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Abstract

A set S of vertices in a graph G is called a dominating set of G if
every vertex in V(G)\S is adjacent to some vertex in S. A set S is
said to be a power dominating set of G if every vertex in the system
is monitored by the set S following a set of rules for power system
monitoring. A zero forcing set of G is a subset of vertices B such
that if the vertices in B are colored blue and the remaining vertices
are colored white initially, repeated application of the color change
rule can color all vertices of G blue. The power domination number
and the zero forcing number of G are the minimum cardinality of a
power dominating set and the minimum cardinality of a zero forcing
set respectively of G. In this paper, we obtain the power domination
number, total power domination number, zero forcing number and
total forcing number for m-rooted sibling trees, [-sibling trees and [-
binary trees. We also solve power domination number for circular
ladder, Mobius ladder, and extended cycle-of-ladder.
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1 Introduction

We begin with the basic definition of power domination. For a vertex u in
a graph G, let N(u) = {v € V(G)/(u,v) € E(G)} and N[u] = N(u) U {u}.
For a graph G(V, E), S C V is a dominating set of G if every vertex in V\§
has at least one neighbour in S. The domination number of G, denoted by
v(G), is the minimum cardinality of a dominating set of G. A dominating
set S is called a total dominating set if each vertex v of G is dominated by
some vertex u # v of S. The total domination number of G, denoted by
7:(G), is the minimum cardinality of a total dominating set of G.

In (1] authors introduced the related concept of power domination by
presenting propagation rules by terms of vertices and edges in a graph. Let
G(V,E) be a graph and let S C V(G). We define the sets M*(S) of vertices
monitored by S at level 4, i > 0, inductively as follows:

1. M °(S) N[S].

2. M1(S) = U{N[v] : v € M¥(S) such that |N[v]\M?(S)| = 1}.

If M>(S) = V(G), then the set S is called a power dominating set of
G. The minimum cardinality of a power dominating set in G is called the
power domination number of G written 7,(G). A power dominating set
S is called a total power dominating set if S contains no isolated vertex.
The total power domination number, denoted 45(G) of G is the minimum
cardinality of a total power dominating set of G [8].

The concept of zero forcing game introduced via color game on vertices
of G. The color change rule is: If u is a blue vertex and exactly one
neighbour w of u is white, then change the color of w to blue. We say that
u forces w and denote it by u — w. A zero forcing set of G is a subset
of vertices B such that when the vertices in B are colored blue and the
remaining vertices are colored white initially, repeated application of the
color change rule can color all vertices of G blue. The zero forcing number,
denoted Z(G) of G is the minimum cardinality of a zero forcing set of G.
A zero forcing set S is called a total forcing set if S contains no isolated
vertex. The total forcing number, denoted F;(G) of G is the minimum
cardinality of a total forcing set of G [8].

The power domination has been well studied for trees [1], product graphs
[4], block graphs [5], interval graphs, circular-arc graphs [2], grids [3] and
so on. In fact, the problem has been shown to be NP-complete even when
restricted to bipartite graphs and chordal graphs [1].



2 Main Results

In this section, we solve the power domination number and zero forcing
number for m-rooted sibling trees, [-sibling trees and [- binary trees.

A tree is a connected graph that contains no cycles. The most common
type of tree is the binary tree. It is so named because each node can have at
most two descendants. A binary tree is said to be a complete binary tree if
each internal node has exactly two descendants. These descendants are de-
scribed as left and right children of the parent node. Binary tree are widely
used in data structures because they are easily stored, easily manipulated,
and easily retrieved. Also many operations such as searching and storing
can be easily performed on tree data structures. Furthermore, binary trees
appear in communication pattern of divide-and-conquer type algorithms,
functional and logic programming, and graph algorithms. A rooted tree
represents a data structure with a hierarchical relationship among its vari-
ous elements.

The basic skeleton of a m-rooted sibling trees, a Il-sibling trees and a I-
binary trees is a complete binary tree. Hence it is enough to consider level
7 — 1 to determining the power dominating set or the zero forcing set of
complete binary tree. Choosing the power dominating set or zero forcing
set in level r — 1 is the minimum power dominating set or the minimum
zero forcing set for a complete binary tree.

