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Abstract

Let I' denote a bipartite and antipodal distance-regular graph
with vertex set X, diameter D and valency k. Firstly, we determine
such graphs I" when D > 8, k > 3 and their corresponding quotient
graphs are Q-polynomial: I' is 2d-cube if D = 2d; I is either (2d+1)-
cube or the doubled Odd graph if D = 2d + 1. Secondly, by defining
a partial order < on X we obtain a grading poset (X, <) with rank
D. In [S. Miklavig, P. Terwilliger, Bipartite Q-polynomial distance-
regular graphs and uniform posets. J. Algebr. Combin. 225-242
(2013)], the authors determined precisely whether the poset (X,<)
for D-cube is uniform. In this paper we prove that the poset (X, <)
for doubled Odd graph is not uniform.
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1 Introduction

Let I' denote a bipartite and antipodal distance-regular graph with vertex
set X, diameter D and valency k. In this paper we determine such graphs
I when D > 8, k > 3 and their corresponding quotient graphs are Q-
polynomial: T is 2d-cube if D = 2d; T is either (2d+1)-cube or the doubled
Odd graph if D = 2d + 1.

Fix a vertex = € X and define a partial order < on X as follows: for

y,z € X
y <z if and only if O(z,y)+ 8(y,2) = d(z, z),
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where @ denotes the path-length distance function for I'. Denote this pa
tially ordered set by (X, <). For 0 <i < D, let Pi(fc) = {y € X[0(z, y)
i}. Then the partition {T';(z)}2, of X forms a grading of the poset (X, <
in sense of [9, Section 1].

Terwilliger [9] introduced the uniform property for posets. In that woy
he described the algebraic structure of the uniform posets and displaye
eleven infinite families of examples. Worawannotai [12] found another fan
ily of uniform posets using the polar spaces. Kang and Chen [4] obtaine
a family of uniform posets using the nonisotropic subspaces of a unitar
polar space. Liu [7] discussed the incidence algebra of the attenuated spac
poset. Miklavi¢ and Terwilliger (8] considered a uniform poset for bipartit
distance-regular graphs based on their Q-polynomial properties. Hou ¢
al. [3] studied the uniform poset for the folded (2n + 1)-cube by using it
Q-polynomial property.

Motivated by the above connection between the Q-polynomial propert
of distance-regular graphs and uniform posets, it is natural to consider th
relation between the distance-regular graphs whose quotient graphs are Q
polynomial and the uniform posets. To simplify this investigation, in th,
present paper we will determine whether the corresponding poset (X, <) i
uniform for our determined graphs: D-cube and doubled Odd graph. W
remark that the work for D-cube was completed by Miklavi¢ and Terwillige
[8]. Therefore we discuss the case of the doubled Odd graph.

This paper is organized as follows. In Section 2 we recall some def
initions and basic facts concerning distance-regular graphs and uniforn
posets. In Section 3 we discuss a class of bipartite and antipodal graphs
whose quotients are Q-polynomial. In section 4 ‘we show that the poset
(X, <) for the doubled Odd graph is not uniform. Our main results are
Theorem 3.3 and Theorem 4.2.

2 Preliminaries

In this section we recall some basic facts concerning distance-regular graphs
and uniform posets.

2.1 Distance-regular graphs

Let X denote a nonempty finite set. Let V = RX denote the R-vector
space of column vectors with coordinates indexed by X, and let Mat x(R)
denote the R-algebra of matrices with rows and columns indexed by X.
We observe that Matx (R) acts on V by left multiplication. For all y € X,
let y denote the element of V with a 1 in y coordinate and 0 in all other
coordinates.
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Let I' = (X, R) denote a finite, undirected, connected graph, without
loops or multiple edges, with vertex set X and edge set R. Let 0 denote the
path-length distance function for I', and set D := max{9(z,y)|z,y € X}.
We call D the diameter of I'. For vertices x,y € X with d(x,y) = h, let
R’;(z,y) = {z € X|0(z,2) = 1,0(2,y) = j}. Wesay I' is regular with
valency k whenever |P{y(z,z)| = k for all vertex x € X. We say I' is
distance-regular whenever for all integers h,1,j (0 < h,4,j < D) and for all
vertices =,y € X with 8(z,y) = h, the number

pi; = |Pj(z,v)l

is independent of z and y. The constants p% are called the intersection
numbers of T. We abbreviate ¢; 1= pi; ; (1 <i<D),a;:=p}; 0<i<
D), b; == pi;y; (0 <i < D—1). For the rest of this paper we assume I’
is distance-regular graph with diameter D > 3. By the triangle inequality,
for 0 < h,4,j < D we have pl; = O (resp. pl; # 0) whenever one of h, 1,7 is
greater than (resp. equal to) the sum of the other two. In particular ¢; # 0
forl1<i<Dandb;#0for0<i<D~-1.

