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Abstract

In graph theory and network analysis, centrality measures identify
the most important vertices within a graph. In a connected graph,
closeness centrality of a node is a measure of centrality, calculated
as the reciprocal of the sum of the lengths of the shortest paths
between the node and all other nodes in the graph. In this paper, we
compute closeness centrality for a class of neural networks and the
sibling trees, classified as a family of interconnection networks.
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1 Introduction

Centrality is a key concept in network studies. As the everyday use of the
term implies, it means that a person or organization is in some way a focal
point or main figure in whatever group of people or organizations is being
considered. Based on studies of small groups and the flow of information in
hypothetical networks of different shapes and sizes, some network analysts
hypothesize that centrality may be an indicator of power if it is assumed
that the person or organization is a gathering point for information, with
the information contributing to power because of its importance [1].
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1.1 Closeness Centrality

In a connected graph, closeness centrality of a node is a measure of centrality
and is calculated as the sum of the lengths of the shortest paths between
the node and all other nodes in the graph. Thus the more central a node
is, the closer it is to all other nodes.

For a graph G(V, E), the closeness of a vertex z in G is defined as

1
Zyev d(y) l‘) ,

where d(y, z) is the distance between the vertices y and z. When speaking
of closeness centrality, we usually refer to its normalized form which rep-
resents the average length of the shortest paths instead of their sum. It
is generally given by the previous formula multiplied by —1 , where NV is
the number of nodes in the graph. For large graphs this difference becomes
inconsequential, so the —1 is dropped resulting in:
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This adjustment allows comparisons between nodes of graphs of different
sizes. Taking distances from or to all other nodes is irrelevant in undirected
graphs, whereas it can produce totally different results in directed graphs.
For example, a website can have a high closeness centrality from outgoing
link, but low closeness centrality from incoming links.

1.2 Betweenness Centrality

In graph theory, betweenness centrality is a measure of centrality in a graph
based on shortest paths. For every pair of vertices in a connected graph,
there exists at least one shortest path between the vertices such that ei-
ther the number of edges that the path passes through or the sum of the
weights of the edges is minimized. The betweenness centrality for each
vertex is the number of these shortest paths that pass through the vertex.
Betweenness centrality finds wide applications in network theory: it repre-
sents the degree of which nodes stand between each other. For example, in
a telecommunications network, a node with higher betweenness centrality
would have more control over the network, because more information will
pass through that node. Betweenness centrality was devised as a general
measure of centrality: it applies to a wide range of problems in network
theory, including problems related to social networks, biology, transport
and scientific cooperation. The betweenness centrality of a node v is given
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by the expression:
Oat(v)
ov)= ) v
sFv#t s
where o, is the total number of shortest paths from node s to node ¢ and
4t (v) is the number of those paths that pass through v.

1.3 Transmission in Networks

The transmission of a vertex usV(G), also called farness or vertex Wiener
value in the literature, is defined as the sum of the lengths of all shortest
paths between a chosen vertex and all other vertices in G [13,14,15]. Using
transmission, we can define a well known topological index of a graph G
called the Weiner index W(G), introduced by Wiener. This graph index is
defined for a connected graph G as the sum of the lengths of shortest paths
between all unordered pairs of vertices in G. It is the oldest topological
index related to molecular branching and based on its success, many other
topological indices correlating to distance matrix of chemical graphs have
been developed subsequently to Wiener’s work. Wiener index was at first
used for predicting the boiling points of paraffins, but later a strong corre-
lation between Wiener index and other chemical or physical properties of a
compound was found, such as critical points in general, the density, surface
tension, and viscosity of compounds liquid phase and the van der Waals
surface area of the molecule. In theoretical computer science, Wiener index
is known as transmission index and is considered as one of the basic de-
scriptors of fixed interconnection networks because it provides the average
distance between any two nodes of the network. The transmission T'(u) of
a vertex u € V(G) is a concept closely related to the Wiener index but
localized to the selected vertex.

