and $e \cap V_2 \neq \phi$ for any $e \in E$. A bipartite self-complementary 3-uniform hypergraph H with partition (V_1, V_2) of a vertex set V such that $|V_1| = m$ and $|V_2| = n$ exists if and only if either (i) m = n or (ii) $m \neq n$ and either m or n is congruent to 0 modulo 4 or (iii) $m \neq n$ and both m and n are congruent to 1 or 2 modulo 4.

In this paper we prove that, there exists a regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m, |V_2| = n, m+n > 3$ if and only if m=n and n is congruent to 0 or 1 modulo 4. Further we prove that, there exists a quasi-regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m, |V_2| = n, m+n > 3$ if and only if either m=3, n=4 or m=n and n is congruent to 2 or 3 modulo 4.

Keywords: bipartite hypergraph, bipartite self-complementary 3-uniform hypergraph, regular hypergraph, quasi-regular hypergraph

1. Introduction

A. Symański, A. P. Wojda ([7],[8],[9]) and S. Gosselin [2], independently characterized n and k for which there exist k-uniform self-complementary hypergraphs of order n and gave the structure of corresponding complementing permutations. P. Potočnik and M. Šajana [6] proved the existence

Email addresses: lata7429@gmail.com (Lata N. Kamble), dcm.maths@coep.ac.in (C. M. Deshpande), bhagyashriathawale@gmail.com (B. P. Athawale)

of regular self-complementary 3-uniform hypergraphs. S. Gosselin [3] has characterized all n and k for which there exists a regular k-uniform self-complementary hypergraph of order n. T. Gangopadhyay and S. P. Rao Hebbare [1] studied bipartite self-complementary graphs. They characterized structural properties of r-partite complementing permutations.

In [5] a bipartite self-complementary 3-uniform hypergraph H with partition (V_1, V_2) of a vertex set V such that $|V_1| = m$ and $|V_2| = n$ is defined. And characterized m and n for a bipartite 3-uniform hypergraph $H^3(V_1, V_2)$ to be self-complementary. Structure of complementing permutation of bipartite self-complementary 3-uniform hypergraphs is also analyzed.

In this paper we find conditions on m and n for a bipartite self-complementary 3-uniform hypergraph $H^3(V_1, V_2)$ to be regular and quasi-regular.

2. Preliminary definitions and results

Definition 2.1. (Bipartite Hypergraph) A hypergraph H with vertex set V and edge set E is called bipartite if V can be partitioned into two subsets V_1 and V_2 such that $e \cap V_1 \neq \phi$ and $e \cap V_2 \neq \phi$ for any $e \in E$.

Furthermore if |e| = k for every $e \in E$ then we call H, a bipartite k-uniform hypergraph, and denote it as $H^k(V_1, V_2)$. If $|V_1| = m$ and $|V_2| = n$ then $H^k(V_1, V_2) = H^k_{(m,n)}$.

If $H^3(V_1, V_2)$ is a bipartite 3-uniform hypergraph then every edge of $H^3(V_1, V_2)$ contains one vertex from one part and two vertices from the other part of the partition V_1 and V_2 of V. Thus any triple of vertices $\{x, y, z\}$ such that x, y, z belong to a single part of the partition of V is not an edge of $H^3(V_1, V_2)$.

Definition 2.2. (Complete Bipartite 3-uniform Hypergraph) A 3-uniform hypergraph H with the vertex set $V = V_1 \cup V_2, V_1 \cap V_2 = \phi$ and the edge set $E = \{e : e \subset V, |e| = 3 \text{ and } e \cap V_i \neq \phi, \text{ for } i = 1, 2\}$ is called the complete bipartite 3-uniform hypergraph. It is denoted as $K^3(V_1, V_2)$ or $K^3_{(m,n)}$.

Clearly, the total number of edges in $K_{(m,n)}^3$ is $m\binom{n}{2} + n\binom{m}{2} = \frac{mn(m+n-2)}{2}$.

Definition 2.3. (Complement of bipartite 3-uniform hypergraph) Given a bipartite 3-uniform hypergraph $H=H^3(V_1,V_2)$, we define its bipartite complement to be the 3-uniform hypergraph $\bar{H}=\bar{H}^3(V_1,V_2)$ where $V(\bar{H})=V(H)$ and $E(\bar{H})=E(K^3(V_1,V_2))-E(H)$.

Definition 2.4. (Bipartite self-complementary 3-uniform hypergraph) A bipartite 3-uniform hypergraph $H = H^3(V_1, V_2)$ is said to be self-complementary if it is isomorphic to its bipartite complement $\bar{H} = \bar{H}^3(V_1, V_2)$, that is there exists a bijection $\sigma: V \to V$ such that e is an edge in H if and only if $\sigma(e)$ is an edge in \bar{H} .

