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Abstract

A set S of vertices in a graph G is called a dominating set of
G if every vertex in V(G)\S is adjacent to some vertex in S. A
set S is said to be a power dominating set of G if every vertex in
the system is monitored by the set S following a set of rules for
power system monitoring. The power domination number of G is
the minimum cardinality of a power dominating set of G. In this
paper, we solve the power domination number for certain nanotori
such as H-Naphtelanic, C5CsCr[m,n] nanotori and CyCsCs[m,n]
nanotori.

Keywords: Power domination; H-Naphtelanic[m, n] nanotori;
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1 Introduction

The concept of power domination in graphs arises from the problem of
monitoring electrical systems. Electric systems wish to constantly investi-
gate the nature of the system by placing Phase Measurement Units, called
PMUs, at selected regions in the system. The cost of such a synchronized
devise is very high, and hence it is required to fetch a smallest set of de-
vises while maintaining the ability to supervising the entire system. In
2002, Hayens et al. [1] considered this problems as the power domination
problem in graphs which is a variation of the domination problem. Indeed,
an electric power network can be modeled by a graph where the vertices
represent the electric nodes and the edges are associated with the transmis-
sion lines joining two electrical nodes. In this model, the power domination
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problem in graphs consists of finding a minimum set of vertices from where
the entire graph can be observed according to certain rules. In terms of the
physical network, such a minimum set of vertices will provide the locations
where the PMUs should be placed in order to monitor the entire graph at
minimum cost [3]. In 2012, Paul Dorbec et al., presented the idea of k-
power domination problem which is a generalization of power domination
problem in graphs [2).

A graph G = (V, E) is an ordered pair formed by a finite nonempty set
of vertices V = V(G) and a set of edges E = E(G) containing unordered
pairs of distinct vertices. The order of G is denoted by |G| = |[V(G)|. We
say that the vertices u and v are adjacent or are neighbours, if {u,v} € E.
For v € V(G), the open neighbourhood of v, denoted as N(v), is the set
of vertices adjacent with v; and the closed neighbourhood of v, denoted by
N[v], is Ng(v) U{v}. For aset S C V(G), the open neighbourhood of S is
defined as N(S) = |J N(v) and the closed neighbourhood of S is defined

vES
as N[S]=N(S)u S [3].

A vertex v in a graph G is said to dominate itself and all of its neighbors
in G. A set of vertices S is a dominating set of G if every vertex of G is
dominated by a vertex in S. The minimum cardinality of a dominating set
is the domination number of G and is denoted by (G) [3].

In 2002 Haynes et al. introduced the related concept of power domination
by presenting propagation rules in terms of vertices and edges in a graph.
Let G(V,E) be a graph and let S C V(G). We define the sets M*(S) of
vertices monitored by S at level ¢, ¢ > 0, inductively as follows:

1. M°(S) = N[8].

2. M*(8) = MY(S)U {w : 3v € M¥(S), N(v) N (V(G)\M(S)) = w}.

If M*(S) = V(G), then the set S is called a power dominating set of
G. The minimum cardinality of a power dominating set in G is called the
power domination number of G written 7,(G) [3].

The power domination problem is NP-complete [1]. In fact, the prob-
lem has been shown to be NP-complete even when restricted to bipartite
graphs and chordal graphs [1]. Lower bound and upper bound on the
power domination number for any graph G, 1 < 7,(G) < 4(G), was ob-
tained in [1]. In the same paper, power domination problem is well studied
for trees [1). In 2005 Liao et al. have shown that the problem of finding the
power domination number for split graphs, a subclass of chordal graphs, is
NP-complete. In addition, they present a linear time algorithm for finding
power domination number of an interval graph G, if the interval ordering of
the graph is provided, and also provided an algorithm with O(n logn) time
complexity. They also discussed that the same results hold for the class of
proper circular-arc graphs[4]. The power domination number is completely
determined for grids [5]. In 2006 Zhao et al. investigated claw-free cubic
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graphs. Moreover, the power domination number satisfies 7,(G) < 2 for
any graph G of order n > 3, and extremal graphs that attained these uapper
bounds were characterized[6]. The power domination problem is also solved
for block graphs (7], product graphs [8], cylinder, torus and generalized Pe-
tersen graphs (9], certain chemical structures 10}, honeycomb network [3],
hexagonal grid [11] and so on.

