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Abstract

Let Gk, (k > 0) be the family of graphs that have exactly k cycles.
For 0 < k < 3, we compute the Hadwiger number for graphs in Gi
and further deduce that the Hadwiger Conjecture is true for such
families of graphs.

1 Introduction

All the graphs dealt in this paper are connected, finite and simple[1]. The
notion of forming new graphs from existing graphs plays a crucial role in
determining isomorphic graphs and subgraphs. When two or more graphs
are considered, graph operations such as union,join and graph products
such as Cartesian, tensor, strong and lexicographic products(l] and graph
compositions[4] are used to form new families of graphs. Properties of newly
formed resultant graphs are determined, in a majority case, using the basic
graphs that were considered initially. New graphs can be formed from a
single graph too. The operations vary from subdivision of edges to double
duplication of graphs. All the above mentioned operations usually result in
a graph that is superior to the original graph considered. The reverse case
is possible too, i.e., given a graph we can reduce it to a smaller graph of
our choice or need. Two elementary operations used are deletion of vertices
and edges. Deletion may result in disconnecting a connected graph. To
avoid this, we can employ another operation on edges called contraction of
edges(1, 3].
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Let ¢ = {u,v} be an edge of a graph G. When the edge e is contracted,
its end vertices are also deleted and a new vertex w is introduced wherein
those vertices that were initially adjacent with either u or v (or both) are
now made adjacent with w. The resulting graph is denoted by Gee. If G is
connected, then G o ¢ will also be connected. Clearly n(G o €) = n(G) — 1,
where n(X) denotes the order of the graph X and m(G e e) < m(G) — 1,
where m(X) denotes the size of the graph X.

In 1043, Hugo Hadwiger[5, 6] defined that the maximum order of the
complete subgraph resulting due to any/all of the following three operations
- deletion of a vertex; deletion of an edge and/or contraction of an edge -
is called as the Hadwiger number of the given graph G and it is denoted
by n(G). Hadwiger further conjectured[5, 6] that for any graph G, n(G) >
x(G), where x(G) denotes the chromatic number of G. Chromatic number
of a graph is defined as the number of distinct colours used to colour the
vertices of G such that adjacent vertices receive distinct colours. Bela
Bollobas(2), in 1993 stated that the Hadwiger Conjecture is one of the
outstanding problems in Graph Theory.

2 Preliminary Results

Proposition 2.1. The Hadwiger number for a tree is 2.

Proof. Let T denote the families of all trees. For a tree T' ¢ T, there is a
unique path between any two pair of vertices, deletion of either vertices or

edges result in a forest and contraction of edges will result in a tree again.
Hence n(T) =2forall T€ T. O

Corollary 2.2. Trees satisfy Hadwiger conjecture.

Proof. Trees are bipartite and hence their chromatic number is 2. The result
follows from Proposition 2.1. O

Proposition 2.3. The Hadwiger number for a cycle Cp, n > 3, is 3.

Proof. Consider a cycle Cy,, n > 3. Deletion of an edge or a vertex of C,
will result in a tree. When an edge is contracted, it results in a cycle of
order n — 1. This process, upon successive application, will result in Cj.
Hence the Hadwiger number for any cycle Cp,, n > 3 is 3. O

Corollary 2.4, Haduwiger conjecture holds true in the family of cycles.
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Proof. We know that the chromatic number x(Cy,) for a cycle is 2 when n
is even and 3 whenever n is odd. Hence it follows from Proposition 2.3 that
Hadwiger conjecture is satisfied by all cycles. 0

3 Main Results

Given k > 0, let G denote the family of graphs that contain exactly k
cycles. The following theorems are the main results of our paper.

Theorem 3.1. For each 0 <k < 3, the family of graphs Gy has Hadwiger
number atmost 3.

Proof. Case 1: k=0. The result is obvious as all the trees form Gyo.
Case 2: k = 1. The class of unicyclic graphs forms G, . In unicyclic graphs,
the edges that are not in the cycle are all cut edges. Contracting a cut edge
leads to a unicyclic graph again. Contracting an edge from the cycle will
also yield a unicyclic graph only. When these two processes are repeated
successively, the graph finally obtained is a triangle and hence 7(G) = 3 for
all G € G;.

Case 3: k = 2. All bicyclic graphs satisfy the following property: The
cycles C; and C; in the bicyclic graph G € G, may have at most one
vertex in common. The proof is similar to that of the case when k =1 and
hence n(G) =3 for all G € G,.

Case 4: k = 3. Any graph G € G3, with exactly three cycles falls into one
of the following two categories:

1. G has exactly three internally (edge) disjoint cycles

2. In G, let Cy, Cy and Cj be the three cycles. Then any pair of C;, C;
(¢ # 7, 1<14,5 < 3) share a common path.

Subcase 4a: When the three cycles share at most one vertex in common,
the contractions of edges result in a subgraph with the same property.
Contracting edges successively results in three mutually (edge) disjoint tri-
angles. Hence 9(G) =3.

Subcase 4b: Let the graph G € Gz have three cycles Cy, Cy, C3 where,
without loss of generality, C; and C; share a common path P,,. Then
C3 = (Cy U Cy) — Py, Let edge ¢; € (Cy U Ca UC3). Then contraction of
e; will again result in a graph G’ which contains three cycles and hence
G’ € G3. Let ez ¢ (Cy UCyUC3). Then ez will be a cut edge and contrac-
tion of e, will also result in a graph that is a member of G3. Applying this
process successively will result in the graph K4 — e which has Hadwiger
number 3. Therefore 7(G) = 3 for all G € G3. 0
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Theorem 3.2. Hadwiger Conjecture is true for the family G, 0 < k =< 3,

of graphs.

Proof. Proof s trivial for k =0,1. When k = 2, if G € G contains an odd
cycle, then x(G) = 3 and 2 otherwise. Similarly if Cy, Cs, C3 are three
cycles of a graph H € Gg, then

_ 3 if atleast one of Cy, Cs, C3 is of odd length
X709, otherwise.

In all the cases, by theorem 3.1, n(H) > x(H). O

4 Conclusion

In this paper we have determined the Hadwiger number for graphs with
at most 3 cycles and concluded that Hadwiger Conjecture is true for these
graphs. This work can be extended for graphs with exactly k£ cycles for

k> 4.
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