Fekete-Szego Problem for Certain
Class of Bi-stralike Functions

involving ¢-differential Operator

M. G. Shrigan!, P. N. Kamble?
1Department of Mathematics,

Dr. D Y Patil School of Enginecring and Technology,
Pune 412205, India
mgshriganQgmail.com
2 Department of Mathematics,

Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad 431004, India
kamble.prakash69Qgmail .com

Abstract

Making use of g-derivative operator, in this paper, we introduce
new subclasses of the function class ¥ of normalized analytic and bi-
starlike functions defined in the open disk U. Furthermore, we find
estimates on the first two Taylor-Maclaurin coefficients |az| and |a3|.
Moreover, we obtain Fekete-Szegd inequalities for the new function

classes.

1 Introduction

Let Adenote the functions f(z) of the form:

fR)=z+) a2, (1.1)
k=2
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which are analytic and univalent in the open unit disk U = {z : z € C;|z| <
1}. The function f € A is said to be univalent in U if f is one-to-one in U.
We also denote by S the class of all functions in the normalized analytic
function class A which are univalent in U (also see, [4], [8]).

For 0 < v < 1, a function f € ¥ is in the class S;(7) of bi-starlike
functions of order # if both f and its inverse map f —1 are starlike. In fact,
the Koebe one-quarter theorem [4] ensures that image of U under every
univalent function f € S contains a disk of radius 1/4. Thus every function

f € A has an inverse f~!, which is define by
FFUf(R) =2 (2€V)

and

) =w (6l <ro(Dirot > 7)

where
FY(w) = w — agw? + (223 — az)w® — (5a3 — Bazas + ag)w +--- .

Deniz et al. [5] and Altinkaya and Yalgin [1] studied the bi-starlike functions
and obtain upper bounds for the second Hankel determinant.

In 1967, Lewin [12] showed that |az| < 1.51 using Grunsky inequali-
ties. In 1981, Styer and Wright [16] studied the class of bi-univalent func-
tions and obtain the bound 4/3 for the second coefficient |az|. Subsequently,
in 1985, Branges [3] conjectured Bieberbach conjecture which showed that

lan| < n; (e N-1),

N being positive integer. We owe the revival of these topics to Srivastava
et al. ([15]) for finding initial coefficient bounds for bi-univalent functions.
Recently, several authors obtained initial coefficient bounds |az| and |as|
for bi-univalent functions (also see, for e.g. (2], [6], (7], [9], [10], [11], [14]).

In this connection, we define two new subclasses M%(vy) and ML(¢)
of the class ¥ and obtain estimates on the initial coefficients |az| and |as|

of new subclasses using g-differential operator.



2  Main Results

Definition 2.1 : A function f(z) € ML(v) if it holds:

zD T
f € X and arg(—‘-fﬁ) <7?; 0<v<1zel) (2.1)
and
arg (%‘E—%ﬂ-’—))\ < 1;1; O0<y<1lwe). (2.2)

We begin by finding the estimates on the coefficients |az| and |a3| for
function in the class M% ().

Theorem 2.1 Let the function f(z) € ML(y) and 0 < vy<1;0<g< 1.
Then

2y
a 2.3
|2|-<_\/27(Q3—Q2)+(1—’Y)4'§) e
and
P
las| < q%+q3. (2.4)
Proof: It follows from (2.1) and (2.2) that
2D,f(z) A
S =kl 23)
and Do ()
e, LA o SRR AT B 26
2 = le(w) (26)

Comparing the coefficients of z and 22 in (2.5) and (2.6), we obtain

202 = 191 (2.7)
-1
mos — g =12 + 122 3)
—g202 = Y91 (2.9)
and -
¢3(2a3 — a3) — 003 = 1p2 + Lg,o'f. (2.10)

2
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From (2.7) and (2.9), we arrive at

$1 = —¢p1 (2.11)
and
2303 = 7* (#1 + ¢1) - (2.12)

