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Abstract

A dominator coloring is a proper vertex coloring of a graph G
such that each vertex is adjacent to all the vertices of at least one
color class or either alone in its color class. The minimum cardinality
among all dominator coloring of G is a dominator chromatic number
of G, denoted by x4(G). On removal of a vertex the dominator chro-
matic number may increase or decrease or remain unaltered. In this
paper, we have characterized nontrivial trees for which dominator

chromatic number is stable.
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1 Introduction

Let G be a simple graph, where V is the vertex set, E is the edge set, n is
the order of G and m is the size of G. For graph-theoretic terminology we

refer to [3].

The open neighborhood and closed neighborhood of v € V is the set
Nw) = {u € V: uwv € E} and N[v] = N(v) U {v} respectively. The
number of vertices adjacent to a vertex v is called the degree of v, denoted
by dg(v). If dg(v) = 0, then v is an isolated vertez. If dg(v) = 1, then v
is a leafand its adjacent vertex a support vertez. A support vertex v is a
strong support vertez (resp. weak support) if the number of leaves adjacent
to v is at least two (resp. exactly one). For a set S C V, the induced
subgraph (S) of G is a maximal subgraph such that two vertices in (S) are
adjacent if and only if they are adjacent in G.
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A dominator coloring, namely DC, of G is a proper vertex coloring of
G in which each vertex dominates some color class or either alone in its
color class. The minimum cardinality among all DC of G is a dominator
chromatic number of G, denoted by x4(G). Let C = {c1,¢2,...,¢cx} be a
DC of a graph G, where each ¢; is a color class. If |[C| = x4(G), then we
say that the graph G has a yg4-coloring. A vertex v is a solitary vertez if
{v} € C of G. The set of all vertices which dominates solely the color class
¢; € C of G is denoted by Pn(c;,C). If v € Pn(c;,C) and v € ¢;,1 # 1,
then |c;| > 2. Let v; € ¢;. The color class {¢; — {vi}} denotes the removal
of a vertex v; from the color class ¢; and the color class {c; U {v;}} denotes
the inclusion of a vertex v; in to the color class c;. The concept of DC was
introduced by Hedetniemi et al. [9] and studied further by [1, 5, 6, 7, 8, 12].
It has been proved in [6] that the decision problem for DC is NP-complete
on arbitrary graphs. In this paper, we characterize nontrivial trees T for
which xq4-coloring is stable.

2 Preliminary results

On removal of a vertex, the dominator chromatic number may increase or
decrease or remain unaltered. Hence we can partition V(G) into subsets as
follows.

o If x4(G —v) = x4(G), then v is in VO,
o If x4(G —v) < x4(G), thenvisin V-,

o If x4(G —v) > x4(G), then visin V+,

2.1 Properties of vertices in VUV~

Observation 2.1. If a vertez v € V™, then xqa(G —v) = x4(G) — 1.
Proposition 2.2. If {v} & C for any x4-coloring C of G, then v is in V0.

Proof. Let C = {c1,¢2,...,¢k} be a DC of G using x4 colors such that
{v} ¢ C and let v € ¢ such that |c;| > 2. Now consider a coloring
Cy = (C—c1) U {e; — {v}} of G —v. Clearly the coloring C; is a DC
using at most x4(G) colors. Thus v € VOU V=, Suppose x4(G —v) =
xd(G) — 1. Let C; be a DC of G — v using xd(G) — 1 colors. Then the
coloring Co = C; U {v} to G is a DC using |Ci|+1 colors. Since {v} €C o, it
follows from hypothesis that Cs is a DC but not a xg4-coloring of G. Hence
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vd(G) < [C2] =1 =|Ci|+1—=1=|Ci| = x4(G) — 1, which is a contradiction.
Thus v4(G = v) = x4(G) and hence v € V°, ]

We now characterize the vertices v € V™~ in a graph G.

Proposition 2.3. A vertez v € V™ if and only if {v} € C for some x4-
coloring C of G and Pn({v},C) = {v} or empty set 0.