Definition 1.1 For a vertex u in G, a u-vertex routing R, in G is a
set of nl paths between u and v, where n is the number of vertices and v
belongs to V(G). The congestion or load on an edge e in a given routing R,
of G is the number of paths of R,, which go through it, and is denoted by
#(G, Ry, €) or simply as ¢(Ry, €). A u-vertex routing R,, in G is a minimum
routing if it is comprised of shortest paths from u to every other vertex of

G.

Definition 1.2 [2] Let u € V(G) and S = {54, S2,...,Sk} be a parti-
tion of E(G) such that each S; is an edge cut of G for 1 <7 < k. Then S
is said to be transmission partition rooted at u if for any given minimum
routing R, every member P of R, passes through at most one edge of each
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Theorem 1.1 (9] (Transmission Lemma) Let G be a graph on n vertices
and let u € V(G). Let {S1,52,...,Sm} be a transmission partition of E(G)
rooted at u, such that G; is the component of G\ S; which does not contain
u, 1 S 1 <m. Then dc(‘u) = Z:’;l IV(G,)'

We use the notation [2(E(G))] to represent the collection of all the edge
is of G such that each edges repeated exactly twice.

Theorem 1.2 (2-Transmission Lemma) Given v € V(G), let § =
{S1,S2,...,Sm} be a transmission partition of [2E(G)] rooted at u such
that G; is the component of G\'S; which does not contain u. Then T'(u) =

5 =1y [V (Gi)l-
2 Neural Networks

In machine learning, convolutional neural networks (CNN, or ConvNet) are
artificial neural networks that have successfully been applied to outperform
conventional methods in modeling the sequence specificity of DNAprotein
(3], analyzing visual imagery, analyzing handwritten numeral [4]. Artificial
neural networks are statistical learning models, inspired by biological neu-
ral networks such as the brain, that are used in machine learning. These
networks are represented as systems of interconnected neurons, which send
messages to each other [5]. The basic idea behind a neural network is to
simulate lots of densely interconnected brain cells inside a computer to learn
things, recognize patterns, and make decisions in a humanlike way.

CNN s use a variation of multilayer perceptrons designed to require min-
imal pre-processing. In between the input units and output units are one
or more layers of hidden units, which, together, form the majority of the
artificial brain. Most neural networks are fully connected, which means
each hidden unit and each output unit is connected to every unit in the
layers either side. See Figure 1.

Steganography, the art of hiding information inside host media like pic-
tures and movies, and steganalysis, its countermeasure attempting to detect
the presence of a hidden information within an innocent-looking document,
are information security techniques for telemedicine. A key knowledge
of image steganalyzer can be produced by convolutional neural networks

(CNN) [6].

A typical neural network has anything from a few dozen to hundreds,
thousands, or even millions of artificial neurons called units arranged in a
series of layers, each of which connects to the layers on either side. Some
of them, known as input units, are designed to receive various forms of
information from the outside world that the network will attempt to learn
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Figure 1: Neural Network

about, recognize, or otherwise process. Other units sit on the opposite side
of the network and signal how it responds to the information it has learned;
those are known as output units. In between the input units and output
units are one or more layers of hidden units, which, together, form the
majority of the artificial brain. Most neural networks are fully connected,
which means each hidden unit and each output unit is connected to every
unit in the layers either side. All in all, neural networks have made computer
systems more useful by making them more human. [7]. Eric Goles et al.
[8] study how convolutional neural networks can be used to bear on a large
~class of graph-based learning problems.