Now from (2.8), (2.10) and (2.12), we find

49 2.2
2(g3 — q2)a3 = (¢2 +2) + '(1%1323- (2.13)

Thus, we establish

N s 72 ($2 + p2)
27 2v(gs — @) + (1 — )3 21

In view of Lemma 1 ([13], p.226), for the coefficients ¢o and @2, we get

laz] < 2y (2.15)
V2v(ss— @)+ (1 -7)g

which gives us the desire estimate on |ag| as asserted in (2.3).
Next, in order to find the bound on |a3|, by subtracting (2.10) and

(2.8); using (2.12), we get

¥ (p2 — <P2) 7 (43 2+ 1)
e 7 (2.16)

a3 =

which upon applying Lemma 1 ([13], p.226), immediately yields

2
lag| < iil st (2.17)

Q2 q3

This completes the proof.

Corollary 2.1 Let f(z) € Mx(7), (0 <7y <1). Then

2y
= 2.18
|a2| = '\/’)’Tf ( )
and
lag] < :?lgii_;_'*'i) (2.19)



Definition 2.2 : A function f(z) € MZ(C) if it holds:

feEandRe(z*l.)f(%zl>>(; (0<¢(<1,zel) (2.20)

and

zD g(w))
Re | =941~/ ; (0< ¢ <1, wel). 2.21
(g(w) >¢ (0<(¢(<Lwel) (2.21)
Theorem 2.2 Let the function f(z) € ML(() and 0 < ¢ < 1,0 < ¢ <

1.Then

|az| < min 2C =) (201 C) (2.22)
a0 (93 — 2)
and
)2 &%
RSl SR G 97 (2.23)
9 a3
Proof: It follows from (2.20) and (2.21) that
2Dy f(2)
= 1-— 2.4
A =+ (1= 0400 (2.24)
and 2D,o(w)
= = 1— . 2.25
2o8) = ¢+ (1= )yt (2.5
Comparing the coefficients of z and 22 in (2.24) and (2.25), we get
ga2 = (1-()¢1, (2.26)
gag — 205 = (1 — ()2, (2.27)
—gaz2 = (1= ()¢ (2.28)
and
g3(20} — a3) — g203 = (1 - Q)yp2. (2.29)
From equation (2.26) and (2.28), we get
¢1 = ¢ (2.30)
and
2g303 = (1 — O)* (41 + 1) (2.31)
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Now we add (2.27) and (2.29), we get the following

2(q3 — q2)a3 = (1-¢) (b2 + 2) - (2.32)
In view of Lemma 1 ([13], p-226), equations (2.31) and (2.32), yields
o' < min 2 =C) el 18§ (2.33)
a2 (43— @)

Next, in order to find the bound on |as|, by subtracting (2.29) from(2.27)
and using (2.31), we get

C(1=02 (s +1) | (1—9) ($2—2)
Applying Lemma 1 ([13], p.226) ¢1, 1, 2 and 2, immediately gives
— 2 —
o il ) (2.35)
2 as

This completes the proof.
Corollary 2.2 Let f(z) € Mg((), (0<¢{ <1). Then

laz| < V2(1-¢) (2.36)
and
las] <4(1-¢)*+(1-¢)- (2.37)

3 Fekte-Szego Inequalities

Making use of the a2 and a3, and motivated by recent work of Zaprawa [17)
we prove the following Fekete-Szegt results for the function classes ML ()

and M (¢).

Theorem 3.1 Let the function f(z)e ML(y),0<y<1;0<¢<1 and
7 € R. Then

4‘72
lag — 13| < 23”(2(%-%)-93) i 1292 (3.1)
3 191 < 02)

qs
where 91 = 113’)’|1 = T| and ¥p = q% +7((g3 — %) — q%).
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Proof: From equation (2.8) and (2.10), we get
% = a3+ 2 (¢2 - 2). (32)
293

Using (2.14) and (3.2), we get

a - 70} = ¢ [nh)(l -7+ %] +ter ["(7)(1 i %]

where

2

v v
() = 2Y(s — ) — (y—1)g5

From Lemma 1 ([13], p.226) and Lemma 7 ([17], p.2), we yields

(=7 aML-7|= 3%

2 . Pl 22
qs 77(7)|1 TI S 298,

lag — Ta3| < (33)

which completes the proof of Theorem 3.1.
Proceeding as in the above theorem one can easily prove the following
result for M ((), hence we state the following theorem without proof.