Proof. Suppose v € V~. Then by observation 2.1 we have x4(G — v) =
vd(G)—=1. Let C = {¢y,¢,...,¢x} be a DC of G —v using x4 colors. Then
the coloring C; = C U {v} is a x4-coloring of G. Hence Pn({v},C;) = {v}
or empty set 0.

Conversely, Suppose {v} € C for some DC C of G using X4 colors and
Pn({v},C) = {v} or empty set 0. Then the coloring C; =C — {v} of G — v
is a DC using at most x4(G) — 1 colors. Hence x4(G — v) < xq(G) — 1.
Which implies that v € V. 0

2.2 Properties of vertices in V*

Observation 2.4, Ifv € V', then v is a solitary vertez and is in every
xq-coloring of G.

Proof. The proof follows from proposition 2.2. O

Proposition 2.5. Ifv € V*, then {v} €C for any xq4-coloring C of G and
Pn({v},C) contains at least two non-adjacent vertices.

Proof. Let C = {c;,¢2,...,¢x} be a DC of G using x4(G) colors in which a
vertex v € ¢;. By observation 2.4, we have {v} € C. Suppose Pn({v},C) =
0. Then by proposition 2.3, we have v € V~, which is a contradiction.
Let u € Pn({v},C) and let u € cp. Clearly |2 > 2. If (Pn({v},C)) is
complete, then (C — {c1,¢2}) U {u} U {c2 — {u}} of G —v is a DC using
at most x4(G) colors. Thus x4(G — v) < x4(G), which is a contradiction.
Hence Pn({v},C) contains at least two non-adjacent vertices. O

Corollary 2.5.1. [V+| < [lglj

Proof. Let C = {c1,¢2,.--,¢k} be a DC of G using x4(G) colors and let
ve V. Then {v} € C and Pn({v},C) contains at least two non-adjacent
vertices u; and up. Clearly, the color class containing u;,7 = 1,2 is of
cardinality at least two. Thus {uy,us} C VO UV~ and hence |[V*| <

[ :
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The above bound is sharp for the graph G o 2K and also for the graph
G = 2P6

Corollary 2.5.2. There does not exist a graph G such that dominator
chromatic number increases for allv e V.

3 Trees

In this section, we give a recursive characterization of all the trees for which
the deletion of any vertex does not affect the value of the dominator coloring
number. In [12] it was shown that “For a tree T of order n > 3, there exists
a xg-coloring C of T such that all leaves of T receive the same color”. Also,
it has been proved that “For any xg4-coloring C of T either each support
vertex or a leaf is a solitary vertex”. Throughout this section, we consider
a xaq-coloring C of a tree T in which each leaf vertex is within the same

color class, say c;, and each support vertex is a solitary vertex.

Proposition 3.1. Every tree T of order at least three has a vertez v € V0.

Proof. Let C = {c1,¢2,...,c} be a xq4-coloring of T and let v € V(T').

Case 1. Suppose v is a strong support vertez.

Let v; and vy be two leaves adjacent to the vertex v. We now claim
that in any yg-coloring C of T, {v} € C of T. Suppose not. Let v € ¢;
such that |¢;| > 2. Clearly ¢; = {v1} €C and ¢3 = {vs} €€ of T. Now
consider a coloring C; = (C — {1, c2,¢3}) U {v} U {c; U {vy,v2}} of T using
at most x4(T) — 1 colors. Clearly, the vertices v, vy and v, dominates the
color class {v} €C 1 of T. The remaining vertices dominate some color class
asin C of T. In case a vertex, say z, dominates the color class ¢; € C of
T, then z dominates the color class {v} €C | of T. Hence Cy is a DC of T
using at most x4(T) — 1 colors, which is a contradiction. Thus {v} € C and
is in every xg4-coloring of 7. Then by proposition 2.2 we have {vy,v2} C VO.

Case 2. Suppose v 18 a weak support vertez.

Let v; and w9 be the leaf and non-leaf vertices adjacent to v respectively.

