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Abstract

A set S of vertices in a graph G is said to be a dominating set if
every vertex in V(G) \ S is adjacent to some vertex in S. A domi-
nating set S is called a total dominating set if each vertex of V(G)
is adjacent to some vertex in S. Molecules arranging themselves into
predictable patterns on silicon chips could lead to microprocessors
with much smaller circuit elements. Mathematically, assembling in
predictable patterns is equivalent to packing in graphs. In this pa-
per, we determine the total domination number for certain nanotori
using packing as a tool.

AMS Subject classification: 05C69
Key Words: Domination, Total domination, H-packing, Perfect packing,
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1 Introduction

A monitor in a network is a member of the network which is able to
detect a faulty member among its neighbors. The problem of identify the
faulty member can be modeled as a dominating sets in the network. A set
S of vertices in a graph G is called a dominating set of G if every vertex
in V(G) \ S is adjacent to some vertex in S. Determining if an arbitrary
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graph has a dominating set of a given size is a well-known NP-complete
problem [1]. A dominating set S of G is said to be a total dominating set
of G if every vertex in V(G) is adjacent to some vertex in S. The total
domination in graphs was introduced by Cockayne et al. [2] in 1980 and
has been extensively studied in the literature [3]. In 2009, Henning (4] gave
a survey of selected recent results on total domination number.

Packing in graphs is used as tool to compute total domination in graphs.
Mathematically, assembling in predictable patterns is equivalent to pack-
ing in graphs. Molecules arranging themselves into predictable patterns on
silicon chips could lead to microprocessors with much smaller circuit ele-
ments. An H-packing of a graph G is a set of vertex disjoint subgraphs of
G, each of which is isomorphic to a fixed graph H. From the optimization
point of view, maximum H-packing problem is to find the maximum num-
ber of vertex disjoint copies of H in G called the packing number denoted
by A(G, H). When there is no ambiguity A(G, H) is sometimes represented
as A. An H-packing in G is called perfect if it covers all vertices of G. If H
is the complete graph K2, the maximum H-packing problem becomes the
familiar maximum matching problem. H-packing, is of practical interest
in the areas of scheduling, wireless sensor tracking, code optimization and
many others [8]. When H is a connected graph with at least three ver-
tices, Kirkpatrick and Hell proved that the maximum H-packing problem
is N P-complete [5].

All graphs considered in this paper are simple and connected. We give
algorithms to find a perfect H-packing of certain nanotori, where H is the
h-graph on six vertices and thus determine their packing numbers as well
as the total domination numbers.

2 Main Results

We begin with certain known results.

Lemma 2.1. (6] Let S be a total dominating set with this property that
every vertez u € V(G) is dominated by ezactly one vertez of S, then S is a
minimum total dominating set.

Lemma 2.2. [7] If G is a k-regular graph with n vertices, then v,(G) =

HE

Theorem 2.3. [8] Let G be a graph and H be a subgraph of G. Then
V(G

NG.H) < |-

Definition 2.4. The h-graph is the tree on 6 vertices shown in Figure 1.
It is a spanning subgraph of mesh graph M3zy2, with 3 rows and 2 columns.



Theorem 2.5. (9] In a 3-regular graph G, if there erists a perfect H-
packing when H = h-graph, then vpr(G) = % (G) = 2), where \ is the
packing number of G.

Figure 1: h-graph
2.1 H-Naphtalenic [m,n] nanotori

A H-Naphtalenic [m,n] nanotori is a trivalent decoration made by
alternating squares Cy, pair of hexagons Cs and octagons Cg [10]. It is a
3-regular graph with m number of rows and n number of columns, each
column comprising of the pair of hexagons Cg viewed vetically and each
row comprising of the pair of hexagons Cg viewed horizontally. Each col-
umn of G & H-Naphtalenic [m, n] nanotori comprises of 5 levels of disjoint
set of vertices, viewed vertically and the 5n levels of vertices are labeled as
level 1, level 2, ..., level 5n from left to right. See Figure 2(a). In this
section, for convenience, we write H-Naphtalenic [m, n| nanotori simply as
Naphtalenic [m, n| nanotori.