In 2012, Chang et al. [2] extended the power domination problem to
k-power domination problem and they obtained the following results for a
connected graph G. If G is connected and A(G) < k+1, then 1, x(G) = 1.
In the same paper, an upper bound for the k-power domination number of
any connected graph G of order n 7, x(G) < 7] [2]. Also any claw-free
(k + 2)-regular graph of order n satisfies 7,k (G) < 55 [12]. The k-power
domination has been well studied for trees 2], regular graphs [12], Sierpin-
ski graphs [15], hyper graphs [14] and block graphs [13]. In general, the
k-power domination problem is NP-complete [2]-

2 Main Results

In this section, we compute the power domination number for H-Naphtalenic
[m, n] nanotori, C4CsCs[m,n) nanotori and C5CsCy[m, n].

Stephen et al. [10] have given a lower bound for the power domination
number for any graph G and is quoted below.

Theorem 2.1. Let Hy, Hy, ..., Hy. be pairwise disjoint subgraphs of G sat-
isfying the following conditions.

1. V(H;) = Vi(H;)uVa(H;) where Vi(H;) = {z € V{H;)\z ~y for somey €
V(G) — V(H;)} and Vo(H;) = {z € V(Hi)\x ~ y for all y € V(G) -
V(H;)}.

2. Vao(H;) # 0 and for each z € Vi(H;), there exists at least 2 vertices in
Vo(H;) which are adjacent to z.

If Vi(H;) is monitored and if I; is the minimum number of vertices required
to monitoring V(H;), then vy, > Zi;l l;.

2.1  H-Naphtalenic [m, n] nanotori

A H-Naphtalenic [m,n] nanotori is a trivalent decoration made by alter-
nating squares Cj, pair of hexagons Cy and octagons Cg. It is a bi-regular
graph with m number of rows and n number of columns, each column com-
prising of the pair of hexagons Cs viewed vetically and each row comprising
of the pair of hexagons Cg viewed horizontally. Each column of G & H-
Naphtalenic [m, n] nanotori comprises of 5 levels of disjoint sets of vertices,
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viewed vertically and the 5n levels of vertices labeled as level 1, level 2,
...,level 5n from left to right [16]. See Figure 1(b). In this section, for con-
venience, we write H-Naphtalenic [m,n] nanotori simply as Naphtalenic
[m, n] nanotori.

The following lemma establishes a critical subgraph H of G in the sense
that H contains at least one vertex of any power dominating set of G.

Lemma 2.2. Let G be a graph and H be a subgraph G as shoun in Figure
1(a). Then H is a critical subgraph of G.

Proof. Suppose Row i, 1 < i < m does not contain any member of a
power dominating set, then each vertices u;;, 1 < j <2 is adjacent to two
unmonitored vertices in Row i. 0O

Lemma 2.3. Let G be a Naphtalenic [m,n] nanotori, m < n, m,n > 2.
Then 75(G) > m.

Proof. In Naphtalenic [m,n| nanotori, there are m vertex disjoint copies
of H as described in Lemma 2.2. By taking H;s of Theorem 2.1 as the
subgraph H in G, we conclude I; = 1. Hence 7,(G) > m. O

The Algorithm given below computes the power domination number in
Naphtalenic [m, n] nanotori.
Input: Let G be a Naphtalenic [m,n] nanotori, m < n, m,n > 2.
Algorithm: Label the vertices of Naphtalenic [m, n| nanotori, m,n > 2 as
1 to 30mn sequentially from top to bottom, level wise beginning with the
top most vertex of level 1. Select the vertices {2m+2,2m+4,2m+6. .., 4m}
of column 1 in S. See Figure 1(b).
Output: 7,(G) =m.

