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Abstract

In this paper, we determine the wirelength of embedding com-
plete bipartite graphs Kpn-1 2n-1 into 1-rooted sibling tree STy, and
Cartesian product of 1-rooted sibling trees and paths.
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1 Introduction

An interconnection networks has an ability in efficiently simulating the
programs written for other architectures. For the simulation of different
interconnection networks, the powerful tool used is Graph Embedding. It
is an important technique used in the study of computational capabilities
of processor interconnection networks and task distribution. The embed-
dings of graphs from one class of graphs into another class is increasingly
pervasive in the area of fixed interconnection parallel architectures. In gen-
eral, the embedding problem is NP-complete [1]. This inspires the study of
congestion and wirelength problems for graph embeddings.

The rest of the paper is organized as follows. Section 2 gives definitions
and other preliminaries. Section 3 gives the main results. Finally, Section
4 concludes the paper.
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2 Basic concepts

In this section we give the basic definitions and preliminaries required for
our subsequent work.

Definition 2.1. [2] Let G and H be finite graphs. An embedding ¢ =
(f,Ps) of G into H 1s defined as follows:

1. f is a one-to-one map from V(G) - V(H)

2. Py is a one-to-one map from E(G) to {P;(u,v) : Py(u,v) is 2 path in
H between f(u) and f(v) for (u,v) € E(G)}.

For brevity, we denote the pair (f, Py) as f.

Definition 2.2. Let f : G — H be an embedding. For e € E(H), let
ECy(e) denote the number of edges (u,v) of G such that e is in the path
Py(u,v) between f(u) and f(v) in H. In other words,

ECy(e) = {(u,v) € E(G) : e € Py(u,v)}|.

Then the edge congestion of f : G — H is ECy(G, H) = mazEC/(e) where
the mazimum is taken over all edges e of H. The edge congestion of G into
H is defined as EC(G, H) = minECy(G, H), where the minimum is taken
over all embeddings f : G — H.

If S is any subset of E(H), then ECy(S) =) _.cs ECy(e).
The congestion problem is to determine that embedding whose conges-
tion is EC(G, H). The congestion problem is NP-complete [1].

There are several results on the congestion problem of various archi-
tectures such as hypercubes into n-dimensional grid [3], hypercubes into
2-dimensional grid [4], complete binary trees into grids and extended grids
[5] and generalized wheels into arbitrary trees [6].

Definition 2.3. [4] The wirelength of an embedding f of G into H is given

by
WLi(G Hy= Y, du(f(u),f()= Y. ECyle)

(u,0)EE(G) ecE(H)
where diy (f(u), f(v)) denotes the length of the path Py(u,v) in H.
The wirelength of G into H is defined as

where the minimum is taken over all embeddings f of G into H.
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The wirelength problem (4, 2, 3, 5) of a graph G into H is to find an
embedding of G into H that induces the minimum wirelength W L(G, H).
The wirelength problem is NP-complete [1]

Definition 2.4. 7] Let G be a graph and A C V(G). Denote

Ig(A) = {(u,v) € E(G) : u,v € A}, Ig(m) = ACV(G;DI(A]_ [Ic(A)]
and
06(A) = {(v,v) € E(G):u € A,v ¢ A}, Og(m) = Acv(ﬂ(;)ir'lAl:m 10c(A)l.

For a given m, wherem = 1,2,...,n, we consider the problem of finding
a subset A of vertices of G such that |A| = m and |0g(A)| = ¢(m). Such
subsets are called optimal [8, 9]. Moreover, for a regular graph G, I and
6 are equivalent in the sense that a solution for one also becomes a solution
for the other [8]. The problem of finding I is called mazimum subgraph
problem (1.
Lemma 2.5. (Modified Congestion Lemma) [10] Let G and H be any
arbitrary graphs and let f be an embedding of G into H. Let S be an edge cut
of H such that the removal of edges of S leaves H into 2 components Hy and
H, and let Gy and G5 be subgraphs of G induced by f~'(H;) and f~'(Ha)
respectively. Furthermore, suppose S satisfies the following conditions:

(i) For every edge (a,b) € E(G;), i = 1,2, Py(a,b) has no edges in S.

(i) For every edge (a,b) in E(G) with a € V(G1) and b € V(Gz), Py(a, b)
has ezactly one edge in S.

(iii) V(Gy) and V(G3) are optimal sets.