Theorem 3.2 Let the function f(z)e M3((),0<(<1;0<g<1 and
7 €R. Then

95—42 (3.4)
=0 Bl — 7] < g3 — g

2(1-¢)

9 [1—7] @]l —7|>g3—qo,

a3 — Ta3| <
qs
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Abstract

Among the varius coloring of graphs, the concept of equitable
total coloring of graph G is the coloring of all its vertices and edges
in which the number of elements in any two color classes differ by
atmost one. The minimum number of colors required is called its
equitable total chromatic number. In this paper, we obtained an
equitable total chromatic number of middle graph of path, middle
graph of cycle, total graph of path and total graph of cycle.

Keywords: Middle graph, Total graph, Equitable total coloring and Eq-
uitable total chromatic number.

1 Introduction

All the graphs considered here simple, finite and undirected graph. Let
G = (V(G),E(G)) be a graph with vertex set V(G) and edge set E(G),
respectively. A coloring of a graph G is an assignment of colors to the
vertices or edges or both. A vertex-coloring(edge-coloring) is called proper
coloring if no two vertices(edges) receive the same color. So many different
proper colorings are available in graph theory such as a-coloring, b-coloring,
acyclic coloring, star coloring, list coloring, harmonious coloring, total col-
oring, equitable total coloring. In the present work we focused an equitable
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total coloring of graph. The concept of total coloring was independently
introduced by Behzad [1] and Vizing [10]. A total coloring of a graph G is
an assignment of colors to both the vertices and edges of G, such that no
two adjacent or incident vertices and edges of G are receive the same color.
They both conjectured that for any graph G the following condition holds:
A(G)+1 < X'(G) £ A(G)+2, where A(G) is the maximum degree of G. We
observe that A(G) + 1 is the suitable lower bound. In general, an equitable
total coloring problem is comparatively very difficult than the total coloring
problem. In 1994, Fu[4] first introduce the concept of equitable total color-
ing and the equitable total chromatic number of a graph. A total coloring
of a graph G is said to be equitable, if the number of elements(vertices and
edges) in any two color classes differ by at most one, for which the required
minimum number of colors is called the equitable total chromatic number
and it is denoted by x..(G). Gong Kun et.al(3] proved some results on the
equitable total chromatic number of W, V K,,, F,, V Kp,and S, V K,,. In
2012, Ma Gang and Ma Ming[6] proved some results concerning the eg-
uitable total chromatic number of P,, V S,, P, V F,, and P,, V W,,. Tong
et.al(8] proved that the equitable total chromatic number of C,,,0C,,. Girija
et.al[2] proved that equitable total chromatic number of Double star graph
and fan graph. Gang et.al[7] proved that on the equitable total coloring of
multiple join graph. Zhang Zhong-fu[12] proved that on the equitable total
coloring of some join graphs. Veninstine vivik et.al[9] proved an algorithmic
approach to equitable total chromatic number of wheel graph, Gear graph,
Helm graph and sunlet graph.

2 Preliminaries

Definition 2.1. The middle graph of a graph G, denoted by M (G) is define
as follows, the vertez set of M(G) is V(G) U E(G). Two vertices x,y in
the vertez set of M(G) are adjacent in M(G) in case one of the following
condition holds: (i) z,y are in E(G) and z,y is adjacent in G. (11) z is in
V(G),y is in E(G) and z,y are incident in G. The total graph of a graph
G, denoted by T(G) is define as, the vertez set of T(G) s V(G) U E(G).
Two vertices x,y in the vertez set of T'(G) are adjacent in T(G) in case one
of the following condition holds: (i) x,y are in V(G) and x s adjacent toy
in G. (i) z,y are in E(G) and z,y is adjacent in G (iii) = is in V(G),y 18
in E(G) and z,y are incident in G. For a simple graph G, let f be a proper
k— total coloring of G, ||Ti|—|Tj|| <1, fori,j=1,2,...k.