2.1 Power Domination in m- Rooted Sibling Tree

Definition 2.1. [10] 1-rooted sibling tree ST} is obtained from the 1-rooted
complete binary tree T} by adding edges (sibling edges) between left and
right children of the same parent node. The m-rooted sibling trees ST™ is
obtained from m number of vertex disjoint 1-rooted sibling tree ST;} on 2"
vertices with roots say T1,T2,...,Tm and adding edges (r;,7i+1), 1 <1 <
m — 1. See Figure 1(a). The diameter of ST™ is 2n+m — 1.

Theorem 2.2. Let G be a m-rooted sibling tree ST™ r > 2. Then v,(G) =
7%(G) =m x 271,

Proof. In ST™, the vertices in level 7 —1 and level 7 induce m x 27~ vertex
disjoint copies of 3-cycle. Any minimum power dominating set of G contains
at least one vertex in each such 3-cycle. For, if not, even if all vertices in
level (r — 1) are monitored, their children will be left unmonitored. Select
all the vertices in level 7 — 1 of ST in set S. The vertices in level r — i
monitor vertices in level r —i1—1, 2 < i < r—1. Hence S is a power
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Figure 1: Circled vertices indicates a (a) Power dominating set of sbiling
tree ST2(4) (b) Zero forcing set of sbiling tree ST?(4) (c) Power dominating
set of sbiling tree [-ST2(4) (d) Power dominating set of {-7}

dominating set of ST™ with |S| = m x 2"~1. Since the vertices in S induce
a perfect matching in S, 74(G) = |S| =m x 271 a

Theorem 2.3. Let G be a m-rooted sibling tree ST™, r > 2. Then Z(G) =
Zt(G) ='m X'2".

Proof. In ST™, the vertices in level r—1 and level r induce m x 27! vertex
disjoint copies of 3-cycle. Any minimum zero forcing set of G contains at
least two vertices in each such 3-cycle. For, if not, even if all vertices in
level (r — 1) are colored as blue, their children will be left colored white.
Select all the vertices in level  of ST in set S. The vertices in level 7 —1
monitor vertices in level r —i—1, 1 <i <r— 1. Hence S is a zero forcing
set of ST™ with |S| = m x 2. Since the vertices in S induce a perfect

matching in S, Z;(G) = |S|=m x 2".

2.2 Power Domination in [-Sibling Tree
Definition 2.4. [10] The ST™ be a rooted sibling tree, n > 1, m > 1.

A graph which is obtained from two copies of rooted sibling tree ST, say
STm, ST by joining each vertez in the last level (i.e.,(r — 1) level) of
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ST{" with the corresponding vertez of ST3"™ by an edge is called the I-sibling
tree and is denoted by I-ST". See Figure 1(c).

Theorem 2.5. Let G be a l-sibiling tree I-ST™, r > 2. Then 1(G) =
‘}’;(G) =m X 21'—1.

Proof. In l-ST™, the vertices in level r—1 and level 7 induce mx 27! vertex
disjoint copies of 3-cycle. Any minimum power dominating set of G contains
at least one vertex in each such 3-cycle. For, if not, even if all vertices in
level (r — 1) are monitored, their children will be left unmonitored. Select
all the vertices in level 7 — 1 of [-ST™ in set S. The vertices in level r — i
monitor vertices in level r—i—1, 2 <i < 7—1 both from top and bottom.
Hence S is a power dominating set of I-ST™ with |S| = m x 2"~1. Since
the vertices in S induce a perfect matching in S, 7(G) = |S]| =m x 271

2.3 Power Domination in [-Complete Binary tree

Definition 2.6. [10] Let T, be a complete binary tree, r > 1. A graph
which is obtained from two copies of complete binary tree 1), say T1,T>
by merging each vertez in the last level (i.e.,(r — 1)*hlevel) of Ty with the
corresponding vertex of T is called the l-complete binary tree and is denoted
by I-T;.. See Figure 1(d)

Remark 2.7. Number of vertices in I-T}, is 3.27~1 =2, r > 1.

