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Abstract

Molecular graphs are models of molecules in which atoms are
represented by vertices and chemical bonds by edges of a graph.
Graph invariant numbers reflecting certain structural features of a
molecule that are derived from its molecular graph are known as
topological indices. A topological index is a numerical descriptor of a
molecule, based on a certain topological feature of the corresponding
molecular graph. One of the most widely known topological
descriptor is the Wiener index. The Weiner index W(G) of a graph
G is defined as the half of the sum of the distances between every pair
of vertices of G. The construction and investigation of topological
is one of the important directions in mathematical chemistry. The
common neighborhood graph of G is denoted by con(G) has the same
vertex set as G, and two vertices of con(G) are adjacent if they have
a common neighbor in G. In this paper we investigate the Wiener
index of Y-tree, X-tree, con(Y-tree) and con(X-tree).
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1 Introduction

A topological representation of a molecule is called molecular graph. A
molecular graph is a collection of points representing the atoms in the
molecule and set of lines representing the covalent bonds. These points are
named vertices and the lines are named edges in graph theory language.
In mathematical terms a graph is represented as G = (V, E), where V
is the set of vertices and F is the set of edges. Let G be an undirected
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connected graph without loops or multiple edges with n vertices, denoted
by vi,v1,...,vn. The topological distance between a pair of vertices v,
and v;, which is denoted by d(v;, v;), is the number of edges of a shortest
path joining v; and v;. In 1947 Harold Wiener (1] defined the Wiener index
W(G) as the sum of distances between all vertices of the graph G as

W(G) =) d(vi,v;).

i<j

The Wiener index of complete graph K,,, path graph P,, star K; ,_; and
cycle graph Cy, is given by the expressions

W(Kin-1) = (n—1)%

ngnz—lz -
W(C’n)={ 5 n=1mod2

na

R n =0 mod 2

The detail literature of topological indices are studied from (2, 3]. .

Among all the trees on n vertices, the star K; ,—1 has the smallest
Wiener index and the path P, has the largest Wiener index and hence for
any tree T' on n vertices [1]

W(Kin-1) SW(T) S W(Py).

Let G be a simple graph. The common neighborhood graph of G is
denoted by con(G) has the same vertex set as G, and two vertices of con(G)
are adjacent if they have a common neighbor in G. In [4, 5], the motivation
for the consideration of congraphs came from the theory of graph energy.
They have introduced the concept of common neighborhood energy ECN
of a graph G and obtained an upper bound for ECN, when G is regular
[6, 7].

If the Wiener index is defined, and if the graph G consists of
disconnected components Gy and Gg, then W(G) = W(G;) + W(G-)
8, 9, 10, 11, 12]. When speaking of the Wiener indices of congraphs,
this is important, because of the following result.

~ Theorem 1.1. [6, 7] Let G be a connected bipartite graph, so that its
vertex set is partitioned as V(G) = Vo UV,. Then con(G) consists of
two disconnected components G, and Gy, whose vertex sets are V, and V,
respectively. Both graphs G, and Gy are connected.
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Now we have:
W(con(G)) = W(Ga) + W(Gs).

In this paper we investigate the Wiener index of Y-tree, X-tree, con(Y-
tree) and con(X-tree).

2 Common Neighborhood Graphs of Y and
X-tree

Generalized Y-tree and generalized X-tree are simply the trees obtained
by subdividing the edges of K; 3 and K; 4 any number of times. In other
words for calculation purpose we redefine Y-tree and X-tree as follows:

Definition 2.1 (Y-tree). A generalized Y-tree is a tree in which there
is exzactly one vertex of degree three and three pendent vertices s called
generalized Y -tree. It is a one point union of three paths Py, P, Pn,
denoted as (Pp,; Pp,; Pry : K1) which has ny +nz + n3 + 1 vertices.

Definition 2.2 (X-tree). A generalized X-tree is a tree, in which there
is ezactly one vertex with degree four and four pendent vertices. Also
a generalized X-tree can be redefined as one point union of four paths
Poys Pryy Prgy Pr, denoted as (Pp,; Pry; Pog; Pn, @ K1) which has ny +n2+
ng + ng + 1 vertices.

Definition 2.3. (C3 ® P, ; P,,,; Py,) is a graph obtained by attaching one
of the pendent vertices of the paths Pn,, Pn,, Py, to the 3 vertices of cycle
Cs. The graph (Cs3 © Py,; Pp,; Pn,) contains ny + ng + ng vertices and
ezactly one cycle Cs.