Proof of Correctness: Let S be the set of vertices labeled {2m+2,2m+
4,2m + 6...,4m}. See Figure 1(b). Now M°[S] = {2,4,...,2m,2m +
2,...,4m,dm+2,4m+4,...,6m}. Then the vertices labeled as {2m, 2m —
2,...,2,6m,6m—2,...,4m+2} colored blue in M°(S) is adjacent to exactly
one unmonitored vertices say, {2m—1,2m-3,...,1,6m—1,6m-3, ..., 4m+
1} these vertices monitored in M*(S). In the next step vertices labeled
as {1,2m +3,2m+5,...,4m — 1} is adjacent to exactly one unmonitored
vertices say, {2m+1,4m+3,4m+4,...,6m~1} and these vertices monitred
in M2(S). Then the vertex labeled as 2m+1 in M2(S) is adjacent to exactly
one unmonitored vertex say, 4m + 1 is monitored in M 3(S). Now every
vertex in level 3 of column 1 is adjacent to exactly one unmonitored vertex.
Proceeding inductively, for every vertex v € M*[S], |N[v] € Mi[S]| =1, at
every inductive step i, > 4. Now § = {2m+2,2m+4,2m +6...,4m} is
a power dominating set of Naphtalenic [m,n] nanotori. This implies that,
vp(Naphtalenic|m, n|nanotori) = m. Hence the proof.
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Figure 1: (a) Subgraph induced by Naphtalenic [m,n] nanotori (b) Red
colored squared vertices constitutes a Power dominating set of Naphtalenic
[3, 3] nanotori

Theorem 2.4. Let G be a Naphtalenic [m,n], m <n, m,n > 2 nanotori.
Then v,(G) = m.

2.2 040608[772» n] NANOTORI

A C4CsCs[m,n] nanotori is a trivalent decoration made by alternating
squares Cy, hexagons Cg and octagons Cs. It is a bi-regular graph with
m number of rows and n number of columns, each column comprising of
hexagons Cg viewed vertically and each row comprising of hexagons Cj
viewed horizontally. Each column of G = C4CsCs[m, n| nanotori comprises
of 3 levels of disjoint set of vertices, viewed vertically and the 3n levels of
vertices are labeled as level 1, level 2, ..., level 3n from left to right [16]. See
Figure 2(b).  The following lemma establishes a critical subgraph H of
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G in the sense that H contains at least one vertex of any power dominating
set of G.

Lemma 2.5. Let G be a graph and H be a subgraph of G as shown in
Figure 2(a). Then H is a critical subgraph of G.

Proof. Suppose Row i, 1 < i < m, does not contain any member of a
power dominating set, then each vertices u; is adjacent to two unmonitored
vertices in Row i. O

Lemma 2.6. Let G be a C4CsCs[m,n] nanotori, m < n, m,n > 2. Then
75(G) > m.

Proof. In C4CgCs[m, n| nanotori, there are m vertex disjoint copies of H
as described in Lemma 2.. By taking H,f s of Theorem 2.1 as the subgraph
H in G, we conclude I; = 1. Hence 1,(G) 2> m. O

The Algorithm given below computes the power domination number in
C4CsCs[m,n] nanotori.
Input: Let G be a C4;C¢Cs[m,n| nanotori, m <n m,m,n > 2.
Algorithm: Label the vertices of C4CsCs[m,n] nanotori, m,n > 2 as 1
to 6mn sequentially from top to bottom, level wise beginning with the top
most vertex of level 1. Select the vertices {2m+2,2m+4,2m+6...,4m}
of column 1 in S. See Figure 2(b).
Output: 7,(G) = m.
Proof of Correctness: Let S be the set of vertices labeled {2m + 2, 2m +
4,2m +6...,4m}. See Figure 2(b). Now M°[S] = {2,4,...,2m,2m +
2,...,4m,4m+2,4m+4,...,6m}. Then the vertices labeled as {2m, 2m —
2,...,2,6m,6m-2,...,4m+2} colored blue in M°(S) is adjacent to exactly
one unmonitored vertices say, {2m-1,2m-3,...,1,6m-1,6m-3,...,4m+
1} and these vertices monitored in M*(S). In the next step vertices labeled
as {1,2m+3,2m+5,...,4m — 1} is adjacent to exactly one unmonitored
vertices say, {2m+1,4m+3,4m+4,...,6m—1} and these vertices monitred
in M%(S). Then the vertex labeled as 2m+1 in M?(S) is adjacent to exactly
one unmonitored vertex say, 4m + 1 is monitored in M3(S). Now every
vertex in level 3 of column 1 is adjacent to exactly one unmonitored vertex.
Proceeding inductively, for every vertex v € M*[S], |N[v] € M?[S]| = 1, at
every inductive step 1,4 > 4. Now § = {2m+2,2m+4,2m +6..., dm}
is a power dominating set of C4CsCg[m,n| nanotori. This implies that,
p(C4CsCs[m, n]nanotori) = m. Hence the proof.

