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Abstract

In this paper, we consider the sequences {F'(n,k)}n>k (k > 1) defined by
F(n,k) = (n—2)F(n—1,k) + F(n— 1,k — 1),F(n,1) = &, F(n,n) = 1.
We mainly study the log-convexity of {F(n,k)}n>k (k > 1) when k is
fixed. We prove that {F(n,3)}n>3, {F(n,4)}n>s, and {F(n,5)}n>6 are
log-convex. In addition, we discuss the log-behavior of some sequences

related to F(n, k).
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1 Introduction

We first recall some definitions involved in this paper. For a sequence of
positive real numbers {zn }n>o0, it is said to be log-convez (or log-concave)
if 22 < zp—12n41 (or 22 > 2z,_12n41) for each n > 1. For a log-convex
sequence {zn}n>0, it is said to be log-balanced if {Z4}n>0 is log-concave
(Doglié [5) gave this definition). It is well known that {zn}n>0 is log-
convex (or log-concave) if and only if its quotient sequence {-%jl‘-l}nzo is

nondecreasing (or nonincreasing) and a log-convex sequence {zn }n>0 is log-

balanced if and only if ("ztl_)lz" > "’;':‘“ for each n > 1. It is evident that
the quotient sequence of a log-balanced sequence does not grow too fast.
A sequence {z,}n>0 is said to be ratio log-concave (or ratio log-convez) if
{2zn+1/2n}n>0 is log-concave (or log-convex). See Chen, Guo, and Wang (3]

for more details about ratio log-behavior of sequences.

Log-concavity and log-convexity play important roles in combinatorics,
they are not only instrumental in obtaining the growth rate of a combi-
natorial sequence, but also fertile sources of inequalities. For applications
of log-convexity and log-concavity in other subjects, see [1,2,6,7,9-11].
Hence the log-convexity (log-concavity) of sequences deserves to be stud-
ied. There exist many log-concave (log-convex) sequences in combinatorics.
The binomial coefficients (), the Eulerian numbers A(n, k), the Stirling
numbers ¢(n, k) and S(n, k) of two kinds are log-concave for k when n is
fixed. Some famous combinatorial sequences, including the Bell numbers,
the Catalan numbers, the central binomial coefficients, the central Delan-
noy numbers, the Motzkin numbers, the Fine numbers, the little and large
Schréder numbers, are log-convex. In this paper, we are interested in the

log-convexity of a class of linear recurrence sequences {F(n, k) }n>k (K > 1)

defined by
F(n,k)=(n—2)F(n—1,k)+ F(n—1,k—1), (1.1)
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where F(n,1) = 3, F(n,n) = 1; see Table 1 for some information about

F(n,k). The sequence {F'(n,k)} is related to permutations with ordered

Table 1: Some initial values of {F(n,k)}

’ 1 2 3 4 5 6 7 8 9
n
1 1
2 1 1
3 3 2 1
4 12 7 4 1
5 60 33 19 7 1
6 360 192 109 47 11 1
7 2520 1320 737 344 102 16 1
8 20160 10440 5742 2801 956 198 22 1
9 181440 93240 50634 25349 9493 2342 352 29 1

orbits. Let G[n] denote the group of permutations of [n], where [n] =
{1,2,---,n}. F(n,k) is the number of a kind of permutation o of [n]
(o € G[n]). For more properties of {F'(n, k)}, see Comtet [4].

This paper is devoted to the study of the log-convexity of {F(n, k) }n>k
for fixed k and is organized as follows. In Section 2, we mainly study the
log-convexity of {F(n,k)}n>k (k > 3) when k is fixed. We prove that
{F(n,3)}n>3, {F(n,4)}n>s and {F(n, 5)}n>¢ are log-convex. In Section 3,
we show that { F(n,2)}n>3 is ratio log-concave. In addition, we discuss the

log-behavior of some sequences related to F'(n, k).
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2 Log-convexity of {F(n,k)}.> for fixed k

We first give some lemmas.