We now recall the Bose-Mesner algebra of I'. For 0 < i < D let A;
denote the matrix in Matx (R) with (z,y)-entry

(Adey={ ¢ o7z @veX. )

We call A; the ith distance matriz of I'. We abbreviate A := A; and call this
the adjacency matriz of T'. Let M be the subalgebra of Matx (R) spanned
by Ao, A1,...,Ap. We call M the Bose-Mesner algebra of I'. By (2, p.
45] M has a second basis Eq, B, ..., Ep such that (i) Ep = |X[71J; (ii)
D B =1, (iii) Bt = E; (0 < i < D); (iv) E:E; = 0;E: (0 <i,j < D),
where J (resp. I) denotes all 1’s matrix (resp. identity matrix). We call
Eo, En, ..., Ep the primitive idempotents of I'.

We say I' is Q-polynomial (with respect to the given ordering Eg, £y, . . .,
Ep of primitive idempotents) whenever for 0 <1 < D, E; is an entry-wise
polynomial in F; with degree exactly .

We now recall the dual Bose-Mesner algebra of I. Fix a vertex z € X.
For 0 < i < D let Ef = E}(z) denote the diagonal matrix in Matx (R)

with (y,y)-entry

1 if 8(z,y) =1,

(Es)yy =v{ 0 if8(z,y) #i (y € X). (2)

We call E} the ith dual idempotent of I' with respect to z (10, p. 378].
For convenience set B} = 0for i <0 ori > D. Let M* = M*(z) be the
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subalgebra of Mat x (R) spanned by Ej, E},. .., E}. We call M* the dy
Bose-Mesner algebra of I' with respect to x [10, p. 378]. Observe

V=EV+EV+---+EpV (orthogonal direct sum).

For 0 < i < D let I'y(z) = {y € X|0(z,y) = ¢}. Then the subspac
EV (0 <i < D) has a basis {g|ly € T'i(z)}.

2.2 Uniform posets .

In this subsection we continue to assume T is distance-regular with diamete
Dz 3.

Fix a vertex x € X. Define a partial order < on X such that for a
v,z € X,

y<z ifandonlyif 0(z,y)+9(y,z) = 0(z,z).

For y,2 € X define y < z whenever y < z and y # z. We say tha
z covers y whenever y < z and there does not exist a vertex w € X suc]
that y < w < 2. For 0 < i < D each vertex in ['i(z) covers exactl
¢; vertices in I';_;(z), and is covered by exactly b; vertices in I’ i+1(x)
Therefore the partition {I';(z)}2, of X forms a grading of the poset (X, <
[9].

Definition 2.1. Let A be the adjacency matrix of I" and let E? be the it}

dual idempotent of I" with respect to z € X. Define matrices R — R(z
and L = L(z) by

D1 D
R= ) E; AE}, L= E; AE}.
i=0 i=1
Note that R = L*. We call R, L ratsing matriz and lowering matriz, re-
spectively.
By (2) and Definition 2.1, it is direct to obtain the following results.

Lemma 2.2. The folloﬁ;ing (1), (ii) hold.
(i) For0<i<D-1

o _ )1 ityelin(z), zeTi(z), z <y,
(RE})y: = { 0 otherwise.

(ii) For1<i< D

* ___ 1 ifyeri_l(:l:), zeri(:r)s y<z,
(LE )y = { 0 otherwise.
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Lemma 2.3. The following (i), (ii) hold.

(i) For0<i:<D-1,

Y. 2 ifyeTli(z),
RETg={ e

0 otherwise.

(ii) Forl1 <1< D,

S 3 ifye i)
LEf§=1 "™

0 otherwise.

In what follows, we recall the uniform structure for a partially ordered
set [9]. The structure of a uniform poset involves the notion about a pa-
rameter matrix. By a parameter matriz we mean a tridiagonal matrix
U = (ei;)1<ij<p With entries in R satisfying

(i) eii=1for1§i§D;
(ii) esi—1 #O0for2<i< Dorei1: £0for 244 £ 1)

(iii) the principal submatrix (€ij)r<i,j<p is nonsingularfor 1 <r <p < D.

For convenience we abbreviate e; :=e;,_1 for 2 <1 < D, ef == ey441 for
1<i< D ~1, and define e} ::O,ejg = ],

By a uniform structure we mean a pair (U, f) where U = (eij)1<ij<D
is a parameter matrix and f = (f1, f2,. -, fp)t is a column vector in R
such that the following equation

e RL* + LRL + ¢/ L*R = fiL

holds on E*V for 1 <4 < D [8]. In this case, we also say the poset (X, <)
is uniform.