3 Interconnection Networks

An interconnection network consists of hardware and software entities that
are interconnected to facilitate efficient computation and communication.
These entities can be in the form of processors, processes, memory mod-
ules or computer systems. Due to the recent developments in parallel and
distributed computing, the design and analysis of various interconnection
networks has been a main topic of research for the past few years. An essen-
tial component of a supercomputer based on large-scale parallel processing
is the interconnection network. It provides communication among the pro-
cessors and memories. Interconnection networks also play a key role in the
design and implementation of communication networks and the recent ad-
vent of optical communication technology adds more design problems. This
explains a growing number of research articles and congresses devoted to
interconnection networks as also special issues of journals being published
on the subject [10, 11]. Interconnection networks are often modeled by fi-
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nite graphs. The vertices of the graph represent the nodes of the network,
that is, processing elements, memory modules or switches, and the edges
correspond to communication links. A basic constraint in many network
design problems is that a bound on the maximum node degree is imposed
by cost and fundamental engineering limitations. That is, the nodes of
the network can be connected by at most a fixed number of communication
lines to other nodes. At the same time other properties are crucial for many
applications which need efficient network communications. Combinatorial
isoperimetric problems arise frequently in communications engineering and
in the field of parallel interconnection networks.

4 Transmission in Neural Nerworks

We formally define an architecture of a convolution neural network N. It
consists of k levels of vertices, k odd, with exactly one vertex v at level 1, n;
vertices at level , 2 < i < k, such that v is adjacent to all the nz vertices in
level 2; number of vertices in levels i and 41,  even, are equal and induce
a perfect matching; the n(;_y) vertices at level i — 1 and the n; vertices at
level 7 induce a complete bipartite graph, 2 < i < k—2. The vertices at
level k—2 and k—1 induce a complete bipartite graph. Finally the vertices
at level k — 1 and k also induce a complete bipartite graph. We denote this
architecture by, N {k;n1,n2,...,nx}, where ny = 1

Let S; be the set of edges with one end in level ¢ and the other end
in level (i +1),1 < ¢ < k—1. Each S; is an edge cut; the end vertices
of the edges in S; induce a complete bipartite graph when ¢ is odd and
the end vertices of edges in S; induce a perfect matching when i is even,
1 <i< k-1 Lett; be the number of vertices in the component of G\ S;
which does not contain u, 1 <7 <k-1.

Theorem 1.8 Let G be the neural network N {k;ny, na, ..., nk}, where
ny = 1. For u € V(G) in level 4, let T;(u) denote the transmission of u in

G,1<1<k. Thenfor 1< <k,

k-1 :
YTt +2(ni— 1)+ 2(nisg — 1), i odd,i < k-1

Z?;lltj+2(ni—1)+2(n.-+1—1), ieven,i <k—1

L Z;f;lltj'*‘z(ni-l), i=k—1ork.
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Figure 2: A Convolution Neural Network

Proof: Let u € V(G). Suppose u is in level 7, ¢ odd, i # 1. Label all
the vertices other than u in the same level as 2 and all the vertices in
the preceeding level (i — 1) except the vertex adjacent to u as 2. Then

Ti(u) = Eg‘;ll)) t; + 2(n; — 1) + 2(ng_qy — 1). Suppose u is in level 1,
7 even. Then label all the vertices in level ¢ except » as 2, and all the

vertices in level (i + 1) except the vertex adjacent to u as 2. Then T;(u) =
EEQ‘;},’ tj +2(n; — 1) + 2(ng41) — 1)

Corollary: The closeness of a vertex « in G is obtained by taking the
reciprocal of T;(u). See Figure 3.
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Figure 3: Closeness of vertices in N(7;1,3,3,5,5,3,5) with transmission in

parenthesis
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5 Transmission in Interconnection Networks

In network world, tree-like structures occupy a central place, and the value
of tree structures in general is very well appreciated [12]. The tree intercon-
nection network is suitable for tree structured computations (multi-input,
single-output) and divide-and-conquer type applications. Tree-based net-
works have fixed degree nodes and are suitable for massively parallel sys-
tems.