Case 2.1. Suppose {v} € C of T.
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Clearly vy € Pn({v},C). Let v € ¢1 such that [c1| > 2. Suppose vy €
Pn({v},C). Consider the tree T = T—v;. Then the coloring C; = (C—c;)U
{cs—{v1}}isa DC of T' using at most xa(T) colors. Thus xd(T") < xa(T).
Suppose v; € V~. Then by proposition 2.3 we have Pn({v1},C) = {v1}
or empty set (), which is a contradiction to our assumption that v; € ¢
such that |¢;| > 2. Hence x4(T — v1) = xa(T). Suppose vy ¢ Pn({v},C).
Then the vertex v, dominates some color class in C of T. The subgraph
T’ = T — v has exactly one isolated vertex, namely v;. Then the coloring

= (C—{e1, {v}})V {v1}U{cy — {v1}} of T is a DC using at most xa(T)
colors. Thus xq4(T' ) < xa(T). Suppose v € V=. Then by proposition 2.3
we ha\[;e Pn({v},C) = {v} or empty set . Which is a contradiction. Hence
ve Vo

Case 2.2. Suppose {v} ¢ C of T.

Then v € ¢ such that |cz| > 2. Now consider a coloring 1 = (C —c2) U
{cy — {v}} of T — v. Suppose there exists a vertex z dominating the color
class ¢y € C of T. Then it still continues to dominate the color class c; € C;
of T. The remaining vertices of T — v dominates some color class as in C of
T. Hence x4(T —v) < xa(T). Suppose v € V~. Then by proposition 2.3,
we have {v} € C of T. Which is a contradiction to our assumption that
v € Cs such that [cy| > 2. Thus xq4(T —v) = xa(T). O

By proposition 3.1, it follows that there is no tree T' of order n > 3 for
which V =V~ or V = V*+. We now characterize the families of trees for
which yg4-coloring is stable, that is V = V°. Let 7 be the family of trees
constructed as follows. Let T} = P; and Ty = Ps. From T,k > 2, we can
construct iteratively a tree Ty 1 by one of the following operations.

1. Operation O;: Joining a vertex of path P» to a non-leaf vertex adja-
cent to a weak support vertex of T}.

2. Operation Oy: Joining a leaf of path P; to a non-leaf vertex of Tk,
which is a weak support vertex or is adjacent to a path Ps.

Proposition 3.2. If V(T) = V?, then there exists a x4-coloring C of T in
which the neighborhood vertices of a support vertez other than leaves can be
assigned the color of leaf vertices.

Proof. Let C = {cy,¢2,...,cx} be a xq-coloring of T in which all the leaves
are assigned the same color class, say c¢;, and the support vertices are
solitary vertices. Let v1,vg, ...,k be the longest path in T Clearly {v2} €
C of T. Suppose 3 is a support vertex in T. Then {vs} € Cof T. Let T =
T —v;. Now consider a coloring C; = (C— {c;U{va}})U{(c1 — {v1})U{v2}}
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of T'. Clearly, the vertex v, dominates the color class {v3} €Cy of T and
the remaining vertices dominate some color class as in C of 7. Hence C; is
a DC of T" using at most x4(T') — 1 colors, which is a contradiction. Thus
every child of v3 is a support vertex. Since V = V9, either {v3} €C or
{va} € C of T. Suppose {v3} € C of T. Then by above argument we give a
contradiction to V = V°. Hence {v4} € C of T. Thus v3 can be assigned
the color of leaf vertices. O

Lemma 3.3. Ifatree T €T, then V =V°.

Proof. We prove the result by induction on k operations. Suppose T =
Ty = Py or T = T = Ps. One can easily observe that V(T') = V°. Suppose
the result holds for all trees T = Ty of 7 obtained by k& — 1 operations.
Let a tree T = Ty42 obtained by k operations be of family 7.

In the case of T' being constructed from T" by operation O;. Let a path
P, has vertices v; and v, such that v; is attached to a vertex of T, say
u. Let ab denote path P, adjacent to u different from vjv; in such a way
that ‘a’ is adjacent to u. Let C = {cy,¢2,...,¢ck} be a xq4-coloring of T in
which {u} €C . Now consider a coloring Cl (C—c))U{v1}U{c1 U{v2}}
of T. Clearly the vertices v; and v, dominates the color class {v;} €C ; of
T and the remalmng vertices of 7" dominates some color class as in C of T".
Thus xa(T) < xa(T') + 1. Let C = {c1, ¢2,- .-, ¢k} be a xg-coloring of T in
which {v1} € C. Now consider the graph T T — {v1,v2}. One can easily
observe that C; = (C — (c1 U {v1})) U {c1 — {v2}} is a DC of T using at
most x4(T) — 1 colors. Then xq(T') = xa(T") + 1.