The Algorithm A given below computes the Packing in Naphtalenic
[m, n] nanotori with H, where H = h-graph.

Input: Let G be a Naphtalenic [m, 3n] nanotori, m,n > 1.

Algorithm A: Select all the vertices from the level L3;_3, 1 < i < 5n
and call the set as S.

Output: S is a perfect H-packing of Naphtalenic [m, 3n] nanotori.

Proof of Correctness: The vertices in the level L3;_ are adjacent to the
vertices in the levels L3;—2 and L3;, 1 <7 < 5n. In each level L3;_1, there
are 2m vertices of G. Notice that, each L3;—1 contains exactly m vertex dis-
joint copies of edges (or P,) in it. Let e; = (uy,v1), e2 = (u2,v2),...,em =
(um,vm) be the m vertex disjoint copies of edges in L3;_;. We see that
Nluj,v;] & H, since each u; and v; is adjacent to a vertex in levels
L3i—2 and L3;, 1 < 7 < m. See Figure 2(a). Thus the vertices in each
level L3;_1, 1 < i < 5n, cover 4m vertices of G. Since [V(G)| = 30mn,

A2 [MMJ = |22 | By Theorem 2.3, A < |3%mn | Hence the

proof.
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Theorem 2.6. Let G be a Naphtalenic [m, 3n| nanotori. Then MG,H) =

10mn

6
Theorem 2.7. Let G be a Naphtalenic [m,3n] nanotori. Then 1(G) =

10mn
oo,
Proof. By Theorem 2.5, it is casy to see that ,(G) = 2\ = Iog‘"_ 0O
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Figure 2: (a) Naphtalenic [3,3] nanotori and (b) C1CsCs|3, 4] nanotori
2.2 C;C¢Cs[m,n] nanotori

A C4C¢Cs[m, n] nanotori is a trivalent decoration made by alternat-
ing squares C4, hexagons Cs and octagons Cg [11, 12]. It is a 3-regular graph
with m number of rows and n number of columns, each column comprising
of hexagons Cj viewed vertically and each row comprising of hexagons Cg
viewed horizontally. Each column of G & C4C¢Cs[m, n] nanotori comprises
of 3 levels of disjoint set of vertices, viewed vertically and the 3n levels of
vertices are labeled as level 1, level 2, ..., level 3n from left to right. See
Figure 2(b).

The Algorithm B given below computes the packing in C4CsCs[m,n]
nanotori with H, where H 2 h-graph.

Input: Let G be a C4CsCs[m, n| nanotori, m,n > 1.

Algorithm B: Sclect all the vertices from the level L3;_1, 1 < ¢ < n and
call the set as S.



Output: S is a perfect H-packing of C4CsCs[m,n] nanotori.

Proof of Correctness: The vertices in the level Ls;_1, dominate vertices
in the levels L3;_ and Ls;, 1 < i < n. In each level L3;_y, 1 < i < n,
there are 2m vertices of G (see Figure 2(b)). Now the vertices in each
level L3i—1, 1 < 1 < n, cover 4m vertices of G. Since |V(G)| = 6mn,

A2 IMJ = |mn]. By Theorem 2.3, A < mn. Hence the proof.

Theorem 2.8. Let G be a C4CsCs[m,n] nanotori. Then A(G,H) = mn.
Theorem 2.9. Let G be a C4CsCs[m, n] nanotori. Then v,(G) = 2mn.

Proof. By Theorem 2.5, it is easy to see that 4;(G) = 2A = 2mn. ad

2.3 C4Cs(S)[m,n] nanotori

A C4Cs(S)[m,n] nanotori is a trivalent decoration made by alternating
squares C4 and octagons Cg [13]. It is a 3-regular graph with m number
of rows and n number of columns, each column comprising of octagons Cg
viewed vertically and each row comprising of octagons Cg viewed horizon-
tally. Each column of G = C4C3(S)[m, n] nanotori comprises of 4 levels of
disjoint set of vertices, viewed vertically and the 4n levels of vertices are
labeled as level 1, level 2, ..., level 4n from left to right. See Figure 3(a).