That is there exists a bijection $\sigma: V \to V$ such that $e = \{x, y, z\}$ is an edge in H if and only if $\sigma(e) = \{\sigma(x), \sigma(y), \sigma(z)\}$ is an edge of \bar{H} . Such a σ is called as a complementing permutation.

Definition 2.5. (Regular hypergraph) A hypergraph H is said to be regular if all vertices have the same degree.

Definition 2.6. (Quasi-regular hypergraph) A hypergraph H is said to be quasi-regular if the degree of each vertex is either r or r-1 for some positive integer r.

Following theorem gives necessary and sufficient condition on the order of bipartite 3-uniform hypergraph $H^3_{(m,n)}$ to be self-complementary which is proved in [5].

Theorem 2.7. There exists a bipartite self-complementary 3-uniform hypergraph $H^3_{(m,n)}$ if and only if either (i) m=n or (ii) $m \neq n$ and either m or n is congruent to n modulo n or (iii) $n \neq n$ and both n and n are congruent to n or n modulo n.

3. Existence of regular bipartite self-complementary 3-uniform hypergraphs

It is known that [6] a regular self-complementary 3-uniform hypergraph exists if and only if n is congruent to 1 or 2 modulo 4. In this section we find necessary and sufficient condition on order of bipartite self-complementary 3-uniform hypergraph to be regular.

Observe that for any $u \in V_1$ and $v \in V_2$, in $K^3(V_1, V_2) = K^3_{(m,n)}$, the degree of u is $n(m-1) + \binom{n}{2}$ and the degree of v is $m(n-1) + \binom{m}{2}$.

Following theorem gives necessary and sufficient condition on order of bipartite self-complementary 3-uniform hypergraph to be regular.

Theorem 3.1. There exists a regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m, |V_2| = n, m+n > 3$ if and only if m = n and n is congruent to 0 or 1 modulo 4.

Proof. Suppose there exists a regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ such that $|V_1| = m, |V_2| = n, m+n > 3$ with complementing permutation σ . Let r be its regular degree.

For any vertex $u \in V_1$, $d_H(u) + d_H(\sigma(u)) = n(m-1) + \binom{n}{2}$. That is $r+r = n(m-1) + \binom{n}{2}$. That is $2r = \frac{2n(m-1)+n(n-1)}{2}$ Similarly, for $v \in V_2$, $d_H(v) + d_H(\sigma(v)) = m(n-1) + \binom{m}{2}$. That is $r+r = m(n-1) + \binom{m}{2}$. That is $2r = \frac{2m(n-1)+m(m-1)}{2}$. Hence, 2n(m-1)+n(n-1)=2m(n-1)+m(m-1). That is $m^2-n^2=3(m-n)$. That is (m-n)(m+n-3)=0. That is either m-n=0 or m+n-3=0 which is not possible as m+n>3. Hence m=n. Further, $2r = \frac{3n(n-1)}{2}$ that is $r = \frac{3n(n-1)}{4}$. Since r is an integer we must have either 4 divides n or 4 divides n-1. Hence n is congruent to 0 or 1 modulo 4.

Conversely, suppose m=n is congruent to 0 or 1 modulo 4. We prove there exists a regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ such that $|V_1| = |V_2| = n$. To prove this we construct a regular self-complementary bipartite 3-uniform hypergraph $H(V_1, V_2)$ such that $|V_1| = |V_2| = n$.

Case i) Suppose n is congruent to 0 modulo 4. Therefore n = 4k for some positive integer k.

Let $V_1 = A_0 \cup A_1 \cup A_2 \cup A_3$ where $A_i = \{u_j^i | j \in \mathbb{Z}_k\}$ for all $i \in \mathbb{Z}_4$ and $V_2 = B_0 \cup B_1 \cup B_2 \cup B_3$ where $B_i = \{v_j^i | j \in \mathbb{Z}_k\}$ for all $i \in \mathbb{Z}_4$.

We construct the quasi-regular self-complementary graphs G_1 and G_2 with vertex sets V_1 and V_2 respectively as follows.

For pairwise distinct $i, i' \in \mathbb{Z}_4$ define the following subsets of $V_1^{(2)}$ where $V_1^{(2)}$ denotes the set of all 2-subsets of V_1 .

$$E_{i} = A_{i}^{(2)}$$

$$E_{(i,i')} = \{\{u_{j_{1}}^{i}, u_{j_{2}}^{i'}\} : j_{1}, j_{2} \in \mathbb{Z}_{k}\}$$

$$E_{G_{1}} = \bigcup_{i=0,1} (E_{i}) \cup E_{(0,3)} \cup E_{(2,3)} \cup E_{(1,2)}$$

Let G_1 be a graph with vertex set V_1 and edge set E_{G_1} as defined above having n = 4k vertices.