The partition {T;} = {(V;UE; : 1 <1 < k} is called a k— equitable total
coloring and Xet(G) = min {k/ k-equitable total coloring of G} is called
the equitable total chromatic number of G, where for all z € T; = V; U E;,
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flz) =1, fori=1,2,...k.

Conjecture 2.4([4]) For any simple graph G(V, E), xe:(G) < A(G) + 2.
Conjecture 2.5([13]) For any simple graph G(V, E),

xet(G) = x"(G) 2 A(G) + 1.

Conjecture 2.6([11]) For every graph G, G has an equitable total k—
coloring for each k > maz{x"(G), A(G) + 2}
proposition 2.7([5]) Any four regular multi-graph can be total colored

with 6 colors
proposition 2.8([7])For complete graph K, with order n,

n, ifn= 1 (mod 2
Xet(Ka) = B =L Amod2)

n+1, ifn= 0 (mod 2)
In this paper, we obtained an equitable total chromatic number of middle
graph of path, Middle graph of cycle, Total graph of path and Total graph
of cycle.

3 Main Results

Theorem 3.1. For any positive integer n > 3, xet(M(P,)) = 5.

Proof. Let V(P,) ={vi : 1<i<n}and E(P,)={e;:1<i<n-1}
where {e; : 1 < i < n — 1} be the edges v;v;11(1 < 7 < n —1). By the
definition of middle graph, each edge {e; : 1 <¢ < n — 1} is subdivided by
the vertices {u; : 1 <7 <n—1}. In M(P,), the vertex set and the edge set
is given by VIM(P,)) ={vi:1<i<n}J{u;: 1 <i<n-—1} and
EM(P,)) ={e;:1<i<n—1}J{e;:1<i<n—1}U{e; : 1 <i<n-2},
where e;(1 <i<n)isanedge v;u;(1 <i<n-1),&'(1<i<n-1)
is an edge u;v;41(1 < ¢ < n—1) and e:(l < i < n-—2)is an edge
uiuip(l1<i<n— 2)

Define an equitable total coloring f, such that f : S — C, where S =
V(M(P,))UE(M(P,)) and C = {1,2,3,4,5}. Now we assign an equitable

total coloring to these vertices and edges as follows.

1, ifi= 1 (mod 3)
flvi)=<¢2, ifi= 2(mod3) forl<i<n
3, ifi= 0 (mod 3)

1l
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3, fi= 1 (mod3)
[(uy) = 1, ifim 2(modz) for1<ti<n~1
2, Mim 0 (mod3)

/(64)=4, /01' lﬂ‘ﬁﬂ"’l
fle/)=b, for 1L<isn~1

2, ifi= 1 (mod3)
fle'Y =43, fi= 2(mod3) forl<i<n-2
1, ifi= 0 (mod3)

Based on the above procedure of coloring, the graph M(P,) is equitable
total colored with b colors, such that the color classes are T(M(P,)) =
(T, 715,73, Ty, Ts} We observe that these colors classes T, T2, T3, T4, T, are
independent sets of M(P,) and its satisfies the inequality ||T;|—|T;|| < 1. for
i # 4. Hence x.(M(P,)) < 5. Further, since A = 4, we have x..(M(P,)) >
X' (M(Pp)) 2 A+ 124+ 125, Therefore x..(M(P,)) = 5. 0

Theorem 3.2. For any positive integer n > 4, x.(M(C,)) = 5.

