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Abstract

A graph G is quasi-claw-free if it satisfies the property: d(z,y) = 2
= there exists u € N(z) N N(y) such that N[u] C N[z]UN[y]. The
matching number of a graph G is the size of a maximum matching
in the graph. In this note, we present a sufficient condition involving
the matching number for the Hamiltonicity of quasi-claw-free graphs.
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We consider only finite undirected graphs without loops or multiple
edges. Notation and terminology not defined here follow those in [2]. Let .
G = (V(G), E(G)) be a graph. A matching M in G is a set of pair-
wise non-adjacent edges. A maximum matching is a matching that con-
tains the largest possible number of edges. The matching number, de-
noted m(G), of a graph G is the size of a maximum matching. For a
vertex v and a vertex subset U in G, we use N[u] to denote the union
between u and all the neighbors of u; we use Ny(u) to denote all the
neighbors of v in U. For two disjoint vertex subsets § and T in G, we
define E(S,T) as {st : where s € S,t € T,and st € E}. For two dis-
tinct vertices = and y in a graph G, we use d(z,y) to denote the distance
between = and y in G. A graph is called claw-free graph if it does not
contain a K 3 as an induced subgraph. The concept of quasi-claw-free
graphs was introduced by Ainouche [1]. For two vertices = and y, we define
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J(z,y) = {u e N(@)N N(y) : N[u] C N[z]UN[y]}. A graph G is quasi-
claw-free if it satisfies the property: d(z,y) = 2 = J(z,y) # 0. Clearly,
every claw-free graph is quasi-claw-free. A cycle C in a graph G is called
a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is
called Hamiltonian if G has a Hamiltonian cycle.

The purpose of this note is to present a sufficient condition based on
the matching number for the Hamiltonicity of quasi-claw-free graphs. The
main result and its proofs are as follows. Some ideas in (3] are used in our
proofs.

Theorem 1. Let G be a quasi-claw-free graph of order n > 10 with
matching number m and connectivity x (k > 2). If m < 2k, then G is
Hamiltonian.

Proof of Theorem 1. Let G be a graph satisfying the conditions in The-
orem 1. Suppose G is not Hamiltonian. Since k > 2, G contains a cycle.
Choose a longest cycle C in G and give an orientation on C. For a vertex u
on C, we use ut (resp. u~) to denote the successor (resp. predecessor) of u
along the direction of C. u*? (resp. u~2) is defined as the successor of u*
(resp. predecessor of u™) along the direction of C. For two vertices z and y
on C, we use 6[11:, y] to denote the segment (and set of vertices) of C which
is along the direction of C from z to y. Since G is not Hamiltonian, there ex-
ists a vertex zo € V(G)\V(C). Let H be a component in V(G)\V(C) such
that o € V(H). Define N¢(V(H)) = {u1,us,...,us }. We also assume
that the order of the appearance of uy,us, ..., us agrees with the direction
of C. From the proofs of Lemma 2.1 in [4], we have the following true claim.

Claim 1. For each i with 1 < i < s, we have J(z;,u; ) = J(zi,ui) = {ui }
and u; uf € E, where z; € Ny (u;). :

Since C is a longest cycle in G, we have that Iﬁ[ui, u;iy1]| = 5, for each
¢ with 1 < ¢ <'s, where uz41 is regarded as u;. Again since C is a longest
cycle in G, We further have the following true claim.

Claim 2. F2‘or each pa;ir of i and J with21 ) 2j < s, we have
E({uhujvu?’ 8 {u}',u}' b = E({ui,uy,uy },{u;','u.'-' hH=0.
Obviously, the edges of uluf, Uy 2u; : 'u2'u2+ : u§2u§ s i usuj’, and

ufzul— form a matching in G. Thus 2k < 2s < m < 2k. Therefore
2k = 28 =m.
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Claim 3. H consists of the singleton xo.

Proof of Claim 3. Suppose, to the contrary, that Claim 3 is not true.
Then we can find an edge, say e, in H. Then the edges of e, ujuf, u;’u;,
ugug', u§2u§, vy Uy, and ui’zul‘ form a matching in G, giving a contra-
diction of 26k +1 =2s4+1 < m = 2k.

Claim 4. u]? = u; % for each i with 1 <i < s, where u,4, is regarded as
N lyv. C = Fa k8, = +, 42, -1 +4+2y"

u;. INamely, = UIU; Uy “Ug URUy Ug Ug Ug...UgUug Uy “Uy Up.

Proof of Claim 4. Suppose, to the contrary, that there exists one i

with 1 < i < s such that u} 2 & u +21. Without loss of generality, we

assume that uf? # ug 2.2 Then the edges of zouy, ufuf?, uyuy, uyuf,
ug2ug, ..., usuF, and uy “uy form a matching in G, giving a contradiction

of 2k4+1=2s+1<m=2k.

Claim 5. If V(G)\(V(C)U{ o }) is not empty, then V(G)\(V(C)U{ z0 })
is an independent set.

Proof of Claim 5. Using the similar arguments as the ones in the proofs
of Claims 1, 2, and 3, we can prove that Claim 5 is true.

Claim 6. If the independent set V(G)\(V(C)U{zo }) := {w1,ws, ..., w, }
is nonempty, then N¢(w;) = {u1,u2,...,us } for each ¢ with 1 < <.

Proof of Claim 6. Suppose, to the contrary, that there exists one 7 with
1< i < s such that No(w;) # { w1, U, ..., us }. Without loss of generality,
we assume that Ng(w;) # {v1,u2, ..., us }. Using the similar arguments as
the ones in the proofs of Claim 4, we can prove that

G = zlzfzf2z§zgzjzj2z§1z;;, zsz:zj'zzl_zl,

where N¢(w;) = { 21, 22, ..., 25 }. Since No(w1) # {u1,u2, ..., us }, ;ve must
have that No(z1) = { 21, 22, .-, 2o } = {uf, uf, o ud Yor {uf? ugf?, .. uf?}
or {u],u5,...,u; }. In each of those cases, we can easily find a cycle in G
which is longer than C, giving a contradiction.

Claim 7. V(G) = (V(C)U{zo }).

Proof of Claim 7. Suppose, to the contrary, that V(G) # (V(C)U{zo }).
Choose one vertex, say wy, in V(G)\(V(C) U {zo}). Then d(zo,w1) =
2. Since G is quasi-claw-free, J(zo,w1) # 0. Let a be an element in
J(zo,w;) # 0. Then a must be in {uq,uy,...,u, }. Without loss of gener-
ality, we assume that a = u;. Since uj € Nfu1] C N[zo] U N[w,], we have
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ufzo € E or ufwy € E. In either of the two cases, we can easily find a

cycle in G which is longer than C, giving a contradiction.

Notice that u}? just can be adjacent to uf and uy. Thus d(ui?) = 2.
Therefore 2 < k < § < d(u}?) = 2. Hence k = 2 and n = 9, a contradiction.

So we complete the proof of Theorem 1.

Obviously, Theorem 1 has the following corollary.

Corollary 1. Let G be a claw-free graph of order n > 10 with matching
number m and connectivity & (k > 2). If m < 2k, then G is Hamiltonian.
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