We now claim that xq(T' —v) = xa(T). In case there is at least one
vertex v € V(T') such that xq(T"—v) # xa(T). Since the paths vjvp and ab
are similar, we may assume that v # vy, vo. LetC = {¢1,c¢o,...,cx} bea xq4-
coloring of 7" —v. Now consider a coloring C; = (C—¢;)U{v3 }U{c1U{v2}}
of T'—v. Clearly the vertices v; and v, dominate the color class {v;} € C;
of T — v and the remaining vertices dominates some color class as in C of
T’ —v. Thus C; is a DC of T'—v using at most xd(T" —v)+1 colors. Hence
xd(T —v) < xa(T' = v)+ 1. Let C = {cj,c2,...,cx} be a xq-coloring of
T —v. One can easily observe that €1 = (C — (c; U{v1}))U{c1 —{vo}} is a
DC of T' — v using at most Xa(T — v) — 1 colors. Therefore xa(T' —v) =
Xd(T —v) =1 # xa(T) = 1 = xa(T"). Which is a contradiction to our

assumption and hence V = V©.

In the case of T being constructed from T" by operation O,. Let v2 be
the central vertex of P; and let v; and v3 be its leaf vertices. Let v; of path
P; be attached to a vertex of / i say u. Let C = {c1,¢2,...,¢k} be a x4-
coloring of T in which non-leaf vertices adjacent to the support vertices are
assigned color 1. Now consider a coloring C; = (C—c; )U{v2}U{c;U{v1,v3}}
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of T. Clearly the vertices v1,v2 and v3 dominates the color class {v;} €C ,
of T and the remaining vertices dominate some color class as in C of 7.
Thus xa(T) < xa(T')+1. Let C = {c1, 3, ..., &} be a xg-coloring of T and
let v; € ¢;. One can easily observe that Cy = (C—(c;U{va}))U{c1—{v1,v3}}
isa DC of T using at most xa(T) — 1 colors. Then x4(T) = xa(T') + 1.

We now claim that x4¢(T—v) = xa(T). In case there is a vertex v € V(T)
such that xq(T — v) # xa(T). Let C = {cy,¢s,...,cx} be a xg-coloring of
T’ —v in which non-leaf vertices adjacent to the support vertices are assigned
color 1. If v = v, then consider a coloring C; = (C — ¢;) U {e1 — {v1}}.
Clearly the vertices of T — v; dominates some color class as in C of T.
Hence xq(T — v1) < xd4(T). Suppose vy € V=. Then by proposition
2.3 we have {v;} € C and Pn({v;},C) = {v1} or empty set ). Which is
a contradiction to our assumption that v; € ¢;. Suppose v = vy. Let
vy € Pn({ve},C) and v3 € Pn({v2},C). Now consider the tree T — va.
Let C; = (C— {c1 U {v2}}) U {e1 — {v1}} U {v1} be a coloring of T — v
using at most xq(T') colors. Since vz € Pn({vy},C) of T, the vertex v3
does not dominate any color class of Cy of T. Thus x4(T — v2) > xa(T)-
Which is a contradiction to our assumption. Suppose Pn({v:},C) = {v1}.
Then consider a coloring €y = (€ — {1 U {v2}}) U {c1 — {v1}} U {v1}. The
vertex v; dominates itself and the rest of the vertices of T' — v dominates
some color class as in C of T. Hence x4(T — v2) < xq(T). Suppose v €
V. Then by proposition 2.3 we give a contradiction to our assumption
that Pn({v,},C) = {v1}. Suppose v = v3. Then the proof is similar to

v = v;. Now assume that v € V(T'). Consider a tree ' — v. Then by
above arguments we can show that x4(T' —v) = xa(T' —v) + 1. Therefore
xa(T —v) = x4(T—v)—1# xa(T)—1 = x4(T"). Which is a contradiction

to our assumption and hence V = V. O

Lemma 34. If V=V, thenT € T.