Definition 2.4. (K4® P, ; Pp,; Pny; Pr,) is a graph obtained by attaching
one of the pendent vertices of the paths Pp,, Pp,, Pny, Pn, to the 4 vertices
of complete graphKy. The graph (K4 © Py ; Pny; Png; Po,) contains nq +
ne + na + ng vertices. The following two results are obvious.

The following two results are obvious.
Theorem 2.1. If G = (Py,; Po,; Pn, : K1) s a Y-tree then con(G) =
Gy U Gy where Gyis a Y-tree Gy = (Pm,; Pmy; Py * K1) and Go = (C3 0
P, ; P,; Pr,) where

2*'5_—1 if n; s odd |
mi =1 .. . , 1=1,2,3
5 if n; is even
E-'L:;LI ifn; 18 odd .
Ti=19n . : 1=1,2,3
L if n; 18 even
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Let G = (Pp,; Pny; Pny ¢ Ky) is a Y-tree in Figure 1. Then common
neighborhood graph of G is disconnected graphs Gy = (Pp,; Py Pms : K1)
and G2 = (C3 ® P,,; P,,; Pr,) in Figures 1(a) and 1(b).

Uny+n,g

vnl +1
Uni+nz+2
—0—0—0

Uny+nz+1 VUni+nz4ng

Y1

Figure 1: Y-tree G = (Pn,; Pn,; Py : K1)

Un,+ny—-1

v3
(Z]
Uny+nz+ns+1

Figure 1(a): Y-tree G1 = (Pm,; Pm,; Pm, 1 K1)

16



Uny+n,

Un;+nz+1 Uni+nz+ns

v2

Figure 1(b): G = (C3® Py,; Pr,; Prs)

Example of Chemical Molecule of Y-tree

2-methylpentane
CH3

H3C/\)\CH3

Molecular Formula: CsHi4
H H H H H

N
H—C—C—C—C—C—H

T
CH, H H H H
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Theorem 2.2. If G = (Pn,; Pn,; Prsi Pn, K1) is a X-tree then
con(G) = G U G4 where G3 is a X-tree G3 = (Pmy; Pma; Pmsi Pmy © Ki)

and G4 = (K4 © P,,; Py,; Pry; Pr,) where,

ni=1  sfan.
ml:{—‘z—— anzz-?Odd i=1,2,3’4

= if n; 1is even
ﬂii'ﬂ ifn; 18 odd

ri = . - . 1= 1, 2, 3, 4
o if n; 18 even

Let G = (Pn;PrnyiPrgiPny, @ K1) be a X-tree in Figure 2.
Then common neighborhood graph of G is disconnected graphs G3 =
(Pml;sz;Pms;Pm4 : Kl) and G4 = (K4 @Prl;Prz;Prs;Pm) in Figures
2(a) and 2(b).

Uny+nz+nztng

Uny+na+ng+ne—1

Vny+nz4nz+1

Uny+nz+n;

VUny4n,

Figure 2: X-tree G = (Py,; Pn,; Png; Pay : K1)
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Un, +n2+nstng—1

Un,4na+ng+2

Uny +n2+2

Un;+na+ns—-1

Uny4na—1

Figure 2(a): X-tree G3 = (Pm,; Py Pmg; P, : K1)
® v
® v

4 Un; -2

’Un,1+n2—2

Un)4nz4ns+2  Vnj4no4ngtng—2
= 2 -8 L

Uy 4702 Un,+3 Unytnp+ns+4  Unitnptnstng

Unj +na+1

Un, +ny+ns

¢

VUn; +n2+ng-2

®

Un, 4na+ng

Figure 2(b): Graph G4 = (K4 ® Pr,; Pry; Pry; Pry)
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wuAdmple of Chemical Molecule of X-tree
2,2-Dimethyl-1-Propanol
CHs

HsC
OH

HsC
Molecular Formula: C5H;,0

CH,
H,C ¢ C—OH

H
CH, °

3 Main Results

In this section we calculate the Wiener index of (C3 ® Py, ; Pr,; Prg), (K40
Pp.; Py Png; Png), Y-tree, X-tree, con(Y-tree) and con(X-tree).