First we show that G_1 is quasi-regular. Take any vertex u_j^i . Then, for fixed i, the vertex u_j^i lies in k-1 subsets of E_i and k subsets of $E_{(i,i')}$. Hence, for every vertex u_j^i in G_1 with $i \in \{0,1\}$, we have

$$\deg(u_i^i) = k - 1 + k = 2k - 1,$$

and for every vertex u_j^i in G_1 with $i \in \{2, 3\}$, we have

 $\deg(u_j^i) = k + k = 2k.$

Therefore there are 2k vertices having degree 2k-1 and 2k vertices of degree 2k. We conclude that G_1 is quasi-regular.

To prove G_1 is self-complementary we define a bijection $\sigma: V \to V$ by $\sigma(u_j^0) = u_j^3, \sigma(u_j^1) = u_j^2, \sigma(u_j^2) = u_j^0$, and $\sigma(u_j^3) = u_j^1$, for all $j \in \mathbb{Z}_k$. Similarly, we construct a quasi-regular self-complementary graph G_2 with vertex set V_2 wth complementing permutation $\sigma_2 = \prod_{j=1}^k (v_j^0 \ v_j^3 \ v_j^1 \ v_j^2)$. Observe that, $d_{G_1}(u_j^0) = d_{G_1}(u_j^1) = d_{G_2}(v_j^0) = d_{G_2}(v_j^1) = 2k - 1$ and $d_{G_1}(u_j^2) = d_{G_1}(u_j^3) = d_{G_2}(v_j^2) = d_{G_2}(v_j^3) = 2k$ for $j \in \mathbb{Z}_k$.

Consider a bipartite 3-uniform hypergraph $H_1(V_1, V_2)$ with edge set

 $E_1 = \{e \cup \{v_j^i\} | i \in \mathbb{Z}_4, j \in \mathbb{Z}_k, \text{ and } e \text{ is an edge in } G_1\}$

 $\bigcup \{e' \cup \{u_i^i\} | i \in \mathbb{Z}_4, j \in \mathbb{Z}_k, \text{ and } e' \text{ is an edge in } G_2\}.$

Clearly, H_1 is self-complementary with complementing permutation $\sigma = \sigma_1 \sigma_2$.

Observe that, for i = 0, 1 and for $j \in \mathbb{Z}_k$,

 $d_{H_1}(u_i^i) = 4k(2k-1) + k(4k-1) = 8k^2 - 4k + 4k^2 - k = 12k^2 - 5k$

 $d_{H_2}(v_j^i) = 4k(2k-1) + k(4k-1) = 8k^2 - 4k + 4k^2 - k = 12k^2 - 5k$. Similarly, for i = 2, 3 and for $j \in \mathbb{Z}_k$,

 $d_{H_1}(u_j^i) = 4k(2k) + k(4k-1) = 8k^2 + 4k^2 - k = 12k^2 - k$

 $d_{H_1}(v_i^i) = 4k(2k) + k(4k-1) = 8k^2 + 4k^2 - k = 12k^2 - k.$

To obtain a regular bipartite self-complementary 3-uniform hypergraph we reduce the degrees of u^i_j and v^i_j for i=2,3 and $j\in\mathbb{Z}_k$ by 2k and increase degrees of u^i_j and v^i_j for i=0,1 and $j\in\mathbb{Z}_k$ by 2k by using the process of edge exchange as explained below.

We have, for each $j \in \mathbb{Z}_k$, $\{v_j^0, v_j^1\}$ is not an edge in G_2 and hence $\{v_j^0, v_j^1, u_{j'}^0\}$ is not an edge in H_1 for each $j' \in \mathbb{Z}_k$. Therefore $\sigma\{v_j^0, v_j^1, u_{j'}^0\}$ is an edge in H_1 , $\sigma^2\{v_j^0, v_j^1, u_{j'}^0\}$ is not an edge in H_1 and $\sigma^3\{v_j^0, v_j^1, u_{j'}^0\}$ is an edge in H_1 .

We exchange the edges $\sigma\{v_j^0, v_j^1, u_{j'}^0\}$ and $\sigma^3\{v_j^0, v_j^1, u_{j'}^0\}$ by the nonedges $\sigma^2\{v_j^0, v_j^1, u_{j'}^0\}$ and $\sigma^4\{v_j^0, v_j^1, u_{j'}^0\} = \{v_j^0, v_j^1, u_{j'}^0\}$ respectively. That is we exchange the edge $\{v_j^3, v_j^2, u_{j'}^3\}$ with the edge $\{v_j^1, v_j^0, u_{j'}^1\}$ and the edge $\{v_j^2, v_j^3, u_{j'}^2\}$ with the edge $\{v_j^0, v_j^1, u_{j'}^0\}$ for $j, j' \in \mathbb{Z}_k$. Similarly, we exchange the edge $\{v_j^2, v_j^1, u_{j'}^3\}$ with $\{v_j^0, v_j^2, u_{j'}^1\}$ and exchange the edge $\{v_j^3, v_j^0, u_{j'}^2\}$ with $\{v_j^1, v_j^3, u_{j'}^3\}$ for $j, j' \in \mathbb{Z}_k$. Call this new hypergraph as H.