Theorem 2.7. Let G be a C4CsCs[m,n), m < n, m,n > 2 nanotori.
Then vp(G) = m.
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Figure 2: (a) Subgraph induced by C4CsCs[m, n] nanotori (b) Red col-
ored squared vertices constitutes a Power dominating set of Naphtalenic
C4CsCs[m, n] nanotori

2.3 C5C5C;[m,n) NANOTORI

A C5C6Cr[m,n] nanotori is a trivalent decoration made by alternating pen-
tagon Cj, hexagon Cs and heptagons Cy and is a bi-regular graph. We de-
note the number of pentagons in the first rows by m. In this nanotori three
first rows of vertices and edges are repeated alternatively, and we denote
this number by n. In each period there are 16mn vertices and 2m vertices
which are joined to the end of the graph and hence the number of vertices
in the nanotori is equal to 16mn + 2m [16] .

The following lemma establishes a critical subgraph H of G in the sense
that H contains at least one vertex of any power dominating set of G.

Lemma 2.8. Let G be a graph and H be o subgraph of G as shown in
Figure 3(a). Then H is a critical subgraph of G.
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Proof. Suppose Row i, 1 < i < r does not contain any member of a power
dominating set, then each vertices of u; and v, 1 < j < 2m is adjacent to
two unmonitored vertices in Row 1. O

Lemma 2.9. Let G be a C5C¢Cr[m,n| nanotori, m <n, m,n > 2. Then
75(G) 2.

Proof. In C5CsCr[m,n] nanotori, there are m vertex disjoint copies of H
as described in Lemma 2.8. By taking H; s of Theorem 2.1 as the subgraph
H in G, we conclude /; = 1. Hence 7,(G) 2 m. O

The Algorithm given below computes the power domination in

CsCsCq[m,n] nanotori.
Input: Let G be a C5C¢Cq[m,n) nanotori, m < n m,m,n > 2.
Algorithm: Label the vertices of C5CsC+[m,n] nanotori, m,n > 2 as 1 to
16mn + 2m sequentially from top to bottom, level wise beginning with the
top most vertex of level 1. Select the vertices {2r+2,2r+5,2r+48...,5r—1}
of column 1 in S. See Figure 3(b).
Output: v,(G) =r.
Proof of Correctness: Let S be the set of vertices labeled {2r 4 2, 2r +
5,2r +8...,5r —1}. See Figure 3(b). Now M°[S] = {2,4,...,2r,2r +
1,2r+2,2r +5,2r+8...,5r —1,5r,5r +2,5r + 5,57 + 8,...,8r — 1,87}.
Then the vertices labeled as {2,4,...,2r,5r} colored as blue in M°(S) is
adjacent to exactly one unmonitored vertices say, {2r—1,2r-3,...,1,8r}
and these vertices are monitored in M(S). In the next step vertex la-
beled as {1,3,...,2r,5r} is adjacent to exactly one unmonitored vertices
say, {2r +1,2r +4,...,5r — 2} and these vertices monitred in M?2(S).
Then the vertex labeled as 2r + 1 in M?(S) is adjacent to exactly one un-
monitored vertex say, 57 + 1 is monitored in M3(S). Now every vertex in
level 3 of column 1 is adjacent to exactly one unmonitored vertex. Pro-
ceeding inductively, for every vertex v € M¥[S], |N[v] € Mi[S]| = 1, at
every inductive step i,i > 4. Now S = {2r +2,2r +5,2r +8...,5r — 1}
is a power dominating set of C5CsC[m,n] nanotori. This implies that,
¥p(CsCsCr[m, n)nanotori) = r. Hence the proof.

Theorem 2.10. Let G be a C5C¢Cr[m,n], m,n > 2 nanotori. Then
1(G) =r.

3 Conclusion
In this paper, we have obtained the power domination number for H-

Naphtelanic, CsC7[m, n] nanotori, C5CsC7[m, n] nanotori and C4CeCs[m, n]
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Figure 3: (a) Subgraph induced by CsC¢Cr[m,n] nanotori (b) Red col-
ored squared vertices constitutes a Power dominating set of Naphtalenic
CsCgCr[m,n] nanotori

nanotori.
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