Lemma 2.1 Forn > 2, let g, = _13%:_12)2_’) Then we have

1 .
n+§£gn§n+1, n>3. (2.1)

Proof. By applying (1.1), we derive
F(n+1,2)=(2n-1)F(n,2) —n(n-2)F(n-1,2), n=23.  (2.2)

It follows from (2.2) that

-2
gn=2n_1_2£';__l__)7 7123 (23)

Noting that g3 = Z, g4 = 32, and g5 = &, it is clear that j+1 <g; <j+1

for j = 3,4,5. Assume that j +% <g; <j+1for j >5. By means of

(2.3), we get

PR g g2 ; . g2 =1
Gum=J-s=ivs— and . gjz1 =Jj—2=g=1= :
. 2 iy 504 : 9j

Sincej+%§gj < j+1, we have

g wagidi (= 5)g5 — 9% 1
i+1 —J ) %
3
2 e
49;
> 0
and
: i —1)g; — 52 +1
9j+1—J—2='(J )9; —J <0.
9j
Hence,wehaven-}-%Sgn§n+1whenn23. B8
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Lemma 2.2 Forn > 3, put h, = £ ":2’3 . Then we have
1
n+=<h,<n+1, n2>3. (2.4)

2

Proof. Forn > 2, set g, = f}}%lz%l By using (1.1), we obtain

Fn+1,3)=(n=1+4gn_1)F(n,3) — (n = 2)gn-1F(n - 1,3), n>4.(2.5)

It follows from (2.5) that

(n = 2)gn—l

> 4, 2.6
hn—l A ( )

hp=n=149gpn-1—
For j = 3,4,5, we find that j + 3 < h; < j+ 1. For j > 5, assume that
j+ 3 < h; <j+1. By applying (2.6), we derive

; . 3 (g —3)hi— (-1
j+1"‘.7“'2‘— T
7]

and

s . =7 = 1)a;
hjyp1—3-=2= (9; 2)h3h U )gj.
J

It follows from (2.1) that g; — 2 > 0 and g; —2 > 0 for j > 3. Since

j+3i<h;<j+1, weget

3 . G-96+H-G-1g

5 3(9i —J—3)
2h;
and
e g s 1l
th_j_gS@l__]___)._

h;
It follows from (2.1) that hj41 —j— 2 >0and hj11—j—2 =<0, Thus, we

have n + 7 < h, <n+1 whenn > 3. |
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Lemma 2.3 Let {z,}n>0 be a sequence of positive real numbers and satisfy

the three-term recurrence
zn+l = (n e 1 + wn—l)zn - (n = 2)'wn.—1zn—1, n Z 2, (2.7)

where the sequence {wn}n>0 is monotonic increasing and wo > 0. For
n>0, letz, = ’—z-':—‘ Suppose that there exists a positive integer ng > 1
such that {2ng, Zng+1, Zng+2} 18 log-convez. If Tny1 2 1 aNd Tny1 2 wn for

n > no, then the sequence {zp}n>n, is log-convez.

Proof. It follows from (2.7) that

- 2w, -
xn=n_1+wn_1__(_fr_"____)&l__1., n>2. (2.8)
Tn-1

Now we prove by induction that the sequence {Zn}n>n, is monotonic in-
creasing. By the assumption that {zn,, 2ng+1, Zno+2} is log-convex, we have
Ty < Tng+1. For j > ng, assume that z; < z;4;. It follows from (2.8)
that

(U —Dw; jwin
Tj L3l

Tjte = Tjt1 = 1 +wjp1 —w; +

Since z; < Tj+1, we get

(4 — Dwj — jwj+1
¥
Tit1 + (w41 — w;)(Tj41 — J) —w;

Tj+1

Tiye —Tjip1 > 1+t Wiy —wj+

Noting that z;+1 > j and zj+1 2 wj for j > no, we have 40 — ;41 > 0.
Hence the sequence {z,}n>n, is monotonic increasing. Thus {2n}n>n, is

log-convex. H

Zhao [12] proved that the sequence { F(n,2)}n>2 is log-convex. Now we
discuss the log-convexity of {F(n, 3)}n>3, {F(n,4)}n>5, and {F(n,5)}n>e6-

