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Abstract

In this paper we compute the P;-forcing number of honeycomb
network. A dynamic coloring of the vertices of a graph G starts with
an initial subset S of colored vertices, with all remaining vertices
being non-colored. At each discrete time interval, a colored vertex
with exactly one non-colored neighbor forces this non-colored neigh-
bor to be colored. The initial set S is called a forcing set of G if, by
iteratively applying the forcing process, every vertex in G becomes
colored. If the initial set S has the added property that it induces
a subgraph of G whose components are all paths of length 3, then
S is called a Pj-forcing set of G. A P3-forcing set of G of minimum
cardinality is called the P;-forcing number of G denoted by ZP;(G).

Keywords: dynamic coloring, honeycomb networks,forcing set.

1 Introduction

For electric power companies, the continuous monitoring of their systems
represents a crucial task. One way to accomplish it consists of placing phase
measurement units (PMU) at selected locations in the system. Because of
the high cost of a PMU, it is desirable to minimize the number of PMUs
used, while maintaining the ability to monitor the entire system. The power
system monitoring problem, as introduced in [1], asks for the minimum
number of PMUs, and their locations, needed to monitor an electric power
system. This problem has been formulated as a graph domination problem
by Haynes et al., [6]. However, this type of domination has a different flavor
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than the standard domination type problem, since the application of the
domination rules can be iterated.

Let G = (V, E) be a graph representing an electric power system, where
a vertex represents an electrical node and an edge represents a transmission
line joining two electrical nodes.

A set S CV is a dominating set in G if every vertex in V' \ S has at
least one neighbor in S. The minimum cardinality of a dominating set of
G is its domination number, denoted by 7(G) [2].

Definition 1.1. For a graph G and a set T C V(G), the closure of T in G
denoted by Cg(T)is recursively defined as follows: Start with Co(T) = T.
As long as ezactly one of the neighbors of some element of Cg(T) is not in
Cc(T), add that neighbor to Co(T). If Co(T) = V(G) at some stage, then
T is a forcing set of G. A forcing set of minimum cardinality is called the
forcing number and is denoted by Z(G).

This problem may also be viewed as coloring the vertices of G using
propagation rules [5]. Let every vertex be initially colored either black or
white. If u is a black vertex of G and u has exactly one white neighbor,
say v, then we change the color of v to black; this rule is called the color
change rule. In this case we say “u forces v” which is denoted by u — v.
The procedure of coloring a graph using the color rule is called a zero forcing
process or simply a forcing process. Given an initial coloring of G, in which
a set of the vertices is black and all other vertices are white, the derived
set is the set of all black vertices resulting from repeatedly applying the
color change rule until no more changes are possible. If the derived set for
a given initial subset of black vertices is the entire vertex set of the graph,
then the set of initial black vertices is called a forcing set [13][4].

Forcing process is utilized to study the inverse Eigen value problems,
PMU placement problems, and quantum control problems. The forcing
process is also called graph infection or graph propagation in the zones iden-
tified with quantum dynamics and control theory of quantum mechanical
systems. By the monotonous utilization of a similar quantum transforma-
tion, this reality has been used to accomplish noise protection, cooling, state
preparation, and quantum state transfer. Forcing is also used in computer
science in the context of fast-mixed searching.

Chemical structures are conveniently represented by graphs, where atoms
correspond to vertices and chemical bonds correspond to edges. This rep-
resentation inherits much useful information about chemical properties of
molecules. [3]. In this paper, we introduce P3-forcing Problem as follows:

Definition 1.2. Let G be a graph and let be the set of all Py paths in
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G. For a set T of independent P3 paths in p, define Ci(T), the closure of
T, as Cg(S) when S is the set of all vertices in the paths in p. If C¢(T)
=V/(G), then T is called a Ps-forcing set of G. The minimum cardinality
of a Py forcing set of G is the Py forcing number of G and is denoted by
ZP3(G). The Py-forcing problem of a graph G is to determine ZP3(G).