Proof, Let V(Cy,) = {v;: 1 <i<n} and E(C,) = {e;: 1 <i < n}, where
{ei 1 <1 <n—1} be the edges v;v;41,7 + 1 taken modulo n(l <7 < n).
By the definition of middle graph, each edge {¢; : 1 <7 < n} is subdivided
by the vertices {u; : 1 < i < n}. In M(C;,), the vertex set and the edge set
is given by V(M(Cp)) = {vi:1<i<n}U{w;:1<i<n}and
EM(Cp)) ={es:1<i< n}U{c‘ 1<i< n}U{ei 1 <4 < n}, where
ei(1 < i < n) be an edge vy (1 <i<n) e/l <i<n—1) be an edge
uiVi41,% + 1 taken modulo n(l < 2 < n) and e,(l < i < n) be an edge
ugui41,1+ 1 taken modulo n(1 <7 < n).

We define an equitable total coloring f, such that f : § — C, where S =
V(M(C,))UE(M(C,)) and C = {1,2,3,4,5}. The equitable total coloring
pattern is as follows. we consider the following two cases

Case(i): when n is even

, ifi= 1(mod2) for1<i<n
f(vg) = A
3, ifi= 0(mod?2)

, ifi= 1(mod2) for1<i<n
fluy) = £l
2, ifi= 0 (mod?2)

Il

1(c,) - 2, ifi= 1(mod2) for1<i<n
& iz 0 (mod?2)
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flei') =5, for1<i<n

fley= Y s 1{med2) forlsi<n
1 4, ifi= 0 (mod2)

Case(ii): when n is odd

Figure 1: Equitable Total Coloring of middle graph of Cycle M (Cs)

f(v1) =2

Ao = 3, ifi= 0(mod2) for2<:<n
: 4, ifi= 1 (mod2)

I

1, ifi=1(mod2) forl1<i<n
2, ifi= 0 (mod?2)

ifi= 0(mod2) for2<i<n-—2
ifi= 1 (mod 2)

flen= i (e EFrlen) =1 (&) =5 fopl < s <n
.f(ei”) = {3, ifi= 0(mod2) forl1<i<n

L

N

®

~.

N
/—A—.

4, ifi= 1 (mod?2)

Using the above pattern of the coloring, we see that the graph M(C,)
is equitable total colored with 5 colors. The color classes of M(C,,) are
grouped as T(M(Cy)) = {T1,T», Ts, T4, T5}. We observe that these colors
classes T4, T5, T3, Ty, Ts are independent sets of M(Cy) and its satisfies the
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condition ||T;] —|Ty|| < 1, for i # j. For example consider the middle graph
of cycle with 6 vertices (sce Figure 1), for which |Ti| = |T3| = ITqI = |Ty| =
|Ts| = 7 and it holds the inequality ||Ti| — [T}l < 1, for i # j and it is
equitable total colored with 5 colors. Hence x..(M (C,,)) < 5. Further,
since A = 4, we have x(M(Cp)) > x"(M(Cp)) 2 A+124+1 2 5.
Therefore x.((M(C,)) = 5. |

Theorem 3.3. For any positive integer n > 3, Xet(T(Pn)) = 5.

Proof. Let V(P,) = {vi: 1< i< n}and E(P,) ={ei:1<i<n-1}
where {¢; : 1 € i < n—1} be the edges vv;41(1 £ 1 < n—1). By the
definition of total graph, cach edge {e; : 1 < i < n— 1} is subdivided by
the vertices {u; : 1 <1 <n—1}. In T(P,), the vertex set and the edge set
is given by V(T(P,)) ={v; : 1 <i < n} U{u, :1<i<n-1}and
E(T(P,,)):{c;:lSiSn—l}U{ei.1<z<n—1}U{e <
i<n-— l}U{em 1 <i< n-2}, where ¢;(1 <4 < n—1)is an edge
v,ui(l <i<n-1),e/(1 <i<n-1)is an edge u,v;+1§1 <i<n-1),
e (1<i<n—1)is ancdgcv‘v,“(l <i<n-1) ande; (1<i<n—2)
is an edge ujuipy(l1 <1 <n—2).