Theorem 3.1. The Wiener index of Y -tree G = (Pn,; Pn,; Pry : Ki) is

1
W(G) = é—[ni’ + ng + ng + 2(n1 + ng + n3)]

1
T 5{[((111 +n2)? 4 n3 + nf(nz + ng) +nj(n1 + n3)

+ n3(n1 + n2) + 2(n1n3 + nana)]}
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Proof. Let G = (Pn,; Pn,; Pn, : Ki)

W(G) =S+ Sy + S3 + S3 where

So is the sum of the distances from the central vertex v to all other vertices
of the Y-tree,

S is the sum of the distances of all the vertices from the path P,, to itself
and the vertices of P,, and P,,,

S5 is the sum of the distances from the path Py, to itself and the vertices
of P,,,

Ss is sthe sum of the distances from the path Py, to itself.

3
So=%" ni(nzz +1)
i=1

sl="—‘(—"167_—1)+[(n1+1+(n1+1+1)+(n1+1+2)+---+(n1+1)
n2—1]+[n1+(n1+1+(n1+2)+~-+n1+(n2—1)]
Hm -+ —-1)+14+(n - 1)+ 2+ + (ng = 1) + (ng — 1)]
+ln =D+ -1 +1+(n —1)+2+--+(n1 = 1)+ (ng - 1)]
+24+2+1)+(2+2) 4+ 4 (24 (ng - 1))]
+m+)+m+1+1)+(m +142)+-- -+ (n1 +1) + (n3 — 1)]
+ri+ P41+ (M1 +2) 4+ +ng + (ng — 1)
+o 2+ + R+ 4+ (24 (n—3-1))]
n n2—
=l(lTl)+n2[(n1+1)+n1+(n1—1)+(n1—2)+-+2]
+nl 424+ (ng - 1)]
t+ng[(ng +1) +ny + (n - 1)+ - + 2]
+nl+24--+ (ng—1)]
5 = m(nz— 1) . {(nl + 1)2(774 +2) B 1]
no(ng — )ny (n1 + 1)(n + 2)
pl e [l Yoty
ng(n3—1)n1
2
Sy = Z’-l(—"i_—l) + "—2-1—[(n2 + n3)(n1 + 3) + na(n2 — 1) + n3(nz — 1)]
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2
L B RS ET
6 2
g n3(ng — 1)ng
2
Sy = u + 3ng + nz(n3 — 1)]
6 2
21
54 = ns(n:é )

Hence W(G) = So + S1 + Sz + 53

W(G) = ZW(Pn¢)+ an(nt+1)

z—-l

xS .?[ ng + n3)(n1 + 3) + ‘nz(nz -1+ n3(n3 ] 1)]
e %é[ng(ng + 3) 4+ na(ng — 1)]

where W(P,,) = w 1=1,2,3.

n?——nl n%—nz n%—m

=g B G D
nl(n; +1) " nz(n;-l- 1) 4 ns(n; +1)

+ %[nlng + 3ng +ning + 3n3 + nf —no + ng — ng]

n,
+ —23[113 + 3ng + nang — 2
2 n3 +nd + nj
6

1
+—2—[nf+n§-_{-n§+n1+n2+n3]

n
+ é[nlng + ning + 2no + 2n3 + ng + ng]

1
= g(nl + ng + n3)

n
+ 5 [0 + 202 + nyng]

n3 +n3 + nj
6

1
- E(nl “+ no + n3)
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1 e i B e 2
+§[n1 + n2 +n3 + ny +nj + ng + nj(n2 + n3) + nj(ng + n3)

+ n§(n1 + ng) + 2ning + 2nyng + 2nang]

n}+n3+ny ny—nz—n3g  3n;+3ny+3ng

1
+ E{n% +n% + n§ + nf(nz + ng) + ng(nl + n3)

-+ ng(nl + 'n'z) + 2nyng + 2nyn3 + 2n2n3}

1
= g[ni’ +n3 +n3 + 2(ng + n2 + n3))]

1 2 2 2 2
+ 5{(n1 + n2)” + n3 + ni(n2 + n3) + n2(n1 + n3)

+n3(n1 + ng) 4 2(ning + nang)}

Theorem 3.2. The Wiener index of G = C3 ® (Py,; Pn,; Pry) s
d
W(G) = g[n? + 13 + n§ — (n1 + nz + n3)]
1
+ E{nf(nz + ng) + n3(n1 + ng) + ni(ny + n2)}
Proof. Let G = C3 ® (Ppy; Pny; Pns)

W(G) = S1 + S2 + S3 where
S, is the sum of all the vertices from the path Py, to itself and the vertices

of By and By,
S, is the sum of the distances from the path Py, to itself and the vertices

of P,
S5 is the sum of the distances from the path Py to itself.