In this process of edge exchange, for fixed j and j', the degrees of v_j^0 , v_j^1 , $u_{j'}^0$ and $u_{j'}^1$ are increased by 2 while the degrees of v_j^2 , v_j^3 , $u_{j'}^2$ and $u_{j'}^3$ are decreased by 2.

Thus after k such exchanges, degrees of v_j^0 , v_j^1 , $u_{j'}^0$ and $u_{j'}^1$ are increased by 2k and the degrees of v_j^2 , v_j^3 , $u_{j'}^2$ and $u_{j'}^3$ are decreased by 2k for $j, j' \in \mathbb{Z}_k$.

Thus, for i = 0, 1, 2, 3 and for $j \in \mathbb{Z}_k$,

 $d_H(u_i^i) = d_H(v_i^i) = 12k^2 - 3k = 3k(4k - 1).$

Clearly H is bipartite self-complementary 3-uniform hypergraph with complementing permutation $\sigma = \sigma_1 \sigma_2 = \prod_{j=1}^k (u_j^0 \ u_j^3 \ u_j^1 \ u_j^2)(v_j^0 \ v_j^3 \ v_j^1 \ v_j^2)$ and is 3k(4k-1) regular.

Case ii) Suppose n is congruent to 1 modulo 4. That is n = 4k + 1 for some positive integer k.

Let $V_1 = \{u_1, u_2, ..., u_{4k+1}\}$ and $V_2 = \{v_1, v_2, ..., v_{4k+1}\}$. Let G_1 and G_2 be any regular self-complementary graphs with vertex set V_1 and V_2 respectively. Let σ_1 and σ_2 be complementing permutation of G_1 and G_2 respectively. Observe further that degree of every vertex in G_1 and G_2 is 2k.

Let H be the 3-uniform hypergraph with the vertex set V and the edge set $E = \{e \cup \{v_i\}, i = 1, 2, ..., n \mid e \text{ is an edge in } G_1\}$

 $\bigcup \{e' \cup \{u_i\}, i = 1, 2, ..., n \mid e' \text{ is an edge in } G_2\}$

For any $u_i \in V_1$. The degree of u_i in graph G_1 is 2k, since G_1 is a regular self-complementary graph on 4k+1 vertices having k(4k+1) edges. Therefore the degree of u_i in H is $2k(4k+1) + k(4k+1) = 12k^2 + 3k$. Similarly, for any $v_i \in V_2$ the degree of v_i in H is $2k(4k+1) + k(4k+1) = 12k^2 + 3k$. Hence H is a regular bipartite 3-uniform hypergraph.

It can be easily checked that H is self-complementary with complementing permutation $\sigma = \sigma_1 \sigma_2$. Therefore H is a regular bipartite self-complementary 3-uniform hypergraph.

4. Existence of a quasi-regular bipartite self-complementary 3-uniform hypergraph

In [4] following result about existence of quasi-regular self-complementary 3-uniform hypergraph is proved.

Theorem 4.1. There exists a quasi-regular self-complementary 3-uniform hypergraph of order n if and only if $n \ge 4$ and $n \equiv 0 \pmod{4}$.

The following theorem gives necessary and sufficient conditions on the order of a bipartite self-complementary 3-uniform hypergraph to be quasi-regular.

Theorem 4.2. There exists a quasi-regular bipartite self-comple-mentary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m$, $|V_2| = n$, m + n > 3 if and only if either m = 3, n = 4 or m = n and n is congruent to 2 or 3 modulo 4.

Proof. Suppose that there exists a quasi-regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m$, $|V_2| = n$. Let r and r-1 be degrees of vertices of H. Let σ be a complementing permutation of $H(V_1, V_2)$.

For any $u \in V_1$ and for any $v \in V_2$, we have

$$d_H(u) + d_H(\sigma(u)) = n(m-1) + \binom{n}{2} \tag{1}$$

$$d_H(v) + d_H(\sigma(v)) = m(n-1) + \binom{m}{2} \tag{2}$$

As H is quasi-regular, there exist $u, v \in V = V_1 \cup V_2$ such that $d_H(u) = r$ and $d_H(v) = r - 1$.

Note that $d_H(\sigma(u))$ and $d_H(\sigma(v))$ is either r or r-1. As u is in either V_1 or V_2 , $d_H(u)$ and $d_H(\sigma(u))$ satisfy either equation 1 or 2. Similarly, $d_H(v)$ and $d_H(\sigma(v))$ satisfy either equation 1 or 2. That is

$$d_H(u) + d_H(\sigma(u)) = n(m-1) + \binom{n}{2} \text{ or } m(n-1) + \binom{m}{2}$$
 (3)

$$d_H(v) + d_H(\sigma(v)) = n(m-1) + \binom{n}{2} \text{ or } m(n-1) + \binom{m}{2}$$
 (4)

By considering all possible values of $d_H(\sigma(u))$ and $d_H(\sigma(v))$ we have the following cases.