Analogous to the coloring of vertices in a zero forcing set, we describe
coloring of vertices originating from a set of P3 paths. Let G be a graph
in which every vertex is initially colored either black or white. Let P be a
path on three vertices, say u, v, w, all of which are colored black. If u, v
or w is adjacent to exactly one white neighbor, say z, then we change the
color of z to black; this rule is called the color change rule. In this case we
say “P forces z” which is denoted by P — z. At a time, P; may force three
vertices. The procedure of coloring a graph using the color rule is called
simply a forcing process. Given an initial coloring of G in which a set of P3
paths is black and all other vertices are white, the derived set is the set of
all black vertices resulting from repeatedly applying the color change rule
until no more changes are possible. If the derived set for a given initial
subset of black vertices is the entire vertex set of the graph, then the set of
initial P; paths is called a P;-forcing set.

The additional condition on a forcing set that it is composed of paths
of length 3 ensures more reliability.

If a vertex v forces u, then v is called a ‘live’ vertex and u is said to
be covered by v. A vertex which is adjacent to two vertices which are not
already covered is called a ‘dead’ vertex.

In this paper we study Ps-forcing problem in honeycomb networks.

2 Honeycomb Networks

Multiprocessor interconnection networks are often required to connect thou-
sands of homogeneously replicated processor-memory pairs, each of which is
called a processing node. Instead of using a shared memory, all synchroniza-
tion and communication between processing nodes for program execution
is often done via message passing [7][3]. Design and use of multiprocessor
interconnection networks have recently drawn considerable attention due to
the availability of inexpensive, powerful microprocessors and memory chips
(10].

It is known that there exist three regular plane tessellations, composed
of the same kind of regular polygons: triangular, square, and hexagonal.
They are the basis for the design of direct interconnection networks with
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highly competitive overall performance. Grid connected computers and
tori see Fig. 1(a) and (b), are based on regular square tessellations, and
are popular and well-known models for parallel processing.
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Figure 1: Regular plane tessellations

Built recursively using the hexagon tessellation [11], honeycomb net-
works, see Figure 1(c), are widely used in computer graphics, cellular phone
base stations [8], image processing, and in chemistry as the representation
of benzenoid hydrocarbons. Honeycomb networks are better in terms of
degree, diameter, and total number of links, cost and the bisection width
than mesh connected planar graphs. Stojmenovic [11] has studied the topo-
logical properties of honeycomb networks, routing in honeycomb networks
and honeycomb torus networks. Parhami [9] gave a unified formulation for
the honeycomb and the diamond networks [12].

~ Honeycomb meshes offer a model for multiprocessor interconnection net-
works with similar properties to those of mesh-connected computer net-
works, also referred to as grid graphs [8][9]. To define the honeycomb mesh
we will use the following notation: for a given n € Z, we denote by [n] the
set {-n+1,-n+2,...,-1,0,1,2,...,n}

Definition 2.1. The hezagonal honeycomb mesh of dimensionn > 1, n €
Z, HM(n), has vertez set V(HM(n)) = (z,y, 2)z,y, z[n]Jandl < z+y+2z <
2 and two vertices (z1,y1,21) and (T2,Y2,22) are adjacent if and only if
|21 —z2| 4+ |y1 —ye| = 1.

HM(1) is one simple hexagon. The honeycomb mesh of dimension
2, HM(2), is obtained by adding six hexagons to the boundary edges of
HM(1). In general, the honeycomb mesh of dimension ¢, HM (¢), is ob-
tained by adding a layer of hexagons around the border of HM (¢-1). The
dimension of HM (n) represents the number of layers of hexagons between
HM(1) and the border of HM(n). HM(n)is a bipartite graph with the

266



bipartite sets Vi= {z,y,z/z,y,z€[n]and 2+ y + 2 =1} and
Vo= {zy.z/z,y,2€[n]and 2 +y+ 2 =2}. See Fig2.
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Figure 2: The labeled honeycomb mesh H M (3)

3 P3-Forcing in Honeycomb networks

Definition 3.1. For 1 < i < 2n, Row(i) of HM(n) s a line induced by
the vertices of HM (n) with the thind co-ordinate equal to n-i+1.

