A class of bipartite and antipodal graphs and their uniform posets

Lihang Hou Wen Liu*

College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China

Abstract

Let Γ denote a bipartite and antipodal distance-regular graph with vertex set X, diameter D and valency k. Firstly, we determine such graphs Γ when $D \geq 8$, $k \geq 3$ and their corresponding quotient graphs are Q-polynomial: Γ is 2d-cube if D=2d; Γ is either (2d+1)-cube or the doubled Odd graph if D=2d+1. Secondly, by defining a partial order \leq on X we obtain a grading poset (X, \leq) with rank D. In [Š. Miklavič, P. Terwilliger, Bipartite Q-polynomial distance-regular graphs and uniform posets. J. Algebr. Combin. 225-242 (2013)], the authors determined precisely whether the poset (X, \leq) for D-cube is uniform. In this paper we prove that the poset (X, \leq) for doubled Odd graph is not uniform.

Key words: Distance-regular graph; Bipartite and Antipodal; Uniform poset

2010 MSC: 05C50; 06A07

1 Introduction

Let Γ denote a bipartite and antipodal distance-regular graph with vertex set X, diameter D and valency k. In this paper we determine such graphs Γ when $D \geq 8$, $k \geq 3$ and their corresponding quotient graphs are Q-polynomial: Γ is 2d-cube if D = 2d; Γ is either (2d+1)-cube or the doubled Odd graph if D = 2d + 1.

Fix a vertex $x \in X$ and define a partial order \leq on X as follows: for $y, z \in X$

$$y \le z$$
 if and only if $\partial(x,y) + \partial(y,z) = \partial(x,z)$,

^{*}Corresponding author. E-mail address: liuwen1975@126.com.

where ∂ denotes the path-length distance function for Γ . Denote this pa tially ordered set by (X, \leq) . For $0 \leq i \leq D$, let $\Gamma_i(x) = \{y \in X | \partial(x, y)\}$ i). Then the partition $\{\Gamma_i(x)\}_{i=0}^D$ of X forms a grading of the poset (X, <)in sense of [9, Section 1].

Terwilliger [9] introduced the uniform property for posets. In that won he described the algebraic structure of the uniform posets and displaye eleven infinite families of examples. Worawannotai [12] found another fam ily of uniform posets using the polar spaces. Kang and Chen [4] obtaine a family of uniform posets using the nonisotropic subspaces of a unitar polar space. Liu [7] discussed the incidence algebra of the attenuated space poset. Miklavič and Terwilliger [8] considered a uniform poset for bipartit distance-regular graphs based on their Q-polynomial properties. Hou al. [3] studied the uniform poset for the folded (2n+1)-cube by using it Q-polynomial property.

Motivated by the above connection between the Q-polynomial propert of distance-regular graphs and uniform posets, it is natural to consider th relation between the distance-regular graphs whose quotient graphs are Qpolynomial and the uniform posets. To simplify this investigation, in the present paper we will determine whether the corresponding poset (X, \leq) i uniform for our determined graphs: D-cube and doubled Odd graph. We remark that the work for D-cube was completed by Miklavič and Terwillige [8]. Therefore we discuss the case of the doubled Odd graph.

This paper is organized as follows. In Section 2 we recall some definitions and basic facts concerning distance-regular graphs and uniform posets. In Section 3 we discuss a class of bipartite and antipodal graphs whose quotients are Q-polynomial. In section 4 we show that the poset (X, \leq) for the doubled Odd graph is not uniform. Our main results are Theorem 3.3 and Theorem 4.2.

2 **Preliminaries**

In this section we recall some basic facts concerning distance-regular graphs and uniform posets.

Distance-regular graphs 2.1

Let X denote a nonempty finite set. Let $V = \mathbb{R}^X$ denote the R-vector space of column vectors with coordinates indexed by X, and let $Mat_X(\mathbb{R})$ denote the \mathbb{R} -algebra of matrices with rows and columns indexed by X. We observe that $\operatorname{Mat}_X(\mathbb{R})$ acts on V by left multiplication. For all $y \in X$, let \hat{y} denote the element of V with a 1 in y coordinate and 0 in all other coordinates.