Case i) If $d_H(\sigma(u)) = r - 1$ and $d_H(\sigma(v)) = r$. From equations 3 and 4 we get that

$$r+r-1 = n(m-1) + \binom{n}{2}$$
 or $m(n-1) + \binom{m}{2}$ and $r-1+r = n(m-1) + \binom{n}{2}$ or $m(n-1) + \binom{m}{2}$.

This implies that $n(m-1)+\binom{n}{2}=m(n-1)+\binom{m}{2}$. Solving this equation we get, (m-n)(m+n-3)=0. As m+n>3, we get, m=n. Hence $2r-1=n(n-1)+\binom{n}{2}$ that is $r=\frac{3n(n-1)+2}{4}$. Since r is an integer we must have, $3n(n-1)+2\equiv 0\pmod 4$. That is

Since r is an integer we must have, $3n(n-1)+2\equiv 0\pmod 4$. That is $3n(n-1)\equiv -2\pmod 4$. That is $n(n-1)\equiv 2\pmod 4$. That is $n(n-1)\equiv 2\pmod 4$. That is $n(n-1)\equiv 2\pmod 4$. Since both n-10 and n-11 cannot be even simultaneously, either n-12 or n-13 must be a multiple of 4. That is either n-13 (mod 4).

Case ii) If $d_H(\sigma(u)) = r$ and $d_H(\sigma(v)) = r$ then from equations 3 and 4 we get that

$$r+r = n(m-1) + \binom{n}{2}$$
 or $m(n-1) + \binom{m}{2}$ and $r-1+r = n(m-1) + \binom{n}{2}$ or $m(n-1) + \binom{m}{2}$.

That is, $\left| \left(n(m-1) + \binom{n}{2} \right) - \left(m(n-1) + \binom{m}{2} \right) \right| = 1$. Solving this absolute value equation we get that either m = 3, n = 1 (or vice versa) or m = 3, n = 2 (or vice versa). For both these pairs of values of m and n there clearly does not exist a bipartite self-complementary 3-uniform hypergraph 3-uniform hypergraph.

Case iii) If $d_H(\sigma(u)) = r$ and $d_H(\sigma(v)) = r - 1$, then from equations 3 and 4 we get that,

 $r+r=n(m-1)+\binom{n}{2}$ or $m(n-1)+\binom{m}{2}$ and $r-1+r-1=n(m-1)+\binom{n}{2}$ or $m(n-1)+\binom{m}{2}$. That is, $\left|\left(n(m-1)+\binom{n}{2}\right)-\left(m(n-1)+\binom{m}{2}\right)\right|=2$. Solving this absolute value equation we get that m=4, n=3.

Case iv) If $d_H(\sigma(u)) = r - 1$ and $d_H(\sigma(v)) = r - 1$. Then this case is same as Case ii).

From all the above cases we conclude the following.

If there exists a quasi-regular bipartite self-complementary 3-uniform hypergraph $H(V_1, V_2)$ with $|V_1| = m$, $|V_2| = n$, m + n > 3 then either m = 3, n = 4 or m = n and n is congruent to 2 or 3 modulo 4.

We prove the converse by constructing a quasi-regular bipartite self-complementary 3-uniform hypergraph 3-uniform hypergraph for each possible pair (m, n).

Case i) Let m=3 and n=4. Consider a hypergraph H with vertex set $V=V_1\cup V_2$ where $V_1=\{u_1,u_2,u_3\},\,V_2=\{v_1,v_2,v_3,v_4\}$ and edge set $E=\{\{v_1,v_2,u_1\},\{v_1,v_2,u_2\},\{v_1,v_2,u_3\},\{v_1,v_3,u_1\},\{v_1,v_3,u_2\},\{v_1,v_3,u_3\},\{v_3,v_4,u_1\},\{v_3,v_4,u_2\},\{v_3,v_4,u_3\},\{u_1,u_2,v_2\},\{u_1,u_2,v_4\},\{u_1,u_3,v_2\},\{u_1,u_3,v_4\},\{u_2,u_3,v_2\},\{u_2,u_3,v_4\}\}$ Observe that, $d_H(v_1)=d_H(v_2)=d_H(v_3)=d_H(v_4)=6$ and $d_H(u_1)=d_H(u_2)=d_H(u_3)=7$. Hence H is quasi-regular. To prove that H is self-complementary, define a bijection $\sigma:V(H)\to V(H)$ as $\sigma=(u_1\,u_2\,u_3)(v_1\,v_2\,v_3)$ σ is a complementary 3-uniform hypergraph.

