A Polynomial-time Algorithm for Cluster
Deletion on (Diamond, Butterfly)-free Graphs

Sabrine Malek ! Wady Naanaa 2
Faculty of Economics and Management of Sfax - Tunis !
National Engineering School of Tunis - Tunis *
LIMTIC laboratory - ISI Ariana, Tunis

sabrine.malek@gmail.com * wady.naanaa@fsm.rnu.tn 2

Abstract

The cluster deletion (CD) problem consists in transforming an
input graph into a disjoint union of cliques by removing as few edges
as possible. For general graphs, this is a combinatorial optimisa-
tion problem that belongs to the NP-hard computational complexity
class.

In the present paper, we identify a new polynomially solvable
CD subproblem. Specifically, we propose a two-phase polynomial
algorithm that solves CD on (butterfly,diamond)-free graphs.

Keywords Cluster Deletion (CD); maximal clique; (butterfly,diamond)-
free graphs

1 Introduction

Clustering is a central task that can be helpful for data analysis and graph
mining [10]. From a graph-theoretic point of view, a cluster graph is a
vertex-disjoint union of cliques (5] or, alternatively, a graph which does not
contain any induced P3 subgraph, where P; denotes a path composed of
three vertices and two edges. Clustering problems consist in making the
fewest changes to the vertex and/or to the edge set of an input graph so as
to obtain a cluster graph. There exist several clustering variants, includ-
ing Cluster Completion (CC), Cluster Deletion (CD) and Cluster Editing
(CE) [5, 15). In the cluster completion variant, edges can only be added

JCMCC 113 (2020), pp.141-153

>

Figure 2: Diamond and Butterfly graphs.

An optimal solution for CD is, therefore,sobtained by removing, from
the initial graph, as few edges as possible in order to obtain a Ps-free graph
(or cluster graph). CD belongs, therefore, to the class of edge modification
problems, where one has to minimally change the edge set of a graph so as
to satisfy a certain property [7].

3 (butterfly,diamond)-free CD is polynomi-
ally solvable

In this section, we identify a new class of graphs on which CD can be
solved in polynomial time. This is the class of (butterfly,diamond)-free
graphs, which contains all graphs that do not admit the two graphs shown
in Figure 2 as induced subgaphs. We propose an algorithm that efficiently
solves CD for (butterfly,diamond)-free graphs based on the tractability of
the maximal cliques enumeration problem on the super-class of diamond-
free graphs. Indeed, a crucial property of the diamond-free class is that the
maximal cliques of the graphs in this class can be enumerated is polynomial
time (8, 9]. In what follows, we use this result to show that CD is tractable
on graphs belonging to the (butterfly,diamond)-free class.

As it has been shown in [12], a graph is diamond-free if and only if it has
the one-edge-overlap property, which ensures that every edge of the graph
is contained in, at most, one maximal clique. Starting from this property,
we show the following lemma:

Lemma 1. Let G be a (butterfly,diamond)-free graph, then any vertez of G
appears in, at most, one mazimal clique of G whose size is three or more.

Proof. Let C and C’ be two maximal cliques in G having a cardinality of
three or more. Suppose that there exists a vertex, or more, which appear
in both C and €', and proceed to get a contradiction. We distinguish the
following two cases:

e |CNC’'| = 1: this means that the maximal cliques C' and C’ share
exactly one vertex, say v. Since C and C’ have a size of three or more,

144

each should contain at least, two other vertices. Assume, therefore,
that {¢t,u,v} € C and {v,w,z} C C’. Since C and C’ are maxi-
mal cliques, there must exist y € C such that z-y ¢ E. It follows
that ({¢,v,v,w,z}, E({t,y,v,w,z})) has an induced butterfly or an
induced diamond, which contradicts the hypothesis.

e |CNC’| > 2: this means that C and C’ share, at least, two common
vertices, say v and w. Moreover, we have v-w € E, which means that
C and C' share a common edge. This contradicts the one-edge-overlap
property for diamond-free graphs (see Proposition 1 of [12]).

O

Solving CD on a (butterfly,diamond)-free graph can be split into two
phases. The first phase consists in calculating all maximal cliques of G
having size three or more. By Lemma 3, the number of such maximal
cliques in a (butterfly,diamond)-free graph with vertex set V' cannot exceed
|V'|. Furthermore, we show that every CD instance admits a solution that
comprises all maximal cliques having size three or more.

Lemma 2. Let G be a (butterfly,diamond)-free graph. Then there exists a
CD solution for G that contains all cliques of size three or more.

Proof. Let G* = (V, E*) be a CD solution for G. Suppose that G* does
not contain all maximal cliques of G that have size three or more. To prove
the lemma, we show how to derive a CD solution for G that contains one
more maximal clique, having size three or more, than G*.