1
S1=W(P,,)+ §[n1n2('n1 +1) + nyng(ng — 1)]

1
o §[n1n3(n1 + 1)+ nin3 (n3 — 1)]

1
Sy = W(Pn,) + E[nzna(nz + 1) + nong(n3 — 1))

S3 = W(Pn,)



Hence W(G) = S; + Sy + Ss

3
W(G) =Y W(P.,)+ %{nlnz(m + 1) 4+ nana(nz + 1))

i=1
+nyng(ng + 1) + ninz(n2 — 1) + nying(ng — 1)
+ n2n3(n3 - 1)}

3 3 3
ny—ni Ny — N2 Ny — N3
W(G) =~ EEe

1 2 2
+ E{nfng + ning + nyng + nang + ning + ning + nlng —nyny

2
+ nin3 — nyng 4+ ngn2 — nang}

1
=§[n?+n§+n§—(n1+n2+n3)]

1 2
-+ E{nfng + njng + ning + nyn? + nin? + nans }

1
- g[n?+"%+n§-(n1+n2+n3)]
1
+ E{nf(nz +n3) + n3(ng + n3) +n3(ng + n2)}

O

Theorem 3.3. The Wiener index of the X -tree, G = (i P P s ke
Kl) 18

1
W(G) = E[n% + ng + ng - nﬁ +2ny + 2n9 + 2n3 + 2ny4) .

1 2
+ -2-{n:1‘ +nj + n§ + 1l + ning + n2ng + ning + niny — nyny

—nn3 —nyng + (2ny + 2no + 3)n§ L (ng + nz + 3)ng
+ 3n2ng + nyg + ningng + ngngng}

Proof. Let G = P s Prgs B s Py 2 K1)
W(G) = Sy + 51 + S5 + S3 + 54 where

So is sum of the distance from the central vertex vg to all other vertices of
the X-tree,



Sy is the sum of all the vertices from the path P, to itself and the vertices

ol P, Tny'and Fu.;
Sy is the sum of the distances from the path P,, to itself and the vertices

of P, and R,,,
S5 is the sum of the distances from the path P,, to itself and the vertices

of P,,,
Sy is the sum of the distances from the path P,, to itself.

4

n;(n; +1
S=% (2 )

i=1

n?—1
sl=&;——)H(nl+1)+(n1+1+1)+(n1+1+2)

4ot (14 1)+ (n2—1)]

++ i+ 1)+ (1 +2) + -+ 711+ (n2 — 1))

+[(n =)+ —1)+1+(ng—1)+2+ -+ (n1 — 1)+ (n2 —1)
+o+R+2C+1)+Q2+2)+ -+ (24 (n2—1))]

F(ri+ 1)+ i +1+1)+ (i +14+2)+-+ (n1+1) + (3 — 1)]
+ [+ (1 +1) + (1 +2) +--- + (1 + (n3 — 1))]

4 +R2+2+1)+Q2+2)+ -+ (2+ (n3 —1))]

ot + D)+ (g +14+D)+(m+142)+ -+ (n1 +1) + (ra — 1))
+ [+ (n1 + 1) + (n1 + 2) + (n1 + (na — 1))]
24+ @2+1D)F(2+2)+ -+ (24 (na — 1))

21
Sl=n—1(?—é—)+nz[(n1+1)+n1+(m—1)+(m—2)+-+2]

+m[l 424+ (ng —1)]
+ng((ng +1)+ 0y +(ng — 1) +---+2]
+n[l4+2+---+ (n3 —1)]
+ngl(ny + 1)+ 71+ (ng — 1)+ +2]
+n[l+24 -+ (ng — 1)]
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_mei-n [(nl +1)(m +2) 1]

Sl — 6 2
n2(n2 — 1)n1 e {(nl + 1)(m + 2) I 1}
2 2
i na(nz — 1)ny a [(nl +1)(n1 +2) 1}
2 2
n4(n4 S 1)n1
24