Case ii) Suppose m = n and n is congruent to 2 modulo 4, that is n = 4k+2 for some positive integer k.

Let $V_1 = \{u_1, u_2, ..., u_{4k+1}, x\}$. Let G be a regular self-complementary graph with vertex set $\{u_1, u_2, ..., u_{4k+1}\}$. Let \bar{G} be its complement. Denote the vertices $u_1, u_2, ..., u_{4k+1}$ of \bar{G} by $v_1, v_2, ..., v_{4k+1}$ respectively. Observe that both G and \bar{G} have k(4k+1) edges such that degree of each vertex is 2k and $\{u_i, u_j\}$ is an edge in G if and only if $\{v_i, v_j\}$ is not an edge in \bar{G} .

Let $V_2 = \{v_1, v_2, ..., v_{4k+1}, y\}$. For l, s = 1, 2, ...4k + 1, consider the following partition of the edge set of $K_{(m,n)}^3$.

 $E_1 = \{e \cup \{v\}, v \in V_2 \mid e \text{ is an edge in } G\}$ $\bar{E_1} = \{e \cup \{v\}, v \in V_2 \mid e \text{ is not an edge in } G\}$ $E_2 = \{e' \cup \{u\}, u \in V_1 \mid e' \text{ is an edge in } \bar{G}\}$ $\bar{E_2} = \{e' \cup \{u\}, u \in V_1 \mid e' \text{ is not an edge in } \bar{G}\}$ $E_x = \{\{x, u_l, v_s\} \mid \text{both } l \text{ and } s \text{ are either odd or even } \}$ $\bar{E_x} = \{\{x, u_l, v_s\} \mid \text{exactly one of } l \text{ and } s \text{ is odd } \}$

 $E_y = \{\{y, u_l, v_s\} | \text{ exactly one of } l \text{ and } s \text{ is odd } \}$

```
\bar{E}_{y} = \{\{y, u_{l}, v_{s}\} | \text{ both } l \text{ and } s \text{ are either odd or even } \} \\
E_{(x,y)} = \{\{x, y, u_{l}\} | l \text{ is even } \} \cup \{\{x, y, v_{s}\} | s \text{ is odd } \} \\
\bar{E}_{(x,y)} = \{\{x, y, u_{l}\} | l \text{ is odd } \} \cup \{\{x, y, v_{s}\} | s \text{ is even } \}.
```

Let H be a 3-uniform hypergraph with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2 \cup E_x \cup E_y \cup E_{(x,y)}$ so that \bar{H} will have the edge set $\bar{E} = \bar{E}_1 \cup \bar{E}_2 \cup \bar{E}_x \cup \bar{E}_y \cup \bar{E}_{(x,y)}$. Clearly, H is a bipartite 3-uniform hypergraph.

To prove that H is self-complementary, we define a bijection $\sigma:V(H) \to$

V(H) as $\sigma = (\prod_{i=1}^{4k+1} (u_i \ v_i))(x \ y)$. σ is clearly a complementing permutation.

Finally, we show that H is quasi-regular by counting the degree of each vertex of H.

For any $u_i \in V_1$ where i = 1, 3, ..., 4k + 1, u_i is in 2k(4k + 2) triples of E_1 , k(4k+1) triples of E_2 , 2k+1 triples of E_x and 2k triples of E_y . Hence, $d_H(u_i) = 2k(4k+2) + k(4k+1) + 2k + 2k + 1 = 12k^2 + 9k + 1$.

For any $u_i \in V_1$ where $i = 2, 4, ..., 4k+2, u_i$ is in 2k(4k+2) triples of E_1 , k(4k+1) triples of E_2 , 2k triples of E_x and 2k triples of E_y and 1 triple of $E_{(x,y)}$. Hence, $d_H(u_i) = 2k(4k+2)+k(4k+1)+2k+1+2k+1 = 12k^2+9k+2$.

For any $v_i \in V_2$ where i = 1, 3, ..., 4k + 1, v_i is in k(4k + 1) triples of E_1 , 2k(4k + 2) triples of E_2 , 2k + 1 triples of E_x and 2k + 1 triples of E_y and 1 triple of $E_{(x,y)}$. Hence,

 $d_H(v_i) = 2k(4k+2) + k(4k+1) + 2k + 1 + 2k + 1 = 12k^2 + 9k + 2.$

For any $v_i \in V_2$ where $i = 2, 4, ..., 4k + 2, v_i$ is in k(4k+1) triples of E_1 , 2k(4k+2) triples of E_2 , 2k triples of E_x and 2k+1 triples of E_y . Hence, $d_H(v_i) = k(4k+1) + 2k(4k+2) + 2k + 2k + 1 = 12k^2 + 9k + 1$.