Theorem 2.1 The sequences {F(n,3)}n>3, {F(n,4)}n>s, and

{F(n,5)}n>6 are log-convez.
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Proof. For n > 3, let

_F(n+1,3)
" F(n,3) '
- = F(n?4)7 In = u’Z+1, n2 4,

zn=F(n,5), Yn = zn+l' Tl25
Zn

(i) It follows from (2.4) that {hn}n>3 is monotonic increasing. Then
{F(n,3)}n>3 is log-convex.
(ii) In order to prove that the sequence {F(n,4)}n>s5 is log-convex, we

show that {z,}n>5 is monotonic increasing. By using (1.1), we have
Unp1 =M =14+ h,_1)u, — (R —2)hn_1un—1, n>5. (2.9)

It follows from (2.9) that

£ =R=19%%_, _@;2_)11_7_:—_1’ n > 5. (2.10)
Tn-1
Now we prove by induction that
1 3 ;
n+§§xn§n+§, n > 6. (2.11)

We observe that 22 < zg < 22. For j > 6, assume that j + 3 < 7j < ji+3.

By applying (2.10), we get

s (hj = 2)z; — (j — 1)h;

‘Tj‘*'l_-?—i 2 J 2) J:I:-( ).7,
J

< (hj — 3)z; — (G —1)hy

Tgd 5 4 T 50T 2 J:z:- )J.
J

It follows from 7 + 2 < z; < j + 2 and (2.4) that

.8 3(hj —j—1)

Ti#1 =7 =5 2 J2$j 2
2 0,

: ~ 6 5(h —5 —3)

xj+1—'7_§ = JZ:rj .
< 0
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Thus, n + 12 <z, < n+ 2 when n > 6. On the other hand, we find that
zs < Te. Then the sequence {x,}n>5 is monotonic increasing.

(iii) The above two parts are based on (2.4) or (2.11), which may be
obtained by ohserving the first several values of the sequences involved.
However, we can not observe that the sequence {yn}n>5 has a similar prop-
erty. In what follows, we make use of Lemma 2.3 to prove that {z,}n>6 is
log-convex.

By using (1.1), we have

Zny1 = (n — 1+xn_1)zn—(n—2)xn_1zn_1, n > 6. (2.12)

It follows from (2.12) that

= D) B o
Vn=n=1%b, 71— (m 5 )Zn 1, n > 6. (213)
n—1

Now we prove by induction that y, > n + % for n > 5. It is clear that
ys > i and ys > 3. For j > 6, assume that y; > j + 3. It follows from

(2.13) that
S8 g e y@p—3) 1)
Yixr —d w5 = .
7+ 2 y:’
Since y; > 7 + %,
. 3 3(:13_7 -7 = l)
; T I 2
Yi+1.~J 5 = 2yj .

By means of (2.11), we have y;11 —J — 2>0. Theny, > n+ 3 holds for
n > 5. We note that {26, 27,28} is log-convex. It is evident that yj4+1 > J

and yj+1 > z; for j > 6. We have from Lemma 2.3 that the sequence

{27 }n>6 is log-convex. B

We can verify that {F(n, k)} satisfies the following recurrence

Fn+1,k) = [n—l—i—F(};(Tf’;_l_)l)]F(n,k)
—(n—Q)F(n’k_l)F(n—l,k), n>k+1.

Fn-1,k-1)
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When k 2> 6 is fixed, we can discuss the log-behavior of {F(n,k)}.5k by

Lemma 2.3.

3 Log-behavior of some sequences involving
F(n,k)

In this section, we discuss the log-behavior of some sequences involving
F(n,k). Chen, Guo, and Wang [3] showed that sequences of the derange-
ment numbers, the Motzkin numbers, the Fine numbers, the central Delan-
noy numbers, the numbers of tree-like polyhexes and the Domb numbers

are ratio log-concave. Now we prove that {F(n,2)},>3 is also ratio log-

concave.