Proof. If diam(T') < 3, then one can easily observe that P is the only tree
for which V = V. Thus T = P; € 7. Suppose diam(T) > 4. We prove
the result by induction on n. Suppose the result holds for a tree T of order
less than n.

Let v be a support vertex of T' adjacent to at least two leaves, say
z and y. Let C = {c1,¢q,...,ck} be a xg-coloring of T in which all the
leaves are assigned the same color class, say ¢, and each support vertex
is a solitary vertex. Let z € ¢; and y € ¢;. It follows from the proof
of proposition 3.1 that {v} is in every x4-coloring of T. Now consider a
coloring C; = (C — {e1 U {v}}) U {z} U {¢1 — {z}} of T — v using at most
xa(T) colors. Clearly, the vertex y does not dominate any color class of
Cy. Thus x4(T —v) > x4(T'), which is a contradiction. Hence each support
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vertex of T' s wenk.

Lot P = (vy,v9,v3,...,v) be tho longest path in 7' rooted at vy, and
let vy be a leafl at the farthest distance from v, vy be the child of v, v be
the child of v3 and vy be the child of v4. By Proposition 3.2, every child of
vy s a support vertex. Let T, be a subtree induced by a vertex v and itg
successors In a rooted tree 7T'.

In case dyp(vy) 2 8, Lot ' =T = Ty, and let € = {cy,¢z,...,¢} be
a yq-coloring of T, Now consider the tree 7' It follows from the proof
of Lemma 3.3 that xa(T) = xa(T") + 1. We now show that each vertex
veV (T ) is In VO, In case there is at least one vertex v € V(T") such that
xa(T' =v) # \d(T) Lot 7" =T —vand let C; = {c1,2,...,ck} be a x4-
coloring of T". Now consider a tree T v. Again it follows from the proof
of Lemma 3.3 that xa(7'=v) = xa(T’ —v) +1# xa(T)+1 = ,I(T) which
is a contradiction to our assumption tlmt V = V9, Therefore V(T') = VO,
Thus by inductive hypothesis we have T° € 7 and using operation Q) we
obtain 7' from 7". Which implies that T' € 7.

Assume that dp(v3) = 2 and dp(vq) > 3. Let € = {c1,¢2,...,¢k} be a
va-coloring of T" in which all the leaves are assigned the same color class,
say ¢1, and cach support vertex is a solitary vertex. Let vz € ¢; in C of
T and let uy be the child of v4, other than vs. It is sufficient to examine
the case when Ty, is a path P, say ujug. Assume that {v4} €CofT.
Clearly {v2} €C and {u1} € C of T. Now consider a tree T =T —ujy. Let
Cy = (C—=(crU{u1}))U{(c1 —u2)U{uy}} be a coloring of T using at most
Xd(T') — 1 colors. Then the vertex u, is adjacent to the color class {v4} € C;
of T" and the rcmnming vertices of T° dominate some color class as in C of
T. Thus x4(T") < x4(T), which is a contradiction. Now assume that no xq-
coloring of T' contains v4 as a solitary vertex. Let € be a DC of T =T-vy
using xa colors in which each leaf is contained in a color class, say ¢; and
cach support vertex is a solitary vertex. Clearly {v1} €C and {v4} €C of
T". Now consider a tree T. Let €y = (C (c1 U {v1})) U{va} U{c; U{v1}}
be a coloring of T' using at most ,\d(T ) colors, Since no xg4-coloring of T
contains v4 as a solltary vertex, the coloring C; is not a xa-coloring of T
Therefore xq(T) < M(T ') — 1, which is a contradiction.