Lastly, $d_H(x) = k(4k+1) + (2k+1)(2k+1) + 2k(2k) + 2k + 2k + 1 = 12k^2 +$

Lastly, $d_H(x) = k(4k+1) + (2k+1)(2k+1) + 2k(2k) + 2k + 2k + 1 = 12k^2 + 9k + 2$

and $d_H(y) = k(4k+1)+2k(2k+1)+2k(2k+1)+2k+2k+1 = 12k^2+9k+1$.

Case (iii) Suppose m = n and n is congruent to 3 modulo 4, that is n = 4k + 3 for some positive integer k.

Let $V_1 = \{u_1, u_2, ..., u_{4k+1}, x_1, x_2\}$. Let G be a regular self-complementary graph with vertex set $\{u_1, u_2, ..., u_{4k+1}\}$. Let \bar{G} be its complement. Denote the vertices $u_1, u_2, ..., u_{4k+1}$ of \bar{G} as $v_1, v_2, ..., v_{4k+1}$ respectively. Observe that both G and \bar{G} have k(4k+1) edges such that degree of each vertex is 2k and $\{u_i, u_j\}$ is an edge in G if and only if $\{v_i, v_j\}$ is not an edge in \bar{G} . Let $V_2 = \{v_1, v_2, ..., v_{4k+1}, y_1, y_2\}$.

For l, s = 1, 2, ...4k + 1, consider the following partition of the edge set of $K^3_{(m,n)}$.

 $E_1 = \{e \cup \{v\}, v \in V_2 \mid e \text{ is an edge in } G\}$

```
\bar{E_1} = \{e \cup \{v\}, v \in V_2 \mid e \text{ is not an edge in } G\}
E_2 = \{e' \cup \{u\}, u \in V_1 \mid e' \text{ is an edge in } \bar{G}\}
\bar{E}_2 = \{e' \cup \{u\}, u \in V_1 \mid e' \text{ is not an edge in } \bar{G}\}
E_{x_1} = \{\{x_1, u_l, v_s\} \mid \text{ both } l \text{ and } s \text{ are either odd or even } \}
\bar{E}_{x_1} = \{\{x_1, u_l, v_s\} | \text{ exactly one of } l \text{ and } s \text{ is odd } \}
E_{x_2} = \{\{x_2, u_l, v_s\} | \text{ both } l \text{ and } s \text{ are either odd or even } \}
E_{x_2} = \{\{x_2, u_l, v_s\} | \text{ exactly one of } l \text{ and } s \text{ is odd } \}
E_{y_1} = \{\{y_1, u_l, v_s\} \mid \text{ exactly one of } l \text{ and } s \text{ is odd } \},
E_{y_1} = \{\{y_1, u_l, v_s\} | \text{ both } l \text{ and } s \text{ are either odd or even } \}
E_{y_2} = \{\{y_2, u_l, v_s\} | \text{ exactly one of } l \text{ and } s \text{ is odd } \},
E_{y_2} = \{\{y_2, u_l, v_s\} \mid \text{both } l \text{ and } s \text{ are either odd or even } \}
E_{(x_1,y_1)} = \{\{x_1,y_1,u_l\} | l \text{ is even } \} \cup \{\{x_1,y_1,v_s\} | s \text{ is odd } \}
E_{(x_1,y_1)} = \{\{x_1,y_1,v_s\} | s \text{ is even } \} \cup \{\{x_1,y_1,u_l\} | l \text{ is odd } \}
E_{(x_1,y_2)} = \{\{x_1,y_2,u_l\} | l \text{ is odd } \} \cup \{\{x_1,y_2,v_s\} | s \text{ is odd } \}
E_{(x_1,y_2)} = \{\{x_2,y_1,v_s\} | s \text{ is odd } \} \cup \{\{x_2,y_1,u_l\} | l \text{ is odd } \}
E_{(x_2,y_1)} = \{\{x_2,y_1,u_l\} | l \text{ is even } \} \cup \{\{x_2,y_1,v_s\} | s \text{ is even } \}
E_{(x_2,y_1)} = \{\{x_1,y_2,v_s\} | s \text{ is even } \} \cup \{\{x_1,y_2,u_l\} | l \text{ is even } \}
E_{(x_2,y_2)} = \{\{x_2,y_2,u_l\} | l \text{ is odd } \} \cup \{\{x_2,y_2,v_s\} | s \text{ is even } \}
E_{(x_2,y_2)} = \{\{x_2,y_2,v_s\} | s \text{ is odd } \} \cup \{\{x_2,y_2,u_l\} | l \text{ is odd } \}
E_{(x_1,x_2)} = \{\{\{x_1,x_2,v_s\} | s \text{ is even } \} \cup \{x_1,x_2,y_1\}
E_{(x_1,x_2)} = \{\{y_1,y_2,u_l\} | l \text{ is even } \} \cup \{y_1,y_2,x_1\}
E_{(y_1,y_2)} = \{\{y_1,y_2,u_l\} | l \text{ is odd } \} \cup \{y_1,y_2,x_2\}
E_{(y_1,y_2)} = \{\{x_1,x_2,v_s\} | s \text{ is even } \} \cup \{x_1,x_2,y_2\}
     Let H be a 3-uniform hypergraph whose vertex set is V = V_1 \cup V_2 and
edge set is
E = E_1 \cup E_2 \cup E_{x_1} \cup E_{x_2} \cup E_{y_1} \cup E_{y_2} \cup E_{(x_1,y_1)} \cup E_{(x_1,y_2)} \cup E_{(x_2,y_1)}
         \cup E_{(x_2,y_2)} \cup E_{(x_1,x_2)} \cup E_{(y_1,y_2)}
so that \bar{H} have the edge set
     \bar{E} = \bar{E}_1 \cup \bar{E}_2 \cup \bar{E}_{x_1} \cup \bar{E}_{x_2} \cup \bar{E}_{y_1} \cup \bar{E}_{y_2} \cup \bar{E}_{(x_1,y_1)} \cup \bar{E}_{(x_1,y_2)} \cup \bar{E}_{(x_2,y_1)}
         \cup E_{(x_2,y_2)} \cup E_{(x_1,x_2)} \cup E_{(y_1,y_2)}
     Clearly, H is bipartite 3-uniform hypergraph. To prove that H is self-
complementary, we define a bijection \sigma: V(H) \to V(H) as
\sigma = ( | | (u_i \ v_i))(x_1 \ y_1)(x_2 \ y_2).
      Finally we show that H is quasi-regular by counting the degree of each
vertex of H.
For any u_i \in V_1 where i = 1, 3, ..., 4k + 1, u_i is in 2k(4k + 3) triples of E_1,
k(4k+1) triples of E_2, 2k+1 triples of E_{x_1}, 2k+1 triples of E_{x_2}, 2k triples
of E_{y_1} and 2k triples of E_{y_2}, 1 triple of E_{(x_1,y_2)}, 1 triple of E_{(x_2,y_2)}, and 1
triple of E_{(y_1,y_2)}. Hence,
```