Note that the definition of uniform structure for a poset in [9] is the
same as that in [8].

3 Bipartite and antipodal distance-regular
graph

In this section we consider a class of bipartite and antipodal graphs whose
quotients are @-polynomial.
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Let I" denote a distance-regular graph with vertex set X and diametg,
D. Recall that T is bipartite whenever a; = 0 for 0 < § < D, and j
almost-bipartite whenever a; =0 for 0 < i< D — 1 and an # 0.

For a given graph I of diameter D, we define the distance-D graph (D)
to be the graph with the same vertex set as I, and two vertices are adjacent
whenever they are at distance D in the graph I'. T is called antipodal if the
distance-D graph T'(P) is a disjoint union of cliques. In this case, we define
the folded graph of T as the graph T with vertices being maximal cliques
of I'P), and two maximal cliques are adjacent if there is an edge between
them in I". The graph T is known as antipodal quotient of T. Moreover, if
all maximal cliques in I'®) have the same size r then T is also called an
antipodal r-cover of T.

The following are two examples of bipartite and antipodal distance-

regular graphs.
e Hamming graph H(D,2) (D-cube): Let X be the Cartesian product of D
copies of {0, 1}. Two vertices = = (z;,zs,. .. Zp), ¥y = (11, y2,... YD) € X
are adjacent whenever |{i|z; # y;, 1 <4 < D}| = 1. It is easy to check
that for z,y € X, d(z,y) = if and only if {ilzs # v, 1 <4< D} =1
By [2, p. 261] H(D,?2) is a distance-regular graph with diameter D and
intersection numbers

bi=D~i, c¢;=1 (0<i<D).

It is known that H(D, 2) is bipartite and antipodal, whose antipodal quo-
tient graph is called folded D-cube [2, p. 264]. Moreover, H(D,2) is Q-
polynomial.

® Doubled Odd graph: Let S be a set of cardinality 2d+1. The doubled Odd
graph on S, often denoted by 2.0441, is the graph whose vertices are the
d-subsets and (d + 1)-subsets of S, and two vertices z,y are adjacent when-
ever  C y or y C z. It is easy to check that for vertices z, y, O(z,y) =1 if
and only if [tUy —zNy| =1. By [2, p. 260] 2.044, is a distance-regular
graph with diameter D = 2d + 1 and intersection numbers

be=d+ 1~ [5(i+1), a=l3+1)] (0<i<D),

where [a] denotes the maximal integer less than or equal to a. It is known
that 2.0441 is bipartite and antipodal, whose antipodal quotient graph
is called odd graph ([2, Proposition 9.18]). Note that 2.044; is not Q-
polynomial.

For later use we introduce the following lemmas.

Lemma 3.1. ([2, p. 141]) Let T denote a bipartite distance-reqular graph
with diameter D > 3 and valency k > 3. Assume that T is an antipodal
r-cover of its quotient graph T, then T is bipartite if D is even, and T is
almost-bipartite and r = 2 if D is odd.
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Lemma 3.2. ([6, Theorem 1.1]) Let ' denote an almost-bipartite distance-
regular graph with diameter d > 4. Then T is Q-polynomial if and only if

one of (i)—(iii) holds.
(i) T is the (2d + 1)-gon.
(it) T is the folded (2d + 1)-cube.
(iii) T ¢s the 0dd graph on a set of cardinality 2d + 1.
We now give our first main result of this paper.

Theorem 3.3. Let I denote a bipartite and antipodal distance-reqular
graph with diameter D > 8 and valency k > 3. Assume the antipodal
quotient of I 1s Q-polynomial, then the following (i), (ii) hold.

(i) if D = 2d, then T is the 2d-cube.

(ii) if D = 2d + 1, then T is either the (2d 4 1)-cube or the doubled Odd
graph on a set of cardinality 2d + 1.

Proof. (1) This result can be easily obtained by [5, Theorems 10.2, 12.2].

(ii) Let T denote the antipodal quotient of I'. By Lemma 3.1, T is an
almost-bipartite @Q-polynomial distance-regular graph with diameter d>4
and valency k > 3, and T is an antipodal double cover of I'. Then by
Lemma 3.2, T is the folded (2d + 1)-cube or the Odd graph on a set of
cardinality 2d + 1. If T is the folded (2d + 1)-cube, by [2, Proposition
9.2.8(ii)] we know that ' is the (2d + 1)-cube; if T is the Odd graph on a
set of cardinality 2d + 1, by [2, Propositions 9.1.8, 9.1.9], we know that r
is the 2.0441 since d > 4. O

4 The poset (X, <) for 2.04+1

Recall the poset (X, <) from Subsection 2.2, and the graph 2.0441 from
Section 3. In this section our aim is to show that the poset (X, <) for
2.0441 is not uniform. To do this, we need the following lemma.