Let C be a maximal clique of G, with |C| > 3. Assume that C is not
a clique of G*. This implies that E(C) ¢ E*, where E(C') denotes all the
edges whose both endpoints are in C. If E(C) is not entirely included in
E*, then C may be uniquely bi-partitioned into two subsets C;, and C,y;
such that C;, is the smallest subset of C that verifies the following

E(Ci,)=E(C)NE* and E(C,u)NE* =0 (3.1)

This choice of C;,, and C,.; implies the following two facts: (¢) If Cj, is
not empty then it should contain, at least, two vertices. (i2) Coyue is not
empty, because otherwise, F(C) would be entirely included in E*, which
contradicts the assumption that C is not a clique of G*.

This choice of C;,, and C,,; implies that any edge with one endpoint in
C;n and the other one in C,y; cannot be in E*, because otherwise, either
C would not be a clique or E(C;,) # E(C) N E*.

145

The last step consists in proving that G* is an optimal solution. Suppose
there exist a spanning Ps-free subgraph, G’ = (V, E’), of G such that
|E’| > |E U M|. By Lemma 2, G’ must contain all cliques of G having size
three or more, i.e., the Ci’s. It follows that E’ contains all the edges involved
in these cliques, i.e., the elements of E. Then, we can write B/ = F U M’.
Moreover, the elements of M’ are edges of the subgraph of G induced by
V\C. Indeed, the endpomts of every edge ¢’ of M’ must be vertices of V\C,
because, othemlse ¢’ will intersect with a Cy; and this contradicts the fact
that G’ is a P3-free graph. Moreover, the edges of M’ must be pairwise non
incident edges, because these edges cannot form any clique of size three or
more and G’ is a Ps-free graph. It follows that M’ is a matching of the
subgraph of G induced by V\C. This implies that |M’| <| M |, since M
is a maximum matching of the same subgraph, that is, the subgraph of G
induced by V\C. This results in a contradiction with the hypothesis.

As a last step of the proof, we show that G* can be constructed in poly-
nomial time. It is well established that the problem of enumerating all max-
imal cliques in a simple graph can be achieved in O(|V'|?k), where k denotes
the number of maximal cliques in G. By the one-edge-overlap property, x
cannot exceed |E| in (diamond)-free graphs. It follows that the cliques of
G can be extracted in O(|V|?|E|). In addition, there is a O(y/|V[|E|) time
algorithm that finds a maximum matching in any graph [16]. It follows
that CD is polynomial-time solvable for the class of (butterfly,diamond)-
free graphs. a

The first phase comprised in the two-phase algotithm requires finding all
maximal cliques. To achieve this task, we used the BronKerbosch algorithm
8], which is one of the most successful maximal clique enumeration algo-
rithms. It is a simple backtracking procedure that recursively enumerates
all cliques whose size is bounded by a parameter of the algorithm [8, 11).
The complexity of the BronKerbosch algorithm is polynomial in the num-
ber of maximal cliques which is in turn bounded by the number of edges in
(butterfly,diamond)-free graphs.

In turn, the second phase of the proposed algorithm can be achieved in
O(V/|V||E]) steps by executing the maximum matching algorithm proposed
in [16].

Example 1. Figure 4 illustrates how the two-phase algorithm operates on
the graph of Figure 3. It is easy to see that this graph is (butterfly, diamond)-
free. In the first phase, four mazimal cliques having size three are detected.
In the second phase, starting from the residual graph, a mazimum matching
is calculated. The CD solution is therefore obtained by putting together the
cliques obtained in the first phase with those comprised in the mazimum

148

Figure 3: A (diamond,butterfly)-free graph.

matching (see Figure 5).

4 Recognizing (butterfly,diamond)-free graphs

The goal of this section is to recognize (butterfly,diamond)-free graphs. To
this end, we propose an efficient algorithm (see Algorithm 1) that identifies
the graphs belonging to this class. Recall that, whenever an input graph
is recognized as (diamond,butterfly)-free, a CD solution for this graph can
be computed using the two-phase algorithm.

We proceed by checking the absence of the forbidden graphs, that is the
butterfly and the diamond, simultaneously. Recognizing (butterfly,diamond)-
free graphs can be done by focusing, in turn, on the neighbourhood of every
vertex of the input graph. We start from the observation that a graph is
(butterfly,diamond)-free if and only if the neighbourhood of every one of
its vertices induces a (2K», P3)-free graph (see Figure 1). In turn, the
recognition of (2K, P;)-free graphs relies on the observation that a graph
is (P3,2K>)-free if and only if it has at most one clique component of size
two or more, and the other connected components are just isolated vertices.
Checking this latter property can be done by computing, first, the connected
components of the reduced graph (N(v), E(N(v))), for every vertex v of the
input graph. This can be done in O(|V| + |E|) steps. Next, the algorithm
checks the number of connected components containing more than one ver-
tex. If there is a single connected component with more than one vertex
then it must be a clique, because otherwise, (N (v), E(N(v))) will contain
an induced P3;. This latter step can be executed in O(|V| + |E|), which
results in an overall recognition algorithm that runs in O(|V|? + V|| E|).