Then ECy(S) is minimum, that is, EC;(S) < ECy(S) for any other em-
bedding g of G into H. Further EC4(S) = Y degg(v) — 2|E(Gy)| =

veV(G)
Y. degg(v) —2|E(G))|.

veV(Ga)

Lemma 2.6. (k-Partition Lemma) [11] Let f : G — H be an embedding.
Let [kE(H)| denote a collection of edges of H repeated exactly k times.
In other words, [kE(H)| comprises of k copies of the edge set of H. Let
{S1,8,...,5m} be a partition of [KE(H)| such that each S; is an edge cut
of H satisfying the conditions of modified congestion lemma. Then

m

WL;(G,H) = 2
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3 Sibling Trees

In this section, we compute the wirelength of embedding complete bipartite
graph into sibling trees.

Definition 3.1. [12] A bipartite graph is one whose vertez-set can be par.
titioned into two subsets X and Y, so that each edge has one end vertez in
X and another in Y. If each vertez of X is joined to all vertices of Y and
vice-versa, we call it as a complete bipartite graph and denote it by K,
where | X|=m and |Y| =n.

Lemma 3.2. A set of | consecutive vertices of a hamiltonian cycle on 2n
vertices, HCy,, induces a mazimum subgraph of K, , on | vertices, n > 2,

15
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Figure 1: Traversal of Sibling tree
Lemma 3.3. [13] K[z,5) is the mazimum subgraph of K n onr vertices.

For any non-negative integer n, the complete binary tree of height n,
denoted by Ty, is the binary tree where each internal vertex has exactly
two children and all the leaves are at the same level. Clearly, a complete
binary tree T}, has n levels. Level i, 1 < i < n, contains 2' — 1 vertices.
Thus T, has exactly 2™ — 1 vertices. The 1-rooted complete binary tree
T! is obtained from a complete binary tree T, by attaching to its root a
pendant edge. The new vertex is called the root of T\ and is considered to
be at level 0.

Definition 3.4. The sibling tree ST,, is obtained from the complete binary
tree T,, by adding edges called sibling edges between left and right children
of the same parent node. See Figure 1(b).

Remark 3.5. The sibling tree ST,, has 2" — 1 vertices and 3(2"~! — 1)
edges.

A Sibling Tree Traversal follows the usual pattern of binary tree traversal
with an additional condition that the traversal does not cut any region, but
travels along sibling edges. See Figure 1.
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Figure 2: Embedding complete bipartite graph Kjg g into 1-rooted sibling
tree ST}

Definition 3.6. The 1-rooted sibling tree ST} is obtained from ST, by
attaching to its root a pendant edge.

Algorithm A
Input : The complete bipartite graph Kon-1 9.-1 and the 1-rooted sibling

tree ST\

Algorithm : Label the consecutive vertices of the hamiltonian cycle
HCo~ in the complete bipartite graph Kon-19s-1 in the clockwise sense
from 1 to 2". Label the vertices of ST} using sibling tree traversal from 1

to 27,

Output : An embedding f of Kjn-12+-1 into ST given by f(z) =
with minimum wirelength. See Figure 2.

Proof of correctness : For j =1,2,...,n and i = 1,2,...,2"7, let
71 be an edge cut of the 1-rooted sibling tree ST} consisting of edges

induced by the [i/ 2]"' parent vertex from left to right in level n—j and its
left child if < is odd, and its right child if ¢ is even, together with the corre-
sponding sibling edge which is the same edge in either case, such that Sfj'l
disconnects ST} into two components H,?:‘l and Hf; =1 where V(Hflj-l)
is consecutively labeled. See Figure 3. Let G4~ and G% ! be the inverse
images of H3 ' and H% ! under f respectively. By Lemma 3.3, G !
is a maximum subgraph of Kjn-19n-1. Thus the edge cut S?j'l satisfies
conditions (i) and (ii) of the Congestion Lemma. Therefore ECI(Sfj'l) is
minimum for j =1,2,...,nand i =1,2,...,2"7,