Lemma 4.1. LetT' denote 2.0441 with vertex set X and diameter 2d+1 >
9 Fizavertezz € X. For3<i<2d-1andt odd, there exist siz vertices,

say y, z, w1, Wa, P1, P2, Satisfying
yeli_i(z), z€ Ii(z), 0y, z) =3,
w; € Ty(z), O(w;,2) =2, (G=12),
p] L= Fi—l($)7 a(pjsy) = 21 ' (3)
y < wj, pj < Wj, pj < 2.
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Proof. For convenience let the graph 2.0,4,, be defined on set S :— {1,2, ..

2d + 1}. Since 2.0, is distance-transitive, without loss of generality, Je
r={1,2,...,d}. Then put

v ={1,2,...,8}u{d+1,d+2,...,1}, |
Z={1,2,...,t}u{d+2,d+3,...,1+2},
wy ={1,2,...,t}u{d+1,d~:~2,...,l+1},
wy ={1,2,...,t}u{d+1,d+2,...,0,l+2},
P4 ={1,2,..,t}u{d+2,d+3,...,1 +1},
p’z={1,2,...,t}U{d+2,d—|—3,...,l,l+2},

wheret +1=2d, | -t =1 -1 (d+1<1<2d-1). By simple calculation
for any odd ¢ with 3 <7< 2d —1 and for any 7 = 1,2 we have

¥l =d, ¥’ €Ti_i(x), || =d +1, 2/ € Ti(x), O, 2') =3,
lw” =d+ 1, w_; € F,;(.’E), lp_f,l = d, p; = I‘i—l(I)'

Moreover, it is not difficult to verify that the above vertices satisfying
relation (3).

Denote by Aut.(I') the stabilizer subgroup of x in the automorphism
group of 2.0441. Since 2.044, is distance-transitive, Aut, (T') is transitive
on I'y(z) (0 < 4 < 2d +1). Pick any o € Aut (') and assume y =
o(y),2 = o(2'), w1 = o(w)),wy = o(wh)pr = o(pl)p2 = o(gy). It
follows that these vertices z,v, z, wy, Wy, P1, P2 also satisfy the statement of
our lemma, s O

Theorem 4.2. The poset (X, <) for 2.044, is not uniform.

Proof. Suppose on the contrary that there exists a tridiagonal matrix U =

(€ij)1<i,j<2d+1 and a column vector f = (fi, fa,. .., faasr1)® such that the
following equation

e; RL* + LRL 4 e} L*R = f,L

holds on E}V for 1 <i < 2d + 1. Then for 1 <t < 2d+1 and any given
vertices y, z € X, we have

e (RL*E{)y: + (LRLE})y; + ¢f (L*RE})ye = fi(LE]),..  (4)

We now calculate (y, z)-entry of both sides of (4).
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By simple calculation, it is direct that

(RIPED)y: = . (BEaREa)yu(ELoLEL un(Bio 1 LB )os
u,veX

= ‘{(uiv)h’b <y, u <uv, v <z, u€ ri_z(ﬂj), y,v € Fi—l(I)a

z € Ti(x)}]- (5)
(LRLED)yz= 3 (B LE])yu(E REL )uo(Bi1 LE)u:
u,veX
= {(u,v)ly <u, v<u, v<z 5HUE Ti(x), y,v € Tica(z)}.
(6)
(LPRE)ys = 3 (Bi1LED)yu(EI LB )un(BLp RED s
u,veX
= {(w,)ly <u, u<v, 2<V, Y€ T;-1(2), 2z,u € [i(z),
v € Tiri(z)}- (7)

(LE})y. =1ify €Tioa1(z), 2 € Ti(z), y < z, and 0 otherwise. (8)
In particular, we consider the concrete value of (y, z)-entry for (5)-(8) in

the case of y, zin Lemma 4.1: y € Ii1(z),z €Ti(z) (3<i<2d-1,1¢ odd)
with 8(y, z) = 3. Combining Lemma 4.1 with the fact that c3 = 2, we get

PfQ(y,z) = {wy,wq}, where w;,ws € Tl @y, (9)
P3(y,2) = {p1,p2}, where p1,p2 € Tioa(z). (10)

From (5)-(10), it is easy to verify

(RL2E])y. =0,  (by {(w,)|(u,v) in (5)} =9) (11)

(LRLE!)y: =2, (by {(u,0)|(,v) in (14)} = {(w1,p1), ('wz,pz)}g )

12

(L*RE})y. =0,  (by {(w,v)|(w,v) in (7)} =0) (13)

(LE?)y=0.  (by (8)) (14)

From (11)-(14), it follows that (4) does not hold for the vertices y,z in

Lemma 4.1, a contradiction. O
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