Coloman 1 Coluran 2 Column 3 Colomn 4

Row 1 -

Row 2|

Row 3

Figure 3: (a)C4Cs(S)3,3] nanotori and (b) Cs|3,4] nanotori
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The Algorithm C given below computes the packing in C4Cg(S)[m, 3n]
nanotori with H, where H 2 h-graph.

Input: Let G be a C4Cg(S)[m, 3n] nanotori, m,n > 1.

Algorithm C: Select all the vertices from the level Lg;—1, 1 £ 7 < -‘%"-
and call the set as S.

Output: S is a perfect H-packing of C4Cg(S)[m, 3n] nanotori.

Proof of Correctness: The vertices in the level L3;—1, dominate vertices
in the levels L3;—2 and Lg;, The vertices in the level L3;—1, dominate vertices
in the levels L3;—2 and L3;, 1 <7 < ,433. In each level L3;_1, The vertices in
the level Ls;—1, dominate vertices in the levels Lg;—5 and L3;, 1 <7 < 42,
there are 2m vertices of G (see Figure 3(a)). Now the vertices in each
level L3;_1, The vertices in the level L3;_1, dominate vertices in the levels
Lsio and L3;, 1 <1 < %", cover 4m vertices of G. Since [V(G)| = 8mn,

A > l@i“i‘j)_(“_’ﬁlj = 8722 | By Theorem 2.3, A < |822|. Hence the
proof.

Theorem 2.10. Let G be a C4Cs(S)[m, 3n] nanotori. Then A\(G,H) =

8mn

e
Theorem 2.11. Let G be a C4Cs(S)[m,3n] nanotori. Then v(G) = 8—':'3‘2.

Proof. By Theorem 2.5, it is easy to see that 7,(G) = 2\ = &2, |

2.4 Cg[m,n| nanotori

A Cg[m,n] nanotori is a trivalent decoration made by hexagons Cs
[11, 14]. It is a 3-regular graph with m number of rows and n number of
columns, each row comprising of hexagons Cg viewed horizontally and each
column comprising of hexagons Cg in each row viewed vertically. Cg[m,n]
nanotori contains 6n + 3 levels of vertices which are labeled as level 1, level
2, ..., level 6n 4 3 from left to right, viewed vertically. See Figure 3(b).

The Algorithm D given below computes the packing in Cs[m, 3n + 1]
nanotori with H, where H = h-graph.

Input: Let G be a Cs[m, 3n + 1] nanotori, m,n > 1.
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Algorithm D: Select all the vertices from the level L3i_y, 1 < i < dni2
and call the set as S.

Output: S is a perfect H-packing of Cs[m, 3n + 1] nanotori.

Proof of Correctness: The vertices in the level L3;_1, dominate vertices
in the levels L3;_ and Lg;, 1 < i < 4242 In each level Lg;_y, 1 < i < 4n42
there are 2m vertices of G (see Figure 3(b)). Now the vertices in each level
L3;1,1.<4< 4—"}2-, cover 4m vertices of G. Since [V(G)| = m(4n +2),
Ay [(2’"“"%(4"”)/6J = |.-—§—lm 42“’ J By Theorem 2.3, A < l_(__l"‘ 42” J

Hence the proof.

Theorem 2.12. Let G be a Cg[m,3n + 1] nanotori. Then A(G,H) =
m!4n+22'

6

Theorem 2.13. Let G be a Cg[m, 3n+1] nanotori. Theny,(G) = ﬂ%‘ﬁl.

Proof. By Theorem 2.5, it is easy to see that v,(G) = 2 = ﬂ(“;—’L?l a

Remark 2.14. The results obtained for H-Naphtalenic [m, n| nanotors,
C4CsCs[m,n] nanotori, C4Cs(S)[m,3n] nanotori and Cg[m,3n + 1] nan-
otori also hold good for H-Naphtalenic [m, n] nanotubes, C4CsCs[m,n]
nanotubes, C4Cs(S)[m, 3n] nanotubes and Cs[m,3n + 1| nanotubes, respec-
tively.

3 Conclusion

In this paper, we adopt the concept of perfect H-packing as a tool to
determine the total domination number for certain nanotori. Also we have
devised algorithms to find perfect H-packings of nanotori where H is the
h-graph on six vertices, leading to the packing numbers of the nanotori.
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