For j = 1,2,...,n—1and i = 1,2,...,2"7"1 et SS?(?'I) be an
edge cut of the 1-rooted sibling tree ST, consisting of the edges induced
by the #*h parent vertex from left to right in level n — j and its two chil-

dren, such that SS?(?'I) disconnects ST into two components H?l(zj'l)

and Hfz(?‘l) where V( Hfl(zj‘l)) is consecutively labeled. See Figure 3.
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Figure 3: Edge cut of 1-rooted sibling tree ST}

i_ i
Let G?l("’j"l) and sz(z"l) be the inverse images of Hﬁ(z 1 and Hfz(z 1
1

2(27-1)
under f respectively. By Lemma 3.3, G',-l(
of Kon-19n-1. Thus the edge cut SS,-2 ?’=1) satisfies conditions (i) and

is a maximum subgraph

(ii) of the Congestion Lemma. Therefore EC;(SSf(zj—l)) ot Lok Mol
i=12,...,n—1landi= P S, o

o A . v 2 2.1_1
We note that the set {Sf’ Ly Sny < 1<% <7 FY {s,gi( Y
1<j<n-1,1<i<2"i=1}U{SS5?" !} forms a 2-partition of 2E(ST)).
The 2 -Partition Lemma implies that WL (Kan-1,9n-1,S7T}) is minimum.

Theorem 3.7. Let G be the complete bipartite graph Kgn-1 gn-1 and H
be the 1-rooted sibling tree ST,\. Then the exzact wirelength of G into H is

given by

n 2"
WL(G,H) = 2" 22"Mn-32")+3) =Y Y Ig(2 - 1)
. j=1i=1
n=1 gn=d=1 .
=Y > Is(2(27 - 1)).
j=1 =1

Proof. . By Congestion Lemma, EC;(S' ™) = (2n~1)(2/ —1) =21 (27 —1)
forj=1,2,...,nandi = 1,2,...,2"~ and EC(S52® V) = (2n-1)2(2i -
1) -2Ig(2(2F — 1)), for j =1,2,...,n—1and i = 1,2,...,27=3~1 Then
by 2-Partition Lemma,
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B =y n-1 gn=i-1

WL(G,H) = % ZZECf(Sy N+ Y Y B (552
J =1.d= Jj=1 =1
1 [ n 2"—7
= 3 ZZ[?"“) —1) - 2I(2" - 1)]
] =1i=1
n—-12"-i-1
+- Z Z [(@1)2(27 —1) — 216 (2(2 - 1))
n 2"7
= 222 -32M) +3) =) Y Is(@ - 1)
J=114=1

n-1 2n=i-1

=Y Y Ie(22 -1)).
j=1 =1

4 Cartesian Product of 1-rooted Sibling Trees
and Paths

In this section we embed complete bipartite graph onto the Cartesian prod-
uct of 1-rooted sibling trees and paths to minimize the wirelength.

Level-labeling of ST} x Pp,:

Let ST}, ST},...,ST. be the rooted sibling trees in ST} x Pp,. Extra
edges in ST! x P,, are cross edges. Label the trees ST},ST3,...,STL
with consecutive indices {( —1)2" +1, (i —1)2" +2,..., (i — 1)2" + 2" for
ST}, 1 < i < n, according to the following rule:

(1) When i is odd, label ST}, level by level sequentially beginning with
the last level, from left to nght

(ii) When i is even, label ST}, level by level sequentially beginning with
level 0, from right to left.

Algorithm B

Input : The complete bipartite graph Kan-1 on-1 and the Cartesian prod-
uct ST x P, m=2"n>2.
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Algorithm : Label the consecutive vertices of the hamiltonian cycle
HCj» in the complete bipartite graph Kgn-12n-1 in the clockwise sense
from 1 to 2". Let ST?, STZ,...,ST™ be the m vertex disjoint copies of
sibling tree in ST x P,,. Label the vertices of ST} X P, m = 2", n>2by
Level-labeling. Let f(z) = z for all z € V(K3n-13n-1) and let Py(a,b) bea
shortest path between f(a) and f(b) in ST X Py, for (a,b) € E(Kgn-19n-1).

Output : An embedding f of Kgn-1 2n-1 into ST} x P with optimal
wirelength. See Figure 4.

Proof of correctness : For j = 1,2,...,nand i = 1,2,...,2"7, let
S?~1 be the set of edges of the ST! x Py, induced by the [i/2]"" parent
vertex from left to right in level n — 7 and its left child if 7 is odd, and its
right child if 7 is even, together with the corresponding sibling edge which
is the same edge in either case. Removal of Sf’"l leaves ST,! x P,, into two
components Hﬁj'l and Hg ~1 where V(Hf: ~1) is consecutively labeled.
Let Gfl’ ~! and Gg ~1 be the inverse images of Hf;" and Hg ~! under
f respectively. See Figure 5. By Lemma 3.3, G?lj ~1 is an optimal set in
Kon-1 gn-1.