Theorem 2.8. Let G be a l-complete binary tree I-Ty., v > 2. Then
1p(G) =21,

Proof. In [-T;, the vertices in level » — 1 and level 7 induce 2"~} vertex
disjoint copies of 4-cycle. Any minimum power dominating set of G contains
at least one vertex in each such 4-cycle. For, if not, even if all vertices in
level (r — 1) are monitored, their children will be left unmonitored. Select
all the vertices in level r — 1 of I-T} in set S. The vertices in level 7 — 1
monitor vertices in level r—7—1, 2 <% < r—1 both from top and bottom.
Hence S is a power dominating set of [-T,. with |S| = 2"~1. Therefore,
1p(G) =271 a

3 Power Domination in Ladder-Like Networks

In this section, we solve the power domination number for cycle of ladder
and extended cycle of ladder.
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3.1 Circular Ladder

Definition 3.1. [13] Cartesian product GOH of two graphs G and H is the
graph with vertez set V(G) x V(H), two vertices (u,u ) and (v v) being
adjacent if and only if either u = v and uv € E(H) oru = v and
uv € E(G). The n-ladder graph L of length n is defined as P, x Ppy,,
where P,y is a path on n+ 1 vertices, n > 1.

Definition 3.2. [11] The circular ladder CL,, of length n > 3 is the Carte-
sian product CL, = C,0K,. Mobius Ladder graphs are constructed by
introducing a twist in a circular ladder and is denoted by M,,.

(c) o

Figure 2: Circled vertices indicates power dominating set of
(a) CLy; (b) Mg (c) Sub graph H

Lemma 3.3. Let G be a circular ladder CL, of length n > 3. Then
1(G) 2 2.

Proof. Without loss of generality, let S = {v}. Then every vertex in N(v)
is adjacent to two vertices, a contradiction. O

Theorem 3.4. Let G be a circular ladder CL,, n > 4 or a Mobius ladder
M,, n> 4. Then 7p(G) =2
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Proof. Select the vertices {1,4} in S as shown in Figure 2(a). Now for
every vertex in M?(S) is adjacent to exactly one unmonitored vertices to it.
Proceeding inductively, for every vertex v € M*(S), |[N[v]\M(S)| <1, i >

1. Thus M[%](S) = V(G). Hence |S| = 2. Therefore, 7,(G) = 2. O

3.2 Extended Cycle-of-Ladder

In 2008, Jywe-Fei Fang introduced a network called cycle-of-ladder and
proved that it is a spanning subgraph of the hypercube network, thereby
proving that hypercube network is bipancyclic [12]. The graph obtained
looks like a ladder having two rails and n + 1 rungs between them. The
length of the ladder is defined as n.

Definition 3.5. [13] A cycle of ladder is a graph comprising of a cycle C,
of length 21 called the spine cycle such that removal of alternate edges on C,
leaves | components Ly, Lo, ..., L;, each of which is isomorphic to a ladder.
If ry,72,...,7; denote the number of rungs in the ladders L1, Lo, ..., L; Te-
spectively, then the cycle of ladders is denoted by CL(2l,71,72,...,Tk). Let
Rf;-, 1 < j < r; denote the rungs of L; such that the bottom rung Rj is
the edge of C, in L;, 1 < i < k. For brevity, we denote r1,72,...,Tk) aS
s and we denote the cycle-of-ladder as CL(2l,s), where l and s represent
the number of ladders and the length of each ladder respectively. For con-
ventence, we label the vertices of L; as .'n; where0<j<sandl<i<lin
CL(2l,s).

We add ! number of edges to CL(2l, s) to obtain a 3-regular graph and
call it the extended cycle-of-ladder ECL(2, s).

Definition 3.6. [13] The extended cycle-of-ladder ECL(2l,s) is obtained
from CL(2l,s) by adding edges between (mg-,:rg-ﬂ),l < j<s-1, the num-
bers taken modulo 21.

Lemma 3.7. Let H be as shown in Figure 2(c). Then y,(H) > 2.
Let S be a power dominating set of H. We claim that |S| > 2. Suppose

not, let |S| = 1. Each vertex of degree 2 is adjacent to two vertices, each
of which is adjacent to two unmonitored vertices in H.

Theorem 3.8. Let G be an extended cycle-of-ladder ECL(2l,s), l,s > 4.
Then
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Figure 3: (a) CL(8,5) and (b) Circled vertices constitute a power dominat-
ing set of ECL(8,5).

2 if 1=0 (mod 3)

7,,«:)2{ 3 i 1=1(mody
[2]+1 if 1=2 (mod3)

Proof. We prove the result by induction on .

Case (i): | = 0(mod 3)

Suppose | = 3. Let S be a power dominating set of ECL(2(3), s). It is easy
to see from Lemma 3.7.