Let $\Gamma=(X,\mathcal{R})$ denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set X and edge set \mathcal{R} . Let ∂ denote the path-length distance function for Γ , and set $D:=\max\{\partial(x,y)|x,y\in X\}$. We call D the diameter of Γ . For vertices $x,y\in X$ with $\partial(x,y)=h$, let $P_{ij}^h(x,y)=\{z\in X|\partial(x,z)=i,\partial(z,y)=j\}$. We say Γ is regular with valency k whenever $|P_{11}^0(x,x)|=k$ for all vertex $x\in X$. We say Γ is distance-regular whenever for all integers h,i,j $(0\leq h,i,j\leq D)$ and for all vertices $x,y\in X$ with $\partial(x,y)=h$, the number

$$p_{ij}^h = |P_{ij}^h(x,y)|$$

is independent of x and y. The constants p_{ij}^h are called the *intersection* numbers of Γ . We abbreviate $c_i := p_{1i-1}^i$ $(1 \le i \le D)$, $a_i := p_{1i}^i$ $(0 \le i \le D)$, $b_i := p_{1i+1}^i$ $(0 \le i \le D-1)$. For the rest of this paper we assume Γ is distance-regular graph with diameter $D \ge 3$. By the triangle inequality, for $0 \le h, i, j \le D$ we have $p_{ij}^h = 0$ (resp. $p_{ij}^h \ne 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. In particular $c_i \ne 0$ for $1 \le i \le D$ and $b_i \ne 0$ for $0 \le i \le D-1$.

We now recall the Bose-Mesner algebra of Γ . For $0 \leq i \leq D$ let A_i denote the matrix in $\operatorname{Mat}_X(\mathbb{R})$ with (x, y)-entry

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} (x,y \in X).$$
 (1)

We call A_i the *i*th distance matrix of Γ . We abbreviate $A:=A_1$ and call this the adjacency matrix of Γ . Let M be the subalgebra of $\operatorname{Mat}_X(\mathbb{R})$ spanned by A_0, A_1, \ldots, A_D . We call M the Bose-Mesner algebra of Γ . By [2, p. 45] M has a second basis E_0, E_1, \ldots, E_D such that (i) $E_0 = |X|^{-1}J$; (ii) $\sum_{i=0}^D E_i = I$; (iii) $E_i^t = E_i$ ($0 \le i \le D$); (iv) $E_i E_j = \delta_{ij} E_i$ ($0 \le i, j \le D$), where J (resp. I) denotes all 1's matrix (resp. identity matrix). We call E_0, E_1, \ldots, E_D the primitive idempotents of Γ .

We say Γ is Q-polynomial (with respect to the given ordering E_0, E_1, \ldots, E_D of primitive idempotents) whenever for $0 \le i \le D$, E_i is an entry-wise polynomial in E_1 with degree exactly i.

We now recall the dual Bose-Mesner algebra of Γ . Fix a vertex $x \in X$. For $0 \le i \le D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\mathrm{Mat}_X(\mathbb{R})$ with (y,y)-entry

$$(E_i^*)_{yy} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} \quad (y \in X).$$
 (2)

We call E_i^* the *i*th dual idempotent of Γ with respect to x [10, p. 378]. For convenience set $E_i^* = 0$ for i < 0 or i > D. Let $M^* = M^*(x)$ be the

subalgebra of $\operatorname{Mat}_X(\mathbb{R})$ spanned by $E_0^*, E_1^*, \dots, E_D^*$. We call M^* the du Bose-Mesner algebra of Γ with respect to x [10, p. 378]. Observe

$$V = E_0^* V + E_1^* V + \dots + E_D^* V$$
 (orthogonal direct sum).

For $0 \le i \le D$ let $\Gamma_i(x) = \{y \in X | \partial(x, y) = i\}$. Then the subspace E_i^*V $(0 \le i \le D)$ has a basis $\{\hat{y}|y \in \Gamma_i(x)\}$.

2.2 Uniform posets

In this subsection we continue to assume Γ is distance-regular with diamete $D \geq 3$.

Fix a vertex $x \in X$. Define a partial order \leq on X such that for all $y, z \in X$,

$$y \le z$$
 if and only if $\partial(x,y) + \partial(y,z) = \partial(x,z)$.

For $y, z \in X$ define y < z whenever $y \le z$ and $y \ne z$. We say that z covers y whenever y < z and there does not exist a vertex $w \in X$ such that y < w < z. For $0 \le i \le D$ each vertex in $\Gamma_i(x)$ covers exactly c_i vertices in $\Gamma_{i-1}(x)$, and is covered by exactly b_i vertices in $\Gamma_{i+1}(x)$. Therefore the partition $\{\Gamma_i(x)\}_{i=0}^D$ of X forms a grading of the poset $\{X, \le [9]\}$.

Definition 2.1. Let A be the adjacency matrix of Γ and let E_i^* be the ith dual idempotent of Γ with respect to $x \in X$. Define matrices R = R(x) and L = L(x) by

$$R = \sum_{i=0}^{D-1} E_{i+1}^* A E_i^*, \quad L = \sum_{i=1}^D E_{i-1}^* A E_i^*.$$

Note that $R = L^t$. We call R, L raising matrix and lowering matrix, respectively.

By (2) and Definition 2.1, it is direct to obtain the following results.

Lemma 2.2. The following (i), (ii) hold.