$$d_H(u_i) = 2k(4k+3) + k(4k+1) + 2(2k+1) + 4k + 3 = 12k^2 + 15k + 5.$$

For any $u_i \in V_1$ where i = 2, 4, ..., 4k, u_i is in 2k(4k+3) triples of E_1 , k(4k+1) triples of E_2 , 2k triples of E_{x_1} , 2k triples of E_{x_2} , 2k+1 triples of E_{y_1} and 2k+1 triples of E_{y_2} , 1 triple of $E_{(x_1,y_1)}$, 1 triple of $E_{(x_2,y_1)}$. Hence,

 $d_H(u_i) = 2k(4k+3) + k(4k+1) + 2(2k) + 2(2k+1) + 2 = 12k^2 + 15k + 4$. Similarly, it can be checked that,

$$d_H(v_i) = 12k^2 + 15k + 4$$
 for $i = 1, 3, ..., 4k + 1$.

$$d_H(v_i) = 12k^2 + 15k + 5$$
 for $i = 2, 4, ..., 4k$.

$$d_H(x_1) = 12k^2 + 15k + 5.$$

$$d_H(x_2) = 12k^2 + 15k + 4.$$

$$d_H(y_1) = 12k^2 + 15k + 4.$$

$$d_H(y_2) = 12k^2 + 15k + 5.$$

Hence H is quasi-regular.

Acknowledgment: Authors wish to thank Professor N. S. Bhave for fruitful discussions.

References

- [1] T. Gangopadhyay and S. P. Rao Hebbare, Structural properties of r-partite complementing permutations, Tech. Report No. 19/77, I.S.I, Calcutta.
- [2] S. Gosselin, Constructing self-complementary uniform hypergraphs, Discrete Math., 310(2010), 1366-1372.
- [3] S. Gosselin, Constructing regular self-complementary uniform hypergraphs, Combinatorial Designs, 16(6) (2011), 439-454.
- [4] L. N. Kamble, C. M. Deshpande, B. Y. Bam, Existence of quasiregular and bi-regular self-complementary 3-uniform hypergraphs, Discuss. Math. Graph Theory, Vol No. 36(2016), 419 – 426.
- [5] L. N. Kamble, C. M. Deshpande, B. Y. Bam, On self-complementary bipartite 3-uniform hypergraph, Ars. Combin. (To be appear).
- [6] P. Potočnik, M. Šajana, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math., 309(2009), 950-954.
- [7] A. Szymański, A. P. Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29(2009), 199-202.

- [8] A. Szymański, A. P. Wojda, Self-complementing permutations of k-uniform hypergraphs, Discrete Math. and Theoretical Computer Science 11(2009), 117-124.
- [9] A. Wojda, Self complementary hypergraphs, Discuss. Math. Graph Theory 26(2006), 217-224.