Assume the result is true for | = k, [ > 3. That is, v(ECL(2(k),s)) >
335. Now we prove that the result is true for I = k+1, that is v,(ECL(2(k+
1),s)) > 3-(k3l1)- Suppose |S| < A%l By Lemma 3.7, there are % ver-
tex disjoint copies of H in (ECL(2(k + 1),s)). Consider any arbitrary
H that contains exactly one vertex of S. Then for every vertex u €
M3(S), |N[u]\M7(S)| > 2 for some j, a contradiction. Thus |S| > g%'"—ll
Therefore, v,(ECL(2(k + 1), 8)) > 3(%1
Case (ii): | = 1(mod 3)

Suppose | = 4. Let S be a power dominating set of ECL(2(4),s). We claim
that |S| > 3. Suppose not, let |S| = 2. Then every vertex, u € N[S] is
adjacent to 2 vertices, a contradiction.

Assume the result is true for [ = k, | > 3. That is, v,(ECL(2(k),s)) >
[2k]. Now we prove that the result is true for | = k+1, that is y,(ECL(2(k+

1),s)) = [g(%l] Suppose |S| < [E(%l-l By Lemma 3.7, there are &
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vertex disjoint copies of H and one ladder say,  in (ECL(2(k + 1),s)). To
monitor vertices in [, we include either one vertex from [ or one vertex from
H. By the deletion of one vertex, say, :z:? the vertices adjacent to z;-, say
a:° _yorzd, do not monitor by any member of S. Then for at least one
vertex U e Mi(S), |N[u]\M?(S)| > 2 for some j, a contradiction. Thus
Sz | Jk—sﬂl] Therefore, o(ECL(2(k +1), 5)) > [%ksill]
Case (iii): when ! = 2(mod 3)
Suppose | = 5. Let S be a power dominating set of ECL(2(4), s). We claim
that |S| > 4. Suppose not, let |S| = 3. Then for every vertex, u € N[S] is
adjacent to 2 vertices, a contradiction.

Assume the result is true for [ = k, | > 3. That is, 7,(ECL(2(k),s)) >
[%] + 1. Now we prove that the result is true for | = k + 1, that is

Y (ECL(2(k + 1), 5)) 2 [M.l + 1. Suppose |S| < [M] +1. By

Lemma 3.7, there are § vertex disjoint copies of H and two more ladders,
say, L;, L in (ECL(2(k+1),s)). To monitor vertices in [, we mclude either
one vertex from L; or L; . By the deletion of one vertex, say, a: the ver-
tices adjacent to :cJ, say 3:]_1 or 9 3+1 do not monitor by any member of S.
Then for at least one vertex u € Mj(S), |N[u]\M?(S)| > 2 for some j, a

contradiction. Thus | S| > [ ggk_+g] +1. Therefore, 1,(ECL(2(k+1),5)) >
I-M] + 1. Hence the proof. O

The following algorithm proves that the lower bound obtained in The-
orem 3.8 is sharp.

Algorithm Power Domination in Extended Cycle-of-Ladder
ECL(2l,s)

Input: Extended cycle-of-ladder ECL(2l, s), I,s > 4.
Algorithm: Name the vertex in the bone cycle as {:1: :0<i<s-1,0<

j <2l — 1} and select the vertices {m :J=0(mod 3)} in S.
% if 1=0(mod 3)

Output: v,(ECL(2,s)) = [é] if =1 (mod 3)
[2]+1 if 1=2 (mod3)

Proof of Correctness: Let S be a power dominating set of ECL(2, s).
Now vertices in S monitor all the vertices in the bone cycle. Then every
vertex u € M°(S) is adjacent to exactly one vertex. Proceeding inductively,
for every vertex v € M*(S), |N[v]\M*(S)| <1, i > 1. Thus M*~(S) =
V(G). Hence the proof.

Theorem 3.9. Let G be the graph isomorphic to cycle-of-ladder as CL(2, s),
l,5> 4 or an extended cycle-of-ladder ECL(2l,s), l,s > 4. Then
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A if 1=0 (mod3)

M(G) = [gﬂ if =1 (mod3)
2141 if 1=2 (mod 3)

4 Conclusion

In this paper, we have obtained the power domination number, total power
domination number, zero forcing number and total forcing number for m-
rooted sibiling trees, I-sibiling trees and l-complete binary trees. Further,
the equality of the power domination parameters and forcing parameters
has been studied for these graphs.
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