-

2_1 n
Sl=——-—nl(n16 )—I-‘Qi

[(n2 + n3)(ny + 3) + n2(n2 — 1) + n3(n3 — 1) + na(ns — 1)

PTG (CFLTCES B
- n3(n32— I)ng — [(nz + 1)2(n2 + 2) a) 1}

ng(ng — 1)n2
2

So = %{nz(ns + 1) + na(ng — 1) + na(ng — 1)]

-l 6 2

n4(ng — 1)ng
2

n1(n? — 1) b4 [(n3+ 1)(n3 +2) 1]

Sy = %‘-[ns(ns + 8) + n3(nq — 1)]

n4(n:‘,’ =1
6

Hence W(G) = So + 51+ S2 + S3 + Sy

Sy =
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4 4
WG =S WP+ _""(";+ 1)
i=1 i=1

1
+ 5{ns(nz + n3)(ny + 3) + nyna(ng — 1)

+nina(ng + 1) + nyng(ng — 1)
+ nana(ng + 3) + ngna(ng + 1)
+ ngnaz(ng — 1) + nqna(n3 + 3)
+ ngna(ng — 1)}

-3 (wee+ 2 ED)

+ 2 {(ns — D{(nans + )

+ (ng — 1)[nang + ning + nyng]
+ (n1 + 3)na(n2 + n3) + (ng + n3)nanag
+ (n3 + 3)ngng + nyna(ng — 1)}

W(G) = :il (W(Pn,.) + 1("2*“))

1
+ 5{711712("1 — 1) + (nz — 1)(n1 + n2)ns
+ (ng — 1)[nang + na(ny + n3)]
+ (n1 + 3)n3(ng + n3) + (n2 + 3)n2ns
+ (n3 + 3)ngna}

ni’—nl ng—nz ng—n3 ng—m;

L o e T 6
nl(né—f- 1) 5 nz(n;-{- 1) i ’n3(nz+ 1) i n4(n; +1)

1
2 g .
+ -2-{nfn2 —ning + nyng — N3 + 2nong — N2n3 + N2N3Ng nong
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2 2
+nngy —ning + n:;nﬁ — ngng + ninen3 + ning + Inang + 3n§

- n%n3 + 3ngong + n§n4 + 3ngng}

1
= E[n‘{4-n£j,+n§+n§+2(n1+'nz+n3+n4)]

1
+ 5 {nd + nd + o +nf + ning + nins + ngny + niny
— ny(ng +n3 +ng) + (2n1 + 2n2 + 3)nf + (nd + nk + 3)ng

+ 3ngng + ng + ninang + nengna}

0

Theorem 3.4. The Wiener indez of a graph G = K4 (Pn,; PnZ;Pns;Pn,‘)
18

|
W(G) = E[ni’ + 13 + n3 + ni — (n1 + n2 + ng + n4)]

+ %{nf("z +ng +nq) + n3(n1 +ng + ng) + n3(n1 + n2 + ny)
+ n3(ny +n2 + n3)}

Proof. Let G = K4 ® (Pn,; Pny; Png; Pry)
W(G) = S + 55 + S3 + S4 where
S, is the sum of all the vertices from the path P,, to itself and the vertices

of Py Pug a0d Prys ‘
S, is the sum of the distances from the path P,, to itself and the vertices

of P,, and Py,
S5 is the sum of the distances from the path P,, to itself and Pn,,
S, is the sum of the distances from the path P, to itself.

1
Sy =W(Pyp)+ E[nlnz(nl + 1) + nyng(n2 — 1)]

+nyng(ng + 1) + nyng(ng — 1)
+ nina(ng + 1) + ning(ng — 1)}

1
Sz = W(Pn;) + 5{n2ns(n2 + 1) + nans(ns — 1)
-+ n2n4(n2 + ].) -+ n2n4(n4 — 1)}

1
S3 =W (Pns) + §{n3n4(n3 + 1) + ngnq(ng — 1)]

Sq4 = W(Py,)



Hence

4
W(G) =) _S;
i=1

4
1
- Z W(Pyn,) + 5{nlnz(m + ng)
i=1

+ non3(n2 + n3z) + nina(ny + n3)
+ ning(ny + ng) + ngng(nz + ny)
+ ngng(nz + ny)}