Define an equitable total coloring f, such that f : S = C, where § =
V(T(P,)) U E(T(P,)) and C = {1,2,3,4,5}. The equitable total coloring
is obtained by coloring these vertices and edges as follows.

1, ifi= 1 (mod 5)
3, ifi= 2 (mod5)
fo) =<5, ifi= 3 (mod5) for1<i<n
2, ifi= 4 (mod5)
|4, ifi= 0 (mod 5)
(2, ifi= 1 (mod 5)
4, ifi= 2 (mod b)
flu) =<1, ifi= 3(mod5) for1<i<n-1
3, ifi= 4 (mod5)
|5, ifi= 0 (mod 5)
(4, ifi= 1 (mod5)
1, ifi= 2 (mod5)
f(ei)=ﬁ3, ifi= 3(mod5) forl<i<n-1
5 ifi= 4 (mod )
2, ifi= 0 (mod5)
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5, ifi= 1 (mod 5)
2, ifi= 2 (modbH)
flei) =<4, ifi= 3 (mod5) for1<i<n-—1
1, ifi= 4 (mod5)
|3, vifs = 0 (mod 5)
(2, ifi= 1 (mod5)
4, ifi= 2 (mod5)
flei") =41, ifi= 3(mod5) for1<i<n-—1
3, ifi= 4 (mod5)
|5, ifi= 0 (mod5)
(3, ifi= 1 (mod 5)
5, ifi= 2 (mod5)
fle) =2, ifi= 3(mod5) for1<i<n-—2
4, ifi= 4 (mod5)
1, ifi= 0 (mod5)

Based on the above method of coloring, it is clear that the graph T'(F,)

Figure 2: Equitable Total Coloring of total graph of Path T'(Ps)

is equitable total colored with 5 colors, such that the color classes grouped
are T(T(P,)) = {T,T»,T3,T4,Ts}. We observe that these color classes
{T1,T>,T3, Ty, T5 }are independent sets of T'(P,) and its holds the inequality
[|T3] — |T5l| < 1, for i # ;. For example consider the total graph of path
with 6 vertices (see Figure 2), for which |T}| = |T3| = |T4| = |T5| = 7 and
|T>| = 8 and it satisfies the condition ||T;| — |Tj|| < 1, for ¢ # j and so it is
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equitable total colored with 5 colors. Hence Xet(T'(Pn)) < 5. Further, since
A = 4, we have xe(T(Pn)) = xX"(T(Pn)) 2 A+12> 441 > 5. Therefore
Xet(T(Py)) =5. -

5, n=3

Theorem 3.4. For any positive integer n, Xet(T(Cn)) = {
6, n#3
Proof. Let V(Cp) = {v; : 1 < i < n} and E(Cn) = {e; : 1 <4 < n}, where
{e; : 1 < i < n} be the edges v;v;41,1 + 1 taken modulo n(1 < i < n). By
the definition of total graph, each edge {e; : 1 < i < n} is subdivided by
the vertices {u; : 1 < i < n}. In T(Cy), the vertex set and the edge set is
given by V(T'(Cp)) = {vi : 1 <i<n}U {ui | n} and
E(TCn))={ei:1<i<n}U{e;:1<i < n}U{e; :1<i<n}U{e;
1 <i<n}, wherce,(1<z<n) beancdgcv,u,(1<z<n) ei’(1<i<n)
be an edge u;v;41,% + 1 taken modulo n(1 <1 < n), (1 << n)bean
edge vivi41,1+ 1 taken modulo n(1 < i < n) and e (1 5 i < n) be an edge
uiui41,t + 1 taken modulo n(1 < i < n).
We define a function f, such that f : § — C, where S = V(T'(Cp)) U
E(T(C,)) and C = {1,2,3,4,5,6}. Now we assign an equitable total color-
ing to these vertices and edges as follows. we consider following three cases
Case(i): Whenn =3