Forj=1,2,...,n—1andi=1,2,...,2=31 let SS2* =V be the set
of edges of ST} x P,, consisting of the edges induced by the i*" parent ver-

tex from left to right in level n— 7 and its two children, such that SS,? =

i_ N
disconnects ST! x P,, into two components H-* ~* ) and HAZ Y where

V(H?l(zj-l)) is consecutively labeled. See Figure 5. Let Gfl(zj-l) s

gs. -
Gfézj'l) be the inverse images of H,-zl(2 " and H?'z@’ " under f respec-

tively. By Lemma 3.3, G?l(zj'l) is a maximum subgraph of Kjn-1 gn-1.
Thus the edge cut SS? g satisfies conditions (i) and (ii) of the Conges-
tion Lemma. Therefore EC,(SS?QJ'I) ) is minimum for j =1,2,...,n—1
andi=1,2,...,2"7"1, Let SSF = S§.

For k=1,2,...,m —1, let EE} = E}. be the set of edges of ST} x P,
such that each edge has one vertex in ST} and the other vertex in ST1*+1,
Removal of Ej leaves ST} x P, into two components Hj; and Hyo where
V(Hyy) contains equal number of odd and even labels. Let Gi; and Gy,

be the inverse images of Hy; and Hjo under f respectively. See Figure 5.
By Lemma 3.3, Gk, is an optimal set in Kjn-1 gn-1.

We note that the sets {Sf"l cj=12...,ni=12..,2"7}U
{ss¥FV.j=1,9...,n-1,i=12,...,2" "1} U{SSP} U{EEk, E :
k=1,2,...,m — 1} form a partition of 2E(ST! x P,,) . Moreover, each
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edge cut satisfies conditions (i), (i) and (iii) of the Congestion Lemma. The
2-Partition Lemma implies that WL ;(Kja-1,9n-1, ST, X Pp,) is minimum.

3 416 1514 13
Figure 4: Embedding complete bipartite graph Kgg into ST3 x P,

Theorem 4.1. Let G be the complete bipartite graph, Kon-1 9n-1 and H be
the Cartesian product ST, ,1, X P, m =27, n > 2. Then the ezact wirelength
of G into H 1s given by

[0

WL(G,H) = 277227 (m*—m+4r—8)+10) -

n 2"~3
[Z 81097 =1) }

13=

j=1 i=1

n—-12"-7-1
i [Z Y o2 -1) +n| - [zﬂc (k2™ }
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Figure 5: Edgecut of ST x P,

Proof. By Congestion Lemma, EC;(ST 1)—((2"‘1)(21— )—2Ig(27-1)

forj=1,2,...,nandi = 1,2,...,2", and EC;(SS*® ") = ((2-1)2(2/ -
1)) - 2I6(2(% - 1)), for § = 1,2,...,n -1 o 1,2,...,20-3-1
EC/(SSg) = 2°-1 and EC;(Ey) = (2n—1)(k2n) - 2IG(k2"), for k=
1,2,...,m — 1. Then by 2-Partition Lemma,
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e n—12n-i-1
1 n 2 ;
WL(G,H) = 3 [ZZEC,(S,? ) ER DT EC!(SSt?@’—l))}

J=11i=1

m-—1
+% [EC,(SS{,‘) ¥ ZEC,(Ek)J
k=1

Il

Jj=1i=1

n 2"7
5 [ZZ (@)@ —1)) - 2I5(2f — 1>J

n—-12n-Ji-1
+% [ > (@22 - 1) - 206(2(2 - 1)) +2n_1}

=1 i=1

m—1
+% { > ek = 210(1:2")}

k=1

n 2n~7
— 2r—2(2f‘(m2 —m+4r — 8) +10) — % [ZZ2IG(2j o 1):|

j=1i=1

[n~12n-1-1
—-;— Yoy 210(2(21'—1))+2“-1J

| j=1 i=1

1=
=5 ZQIG(kzn)J :
Lk=1

5 Conclusion

In this paper, we compute the exact wirelength of embedding complete
bipartite graph into sibling trees.
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