4 4
W(G) = Y W(Pa) + 5 [] minslni+ny)
i=1

i,j=1
iF#j

- ns —n ns —ng n3—nyg
W(G)="16"1+ - 2+ = o

+ %{nmz(m + ng) + ngns(ng + n3) + nina(ng + n3)

+ nina(ny + ng) + n2na(n2 + n4) + ngna(nz +na)}

= %[n?+n§+n§+n3 — (n1 + ng + ng + n4))
- %{nfnz + nynZ + ning + ngn? + ning + ninj + ning +ninj
+ n2ny + nan? + n3ng + nanj}

= %[n§'+n§+n§+n3 — (n1 4 n2 + ng + ny)]
+ %{nf(nz +ng + ng) + n2(ny + n3 4 n4) + nj(ng + n2 + na)
+nj(ny +ng +n3)}

From Theorems 3.1-3.4 we have the following results.

Theorem 3.5. Let G = (Pn,; Pny; Pny ¢ K1). Then

W (con(G)) = W (P, ; Pms; Pms : K1) + W(C3 © (Pry; Pry; 7))

2



Where,

-'ll,z"—'- if ng 18 odd |
mi=< ., , . i=1,238
) if ny 18 even
a i=1,2,3

Bl zf ny 18 odd
1‘ - . ’
: i if ny 18 even

Proof. By Theorem 1.1 and 2.1, W(con(G)) = W(G\) - W(G3).
Where Gy = (Pnn; ng;ng ' 1{1) and G, =C3 ® (Pm;Prg;Prg)
1. 3 3 3
W (con(G)) = E[ml + mi 4+ mjy + 2(my + ma + m3)]
+ %{Om +m2)? + m} + m} (mg + ma) + mj(my + my)
+ m3(my +m2) + 2(myma + mama)}
1
+ 'g[’”‘? + 73473 = (1 472 +73)]
1
+ E{Tf(m +73) +r5(ry +73) + 73 (r1 +72)}

%[m"{+m%+m§+r?+r%+r§+2(m, +ma + m3)
| Y '
~ (r1 + 72 +73)] + {(m1 + m2)® +m§ +mi(mz +mg)

+ mi(my + m3) +m3(my 4+ m2) + 2(mym3 + mam;)
+ Tf(Tz -+ 7'3) -+ T%('I’l -+ 7‘3) -+ 'rg('rl -+ 7'2)}

Theorem 3.6. Let G = (Pny; Pnyj Pny; Pny : K1). Then
W (con(G)) = W(Pm,; Pmai Pmy; Py : K1) + W(K4 © (Pry; Pry; Pry; Pr,))

Where,

2 &)
; . 1=1,23,4
5 if n; s even et

ni—1 2f n; 18 odd
m; =

$1=1,2,3,4

ntl  ifn; is odd
ri = = , .
S if n; 18 even
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Proof. By Theorem 1.1 and 2.2, W (con(G)) = W(G)) + W(G2).
Where Gy = (Pm,; Pmji Pmg; P, ¢ K1) and
Gz = (K4 © (Prl;Prz;Pfs;Pn))

1
W (con(G)) = g[m? +m3 +mg + mj +2(my +mg +ms + ma)]
1
+ 5 {mi +mf +m3 4 mf +mimg +mimg +mima + mim,y

— my(mg + ma +my) + (2my + 2mg + 3)m? + (M3 + m?2 + 3)ms
+ 3momg + my4 + mymomsa + m2m3m4}

1
+g[r‘;’+7‘g+7‘§+7‘2—(rl+rz+r3+r4)]

1
+ 5{7‘%(7'2 + 734 74) +r2(ry + T3 +14) +r2(r1 + T2+ 74)
+r2(ry 4712 +73)}

4 4 4
= % [Z(mf +79) + 2zmi o= Zri
i=1 i=1 i=1

4

1

+ 5{ me +r¥(rg 13 +1a) +75(r1 + 73 +14)
i=1

r2(ry +ro+ra) +ri(ri o+ 78) + mimg + mjmg + m3my

+ mimy — my(ma + m3 +ma) + (2m1 +2m2 + 3)m3

¥+ (mg ‘5 mz x5 3)m3 + 3mgmg + m4 + mymoms + m2m3m4}.

a

4 Conclusion

Finding Wiener index for congraph is a challenging work. We have done for
Y-tree and X-tree. In future we would like to work on complicated graph

structures.
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