1, ifi= 1 (mod3)
fi) =43, ifi= 2(mod3) for1<i<3
2, ifi= 0 (mod 3)

2, ifi= 1 (mod 3)
flug) =<3, ifi= 2(mod3) for1<i<3
1, ifi= 0 (mod 3)

f(e:) =4, for 1<i<3

f(ei') =5, for 1<i<3
(2, ifi= 1 (mod 3)

fle)={1, ifi= 2 (mod3) for1<i<3
3, ifi= 0 (mod3)

(3, ifi= 1 (mod 3)
fle”)={2, ifi= 2(mod3) for1<i<3
1, ifi= 0 (mod 3)

From the above rule of total coloring, it is easy to see that the graph T'(C3)
is equitable total colored with 5 colors. The color classes of T(C3) are
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grouped as T(T(C3)) = {T1,T2,T3,T4,Ts}. We observe that these color
classes {Ty,T>,Ts,T4,Ts} are independent sets of T(C3) and its satisfies
the inequality ||T3| — |Tj|| £ 1, for ¢ # j, for which |T}| = |T3| = |T3| = 4
and |Ty| = |Tx| = 3 and it satisfies the inequality ||T;| — |T}|| < 1, for i # j
and it is equitable total colored with 5 colors. Hence x.:(T'(C3)) < 5. Fur-
ther, since A = 4, we have xet(T(C3)) 2 X"(T(C3)) 2 A+1>4+412>5.
Therefore xet(T'(C3)) = 5.

Figure 3: Equitable Total Coloring of total graph of Cycle T'(Cj)

Case(ii): When n > 3, n=2k, “k=23:...

1, ifi= 1 (mod?2)
f(vi) = TR i
3, ifi=0(mod2) forl1<i<n

2, ifi= 1 (mod?2)
flug) = iy :
4, ifi= 0(mod?2) for1<i<n-1

fle:) =5, for¥l<i4<n
f(e,-’)=6, f(enl)=6 for 1<i<n-1

fle") = 2, ifi= 1 (mod?2)
7714, ifi= 0(mod2) for1<i<n-—1

{3



flen")=4

3, ifi= 1 (mod?2)
flei") =
: 1, ifi= 0(mod2) forl1<i<n-—1

flen) =1

Case(iii): When n > 3, n=2k+1, k=23...

_ ), ifi= 1 (mod 2)
fi) = 3, ifi= 0(mod2) forl1<i<n-—1

f(vn) =5

\}\ PR {j’ ifi= 1 (mod 2)
-

, ifi=0(mod2) for1<i<n-—1

flun) =6, fle)=5 for 1<i<n-—2

f(e‘n—l) = lv f(e‘n) =3
fle) =6, flen-1)=2, flex)=4  for 1<i<n-2

fle) = i, ffz:E 1 (mod 2) .
, ifi= 0(mod?2) forl1<:<n-1

flea") =6

Fles™) = 3, ifi= 1 (mod?2)
3 1, ifi= 0(mod2) forl<i<n-—2

flenms™ =5,  flen™) =6
The above pattern of total coloring, the graph T'(C,) is equitable to-
tal colored with 6 colors. The color classes of T(C,,) are grouped as
T(T(Cp)) = {T1,T2,T3,T4,T5,T6}. We observe that these color classes
{T1,T2,T3,T4,T5,Ts} are independent sets of T'(C,,) and its satisfies the
inequality ||T3| —| Tj|| < 1, for i # j. For example consider the total graph
of path with 6 vertices (see Figure 3), for which |T| = |T2| = |T3| = |T4| =
|T5| = |T6| = 7 and it satisfies the inequality ||T;|—|T}|] < 1, for ¢ # 7. When
n # 3, in this case every vertex is adjacent to exactly four vertices of same
degree and due to the incidence and adjacency of elements, five colors can
not be suffice for the total coloring. Thus xe(T(Crn)) = x”(T(Cn)) # 5.
Hence xe:(T(Cr)) = 6. a
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