Theorem 3.1 The sequence {F'(n,2)}n>3 is ratio log-concave.

Proof. For n > 2, let g, = FF'E:’;’Z s Am=n+ -é—, and p, =n+1. Itis

obvious that Ap < gn <y for n > 3. In order to prove that the sequence
{F(n,2)}n>3 is ratio log-concave, it suffices to show that 92 —gn-19n+1 20

for n > 4. For n > 4, by applying (2.3), we get

92 — gn_19n+1
. —ga +(2n—=1)g3 —n(n —2)(2n +1)g, + n(n — 2)(n? — 1)
(277' rila gn)gn

For any t € (—00,+00), define a function
Ft) = =t + (2n - 1)t — n(n — 2)(2n + 1)t + n(n — 2)(n® - 1).

Then we have

Fit) = =43 +3@2n—1)t2—n(n-2)2n+1),
f'(t) = =12t +6(2n - 1),
") = —24t+6(2n—1).
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Since f"'(t) < 0 for t > \,, f" is decreasing on [An, +00). We note that
f"(An) = —12n — 6. Then f’ is decreasing on [An,+00). By calculation,
we have
5(2n +1
fl(An) — _(_T——)'
This implies that f’(t) < 0 for t > An. Thus, f is decreasing on [, +00).

Noting that
f(pn) = (n+1)(n —2) >0,

we obtain f(gn) > 0. Hence gn — gn—1gn+1 > 0 for n > 4. u

Liu and Zhao [8] have proved that {\/F(n,2)}n>3 is log-balanced. Now
we discuss the log-balancedness of {y/F(n,3)}n>3 and {3/ F(n,4)}n>4

Theorem 3.2 The sequences {\/F(n,3)}n>3 and {3/ F(n,4)}n>s are log-

balanced.

Proof. Forn > 3,let h, = E}.—'Eni,lg—)s—) and =, = FI(,’Z:,Z’)") (n > 4). Since the

sequences {F(n,3)}n>3 and {F(n,4)}n>s are log-convex, {V/F(n,3)}n>3
and { {/F(n, 4)}n>s are also log-convex. We need to show that {3@}7123
and {-@ }n>5 are log-concave. It is evident that the sequence

{@}n?j (or {j@@}nzs) is log-concave if and only if ﬁ{ > \{I’E

(or VEn > ¥Enil) Tt follows from (n + 2)2h, — (n 4+ 1)%2h,g; > 0 (or

n+l — n42
h‘n pe s Tn
(n+2)3z, — (n 4+ 1)3z,41 > 0) that XE > "n+2+1 (or 1‘{:’1: > ‘Zn+;1).

Now we prove that (n + 2)%h, — (n + 1)2hp,41 > 0 for n > 3 and
(n+2)3z, — (n+1)3z,41 > 0 for n > 5. Tt follows from (2.4) that

(n+2)2(2n +1)
2
n(n + 2)
2
> 0 (n>3).

—(n+ 1)2(n + 2)

(n+2)%h, — (n+1)%hpp1 2>
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For n > 6, it follows from (2.11) that

9
(n+2)%zn — (n+1)%zp41 20 + §n2 + l—zl-n + g > 0.

On the other hand, we observe that 73z5 — 63z¢ > 0. Hence, (n + 2)%z, -
(n+1)3z,41 > 0 holds for n > 5. Therefore, the sequences {\/F(n, 3)}n>3
and {Y/F(n,4)}n>s are log-balanced. g/

Theorem 3.3 The sequence { _11(:_,2_2}n23 is log-balanced.