Lemma 3.2. Let HM (n) be the honeycomb network of dimension n, then
the set of rows Row(i), 1 <1< [g] induces a set of alternate dead vertices

in Row Pzﬂl .

The edges of 2 HM(n) are of three types
(1) an obtuse edge
(2) an acute edge
(2) a vertical edge
as shown in Fig. 3
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Figure 3: The honeycomb mesh HM(7)

A path P in HM(n) is also of three types

Type 1: One edge is obtuse and other end is acute. From the left, if
the first edge is obtuse, then the two end vertices are called ‘peak vertices’
and vertex of degree 2 is called a ‘trough vertex’. From the left, if the first
edge in P; is acute, then the two end vertices are called ‘trough vertices’
and the vertex of degree 2 is called ‘peak vertex’.

Type 2: One edge is vertical and the other is obtuse.

Type 3: One edge is vertical and the other edge is acute.

Lemma 3.3. If every vertez in Row(n) is a live vertez then they cover all
vertices in Row(i), n+1 <1< 2n.

Proof: The peak vertices in Row(n) and the trough vertices in Row(n+1)
induce a perfect matching. The acute edges in Row(n+1) also form a per-
fect matching such that each trough node is adjacent to exactly one node
which is a peak node. This sequence continues till we reach Row(2n).
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We now propose an algorithm which determines an upper bound for
ZPy(HM(n)).

Algorithm:
Input: The Honeycomb mesh HM(n)

Step 1: Choose paths of Type a in [g] consecutive rows beginning from
Row 1 such that the left end vertex of the path in Row i is the (4i — 2)*
vertex of the row from the left, 1 <i < [g]

Step 2: Choose n—-J:gﬂil number of P; paths of Type B, one each in al-

ternate rows beginning from Row m= [2] + 2 and ending withm = (n—1)
or m = n. If the ending Row is (n-1), add the last P3 in Row n with its
left end as (4m — 5)** vertex from the left.

Output: Paths chosen using Step 1 and Step 2 cover all the vertices of
HM (n). This implies ZP3(HM(r)) < [2] + [_u__."_ 3 'H].

Proof of Correctness:

We label all vertices covered by the P; path in it Row as 7. The i*?
path chosen in step 1, labels all its peak vertices to its left as ¢ and the
first peak vertex to its right also as i. When the P; path in Row [%] is
chosen, all vertices in that row are labeled [%] Further every vertex in
Rows 1 to [2] are labeled from {1,2,...,[5|}. Since there is a perfect
matching between Row [2] and Row ([%]+1) all the trough vertices of
Row ([§]+1) are labeled [%]. But each trough vertex is adjacent to two
peak vertices which are not covered already. Hence these trough vertices in
Row ([2]+1) constitute a set of independent dead vertices.

The rows selected in Step 2 in Row ([%2]+1), labels all vertices in Row

([2]+1) and all dead vertices in Row [2] as ([3]+1). This process con-
tinues choosing path P; in alternate rows till we reach (n—1)* or n** Row.
If it is (n — 1)** Row, to cover the vertices in Row n, we choose one more

path in Row n.
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Figure 4: Choice of P; paths in HM(6)

Thus we have the following result.

Theorem 3.4. ZP3(HM(n)) < [%*l = }'n—|=;l|+1't

See Fig. 4 and Fig. 5

A path Pj selected in Row(7), 1 <i < [%] using the algorithm leaves all
the paths of Type 2 to its left covered. On the right it covers one vertex in
the first step. The [2] paths selected in the first [5] rows together cover
all vertices of HM (n), till they reach a dead line. The number of paths
cannot be reduced. Thus we have the following conjecture.

Conjecture:

2y (M) = (3] + | 2F]
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Figure 5: Choice of P; paths in HM(9)

4 Conclusion

Honeycomb networks are applied widely in the field of cellular networks
where the P3-forcing number determines the minimum number of cellular
towers to be placed with maximum coverage. In this paper we have ob-
tained an upper bound for the P3-forcing number of honeycomb networks.
We have also posed a conjecture that the upper bound cannot be reduced
any further. Obtaining optimal Ps-forcing number will be helpful in the
communication networking fields.
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