Suppose dp(v4) = 2. Let C = {¢y,¢2,...,¢c} be a xa-coloring of T
in which all the leaves are assigned the same color class, say ¢y, and each
support vertex is a solitary vertex. Since V = VO it follows from the
proof of Proposition 3.2 that {v4} € C of T. Now we claim that v4 is a
support vertex of T'. Suppose not. Clearly Pn({v4},C) # {v4} or empty
set (. Then some non-leaf vertex y € Pn({v4},C). Clearly y € ¢; such that
el > 2. Let yy € N(y). In case y; dominates itself,that is {y,} €C , then
Xa(T = 1) < xa(T). Since each vertex of T' must dominate some color
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<lass, the vertex y; dominates a color class, say c;,j # 1. Let vj € c;.
case i.  Suppose [¢j| = 1.

Let v be a leaf vertex adjacent to v;. Then xa(T — vj) > xa(T).
‘Which is a contradiction. Suppose v; is a leaf. Then we can interchange
the colors of y; and v;. In this case, the vertex y ¢ Pn({vs4},C). This
implies that Pn({v4},C) = {v4} or empty set . Then by proposition 2.3,
we have vy € V~. Which is a contradiction. Suppose v; is neither a leaf
nor a support vertex. Then there exists a vertex v; € N(vk) other than
yy such that v; dominates some color class ¢, k # {1,7}. Let vm € ck.
Suppose |ck| = 1. Then by the above argument, we give a contradiction.
Suppose [ck| > 2. Then the vertex vy, cannot dominate itself. So the vertex
v, dominates some color class, say ¢;,{ # {1,k}. If |¢| = 1, then by the
above argument we give a contradiction. Suppose |¢;| > 2. Let v, € ¢
and vg € ¢;. Suppose any two vertices of ¢; dominates the same color class,
say cm. Let vn € ¢n. Then the induced subgraph (vm, va,vg,vn) produces
a cycle. Which is a contradiction. Hence each vertex of ¢ dominates
distinct color classes. Suppose v, dominates a color class, say ¢, such that
|en| > 2. Then the process continues. Since T is finite, the process stops by
providing a vertex v; dominating the color class ¢, with |ca| > 2 such that
each v € ¢, dominates a distinct color class of size one. Let vq, € ¢, and
Vo, € Cqo. Let v,, and v,, dominates a color class c,, and c,, respectively.
Let v, € ¢, and vy € Co,. If either v, or v is a support vertex, then by
the above argument we give a contradiction. Suppose both v, and v are
leaf vertices. Then interchanging the colors of v,, and v,, with the colors
of v, and v respectively. Thus we assign colors a1 and as to v, and v,,
respectively and assign the color a to the vertices v, and v,. Hence {v,, }
is dominated by two non-adjacent vertices v; and v,. Thus {ve, } € V.
Which is a contradiction.

case ii.  Suppose |c;j| > 2.

Then as in case i we give a contradiction to our assumption that V = V0,
Thus v4 € V(T') is a support vertex.

In case no child of v4 is a support vertex, say u;. Let T' =T — T,,.
Let C = {ey,¢2,...,ck} be a xq-coloring of T'. 1t follows from the proof
of Lemma 3.3 that xa(T) = xa(T") + 1. We now show that each vertex
ve V%in T'. Suppose not. Then xq(T' —v) # xa(T") for some vertex
v e V(T'). Let C; = {c1,¢3,...,ck} be a xg-coloring of T = T' — .
Now consider a tree T' — v. Again it follows from the proof of Lemma 3.3
that x4(T —v) = Xd(T, —v)+1 # xa(T - Ty,) + 1 = xa(T). Which is
a contradiction to our assumption that V = V?. Therefore each vertex
ve V(T') is in V0. By inductive hypothesis T’ € 7 and using operation
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0y we obtain T from T°. Which implies that T' € T. 0

As a consequence of Lemma 3.3 and 3.4, we obtain the following char.
acterization of trees for which xg4-coloring is stable.

Theorem 3.5. Every vertez of a tree T of order at least three is in VO if
and only if T € T.

4 Further research

The following are a few problems for further examination.

Problem 4.1. Characterize graphs for which V =V".
Problem 4.2. Characterize graphs for which |V*| = [1%1 J

Problem 4.8. Characterize trees T' for which |V°| = 2.

Problem 4.4. How the parameter carries on when an edge is expelled or
included 1s an intriguing issue for further examination.
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