Proof. Forn > 2, lett, = (—:-1‘%%‘%?1,;—,2%5 and g, = £ ":’12’2 . Then we have
tn = 73qgn. Since the sequences {F(n,2)}n>2 and {£}n>1 are both log-
convex, {ﬂ%ﬁz}nzg is also log-convex. Then {\/F——(;‘-’—zT}nzg is log-convex.
In order to prove the log-balancedness of { ﬂZ—’Zl}nzg, it is sufficient

to show that the sequence { % ﬂ%‘—zl}nzg is log-concave. We note that

{# M}nzzg is log-concave if and only if ;1-%_—1\/5 > -;i—2\/fn+1 for

n

n > 3. On the other hand, it follows from n(n+2)3gn—(n+1)4gn+1 > 0 that
n—i—l 0 = ;_1—2\/tn+1. Now we prove that n(n +2)3g, — (n +1)%gns1 >0
holds for n > 3. Applying (2.1), we have

n(n+2)°gn = (M +1)"gas1 2 n(n+2)3<n+%>—(n+1)4(n+2)

o nd —4n —2
B} 2
> .0 (n23).
Hence, the sequence {4/ F(:’z) }n>3 is log-balanced. 3

Forn > 2, let Sp = 745 Y7 1 F(5,2) and T, = 2537 3 F(5,3).
It is evident that {Sp}n>2 (or {Tn}n>3) is the mean value sequence of
{F(n,2)}n>2 (or {F(n,3)}n>3). For some information of {Sn}n>2 and
{T,}n>3, see tables 2-3. At the end of this section, we discuss the log-
behavior of {Sp}n>2 and {Th}n>3.
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Table 2: Some initial values of {Sy,}

n |2 8 4 -5 6§ "7

3 10 43 1555
opild '3 S o 8T =

Table 3: Some initial values of {T},}

n |3 4 3 6 T 8

7o, | 1 8§ 138 174 1102

S

Theorem 3.4 The sequences {Sn}n>2 and {Tn}n>3 are log-convez.

Proof. We only prove that the sequence {Sy, }n>2 is log-convex. The proof

for the log-convexity of {T,}n>3 follows the same pattern and is omitted

here.

Forn > 2, let ga = ESE2, W, = 50, F(3,2), and pn = 538

order to prove that {Sy, }n>2 is log-convex, we need to show that {pn}nzz

is increasing. For n > 3, noting that

Wn+1 = Wn i Wn = Wn—l
PREL2) - Fn2)

we have
Wn+1 = (1 +gn)Wn - gan—l-

Then {Sn}n>2 satisfies the recurrence

(n—1)(1 4+ gn) S, — (n —2)gn R

Sn+1 ==

It follows from (3.1) that

0.3 (n—=1)(1+gn) (n—2)gn, Ls
n NPn—1

20
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Now we prove by induction that {p, }n>2 is increasing. We find that j -1 <
pj < Jfor j =2,3,4. For j > 4, assume that j =1 < p; < j. It follows
from (3.2) that

: (14 g j—1
Bai=§ = j(1+gi41) (G =1)gj+1 _

J+1 (7 + pj
- jl4gi41)  G=1)gj+1 _ .
pra—j-1 = LEZOU L ~j-
. j+1 (j + 1)p;

Since j — 1 < p; < J, we get

J(1+gi+1)  gi+

Dipi =4 2 E! j+1_j
(j—1)gj+1—35°
B £
b o j1+gi+1) (I-1)gi+1 _
Piat=§=1: S T#1 e (_’I+1)J =g.=
_ P —j+lgn-42-3"—j
i3 +1) '

Using (2.1), we have
Pji+1—3>0 and pj+1—-j—-1Z0.

Hence, the sequence {pn }n>2 is increasing. 5

4 Conclusions

We have discussed the log-convexity of the sequence {F(n,k)}n>r When
k is fixed. We have also discussed the log-behavior of some sequences
related to F(n,k). We have shown that {F(n,3)}n>3, {F(n,4)}n>s, and
{F(n,5)}n>6 are log-convex. When k > 6 is fixed, we give the following

conjecture for {F(n, k) }n>k-

Conjecture 4.1 Suppose thatk > 6 is fived. For the sequence {F(n, k)}n>k,

there ezists a positive integer Ni > k such that {F(n, k)}n> N, is log-conves.
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