149

e

Figure 4: Application of the two-phase algorithm on the graph of Figure 3.
The deleted edges are represented by dashed segments.

G

&——o6

Figure 5: An optimal CD solution for the (butterfly,diamond)-free graph
of Figure 3 obtained by means of the two-phase algorithm.

150

Algorithm 1: Recognizing (butterfly,diamond)-free graphs.
"1 Input: a graph G=(V, E)

2 Qutput: G is (butterfly,diamond)-free or not
forall the v € V do

3
4 | U := ConnectedComponents(N(v), E(N(v)))
5 bigClq := @
6 forall the U € i do
7 if |U| > 2 then
8 if bigClq = @ then
9 | bigClq :=U
10 else
11 | return false
12 end if
13 end if
14 end forall
// Checking whether the unique connected component
with more than one vertex is a clique
15 if |(U|(|U| —-1)/2 # |E(N(v))| then return false

16 end forall
17 return true

5 Conclusion

In this paper, we identified a polynomial-time solvable cluster deletion (CD)
subproblem. We presented a two-phase algorithm, which benefits from the
limited overlap between adjacent maximal cliques in (butterfly,diamond)-
free graphs. The first phase consists in calculating all maximal cliques
having size three or more. This results in a partial solution, which is
subsequently extended by the edges of a maximum matching of a sparse
spanning subgraph. The proposed two-phase algorithm and its correctness
proof show that CD is polynomial-time solvable in (butterfly,diamond)-
free graphs. We also presented an efficient algorithm that recognizes
(butterfly,diamond)-free graphs. This proves that CD is tractable on
(butterfly,diamond)-free graphs.

Work is in progress in order to derive wider classes of cluster deletion
problem by targeting graphs emerging in specific applications and forbid-
ding induced subgraphs that are rarely induced in the targeted graphs.

151

References

[1] Mamalis, B. Gavalas, D. Konstantopoulos, C. Pantziou, G.: Chapter
12: Clustering in Wireless Sensor Networks, RFID and Sensor Net.
works: Architectures, Protocols, Security, and Integrations, (2009).

[2] Zahn, C. T.: Approximating symmetric relations by equivalence rela.
tions. J. Soc. Ind. Appl. Math.,(Vol. 12, pp. 840-847), (1964).

[3] Pipenbacher, P. Schliep, A. Schneckener, S. Schnhuth, A. Schomburg,
D. Schrader, R.: ProClust: improved clustering of protein sequenceg

with an extended graph-based approach. Bicinformatics, pp. 182-191,
(1964).

[4] Guo, J.: A more effective linear kernelization for cluster editing. The-
oretical Computer Science, Vol. 410, pp. 718-726, (2009).

[5] Shamir, R. Sharan, R. Tsur, D.: Cluster graph modification problems,
Discrete Applied Mathematics 144 (12) 173-182, (2002).

[6] Bonomo, F. Durn, G. Napoli, A. Valencia-Pabon, M.: A one-to-
one correspondence between potential solutions of the cluster deletion
problem and the minimum sum coloring problem, and its application
to Py-sparse graphs, Inform. Process. Lett. 115 (2015) 600-603.

[7] Natanzon, A. Shamir, R. Sharan, R.: Complexity classification of
some edge modification problems, Discrete Appl. Math. 113, 109-128,
(2001).

[8] Bron, C. Kerbosch, J.: Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM, 575-576, (1973).

[9] Tomita, E. Kameda, T.: An efficient branch-and-bound algorithm for
finding a maximum clique with computational experiments. J. Global
Optimization, (2007).

(10] Ur Rehman, S. Ullah, K. A. Fong, S.: Graph mining: A survey of graph
mining techniques. International Conference on Digital Information
Management, ICDIM, 88-92, (2012).

[11] Cazals, F. Karande, C.: A note on the problem of reporting maximal
cliques. Theor. Comput. Sci. 407(1-3):564 ~ 568, (2008).

[12] Fellows, M. R., Guo, J., Komusiewicz, C., Niedermeier, R.,
Uhlmann,J.: Graph-based data clustering with overlaps, Discrete Op-
timization, 8, 2-17, (2011).

152

13] M. C. Golumbic, U. Rotics. On the Clique-Width of Some Perfect
Graph Classes. Int. J. Found. Comput. Sci. 11(3): 423-443 (2000)

14] V. V. Lozin. Minimal classes of graphs of unbounded clique-width.
Ann. Comb. 15(4) 707-722 (2011).

15] Gao, Y., Donovan R. Hare, James N.: The cluster deletion problem
for cographs, Discrete Mathematics, 313(23), 27632771 (2013).

(16] Micali, S., Vazirani, V, V.: An O(/|V] - |E|) Algorithm for Finding
Maximum Matching in General Graphs, Proceedings of the 21st An-
nual Symposium on Foundations of Computer Science, 17-27 (1980).

153