The binary tree is a well known tree architecture. A binary tree is said
to be a full binary tree if each internal vertex has exactly two children and
all the leaves are at the same level. These children are described as left and
right children of the parent node. For any non-negative integer 7, the full
binary tree of height r, denoted by T’ has r levels and level 7, 0 < 7z < 7,
contains 2¢ vertices. Thus T} has exactly 2(r+1) _ 1 vertices. In the sequel
we compute the transmission for each of the vertices in a sibling tree.

6 Sibling Tree Networks

Definition 1.3 The r-dimensional sibling tree ST(r), is obtained from
the complete binary tree of height r, by adding edges called sibling edges
between left and right children of the same parent node of ST'(r). We define
horizontal and oblique cuts as shown in Figure 4.

Figure 4: Edge Cuts of Sibling Tree ST'(3)

Theorem 1.4. For any vertex u in level 3, 0 < 7 < r , of the sibling
tree ST(r) of dimension r, the transmission T'4(u) of u is given by

Ti(u) =2"t (G 47— 4+3.27%) 4 2i +2

Proof: Let T’ represent a complete binary tree of height 7, r > 1. The
levels of the vertices of ST(r) are marked as level 0, level 1,.. . level r as
shown in Figure 5. Let n; = |[V(T})|, 1 <i < r. Then n; = 2i+1 — 1,
1 <i<r. Let u be a vertex of ST(r) at level 4, 0 < i < r. By 2-dimension
lemma, we obtain the following expression for the transmission of w.
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Figure 5: Steps in the proof of Theorem 1.4

Let n be the number of vertices in STr, r > 1. Then n = 271 — 1.
For 1 < i < r, there are 27~*1 oblique cuts which divide the graph G
into 2 components Gy and G2 with | Gy |= 21 and [V (G2) | = 271 — 2%,
Further for 1 <1 < r, there are 2"~% horizontal cuts which divide the graph
into 2 components Gy and Gy with |V (G1)| =2 (2! —1) and |V (G2) | =
or+l —2#+1 1 1 Let X; be the contribution to T;(u) by the edge cut S;
comprising of edges between the levels (j-1) and 5, 1 < 5 < 7.

Therefore for j=1,
21 = (n—2n,_1)+(n—ne_1) + 0 =272 _27F]
For 1< j <41,
zj = (n—=2n)+ (27 1) 20 + (0 =) + (2 = 1) mr;
or+3 _ 3.gr—i+2 _ gi+l | 92

For 7 =1,
r; = (n—2n_;)+ (2i—1 - 1) Ne—i+ (M —nr_) + (2i — 1) Nr—i

2r+3 i 3.2r—i+2 _ 2i+1 J 22

Fori<j<r,
z; = 9i-1 (2nr—j) A 07 (nr_j) = ort2 _ ojtl
Thus by 2-Transmission lemma, when u lies in level 4, 0 < i < r, the
contribution z; to Ty(u) for 1 < j <, is as given below:
( 2r+2_2r+1 : j=1

z; = ¢ 2r+3__3.2r—j+2_2j+1+22 - 1<j<i

| 2742 - i1 ; i<jsr,
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Therefore, for 1 <1 <r,

oTi(w) = (?-27)

i
+ Z 21'13 2r—j-}~2_2)’+l+22)+ i (21'-!2__2]”)
j=2 J=itl

and hence,

Tiw) = (@H-2)+ Z (242 _3ar-it _gi 12y 4 3 (2 — 27)
j=it+l

= a2 (z+r—4+3.2") +2i+2

Remark: By symmetry of ST(r), the transmission of any vertex in a

level is the same. Further the closeness of vertex u in level i is obtained by
taking the reciprocal of Tj(u), 0 <i < r. See Figure 6. '

Figure 6: Transmission of vertices in ST'(5) with equal values in every level

7 Conclusion
Closeness of vertices in a class of neural networks and in a family of inter-

connection networks have been computed. It would be an interesting line
of research to explore these centrality measures in social networks.
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