(i) For $0 \le i \le D - 1$

$$(RE_i^*)_{yz} = \begin{cases} 1 & \text{if } y \in \Gamma_{i+1}(x), \ z \in \Gamma_i(x), \ z < y, \\ 0 & \text{otherwise.} \end{cases}$$

(ii) For $1 \le i \le D$

$$(LE_i^*)_{yz} = \begin{cases} 1 & \text{if } y \in \Gamma_{i-1}(x), \ z \in \Gamma_i(x), \ y < z, \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 2.3. The following (i), (ii) hold.

(i) For $0 \le i \le D - 1$,

$$RE_i^* \hat{y} = \begin{cases} \sum_{\substack{z \in \Gamma_{i+1}(x) \\ y < z}} \hat{z} & \text{if } y \in \Gamma_i(x), \\ 0 & \text{otherwise.} \end{cases}$$

(ii) For $1 \leq i \leq D$,

$$LE_i^* \hat{y} = \begin{cases} \sum_{\substack{z \in \Gamma_{i-1}(x) \\ z < y}} \hat{z} & \text{if } y \in \Gamma_i(x), \\ 0 & \text{otherwise.} \end{cases}$$

In what follows, we recall the uniform structure for a partially ordered set [9]. The structure of a uniform poset involves the notion about a parameter matrix. By a parameter matrix we mean a tridiagonal matrix $U = (e_{ij})_{1 \le i,j \le D}$ with entries in \mathbb{R} satisfying

- (i) $e_{ii} = 1 \text{ for } 1 \le i \le D;$
- (ii) $e_{i,i-1} \neq 0$ for $2 \leq i \leq D$ or $e_{i-1,i} \neq 0$ for $2 \leq i \leq D$;
- (iii) the principal submatrix $(e_{ij})_{r \leq i,j \leq p}$ is nonsingular for $1 \leq r \leq p \leq D$.

For convenience we abbreviate $e_i^- := e_{i,i-1}$ for $2 \le i \le D$, $e_i^+ := e_{i,i+1}$ for $1 \le i \le D-1$, and define $e_1^- := 0$, $e_D^+ := 0$.

By a uniform structure we mean a pair (U, f) where $U = (e_{ij})_{1 \leq i,j \leq D}$ is a parameter matrix and $f = (f_1, f_2, \ldots, f_D)^t$ is a column vector in \mathbb{R}^D such that the following equation

$$e_i^- R L^2 + L R L + e_i^+ L^2 R = f_i L$$

holds on E_i^*V for $1 \le i \le D$ [8]. In this case, we also say the poset (X, \le) is uniform.

Note that the definition of uniform structure for a poset in [9] is the same as that in [8].

3 Bipartite and antipodal distance-regular graph

In this section we consider a class of bipartite and antipodal graphs whose quotients are Q-polynomial.

Let Γ denote a distance-regular graph with vertex set X and diameter D. Recall that Γ is bipartite whenever $a_i=0$ for $0 \leq i \leq D$, and is almost-bipartite whenever $a_i=0$ for $0 \leq i \leq D-1$ and $a_D \neq 0$.

For a given graph Γ of diameter D, we define the distance-D graph $\Gamma^{(D)}$ to be the graph with the same vertex set as Γ , and two vertices are adjacent whenever they are at distance D in the graph Γ . Γ is called antipodal if the distance-D graph $\Gamma^{(D)}$ is a disjoint union of cliques. In this case, we define the folded graph of Γ as the graph $\overline{\Gamma}$ with vertices being maximal cliques of $\Gamma^{(D)}$, and two maximal cliques are adjacent if there is an edge between them in Γ . The graph $\overline{\Gamma}$ is known as antipodal quotient of Γ . Moreover, if all maximal cliques in $\Gamma^{(D)}$ have the same size r then Γ is also called an antipodal r-cover of $\overline{\Gamma}$.

The following are two examples of bipartite and antipodal distanceregular graphs.

• Hamming graph H(D,2) (D-cube): Let X be the Cartesian product of D copies of $\{0,1\}$. Two vertices $x=(x_1,x_2,\ldots,x_D), y=(y_1,y_2,\ldots,y_D)\in X$ are adjacent whenever $|\{i|x_i\neq y_i,\ 1\leq i\leq D\}|=1$. It is easy to check that for $x,y\in X,\ \partial(x,y)=l$ if and only if $|\{i|x_i\neq y_i,\ 1\leq i\leq D\}|=l$. By $[2,\ p.\ 261]$ H(D,2) is a distance-regular graph with diameter D and intersection numbers

$$b_i = D - i$$
, $c_i = i$ $(0 \le i \le D)$.

It is known that H(D,2) is bipartite and antipodal, whose antipodal quotient graph is called *folded D-cube* [2, p. 264]. Moreover, H(D,2) is Q-polynomial.

• Doubled Odd graph: Let S be a set of cardinality 2d+1. The doubled Odd graph on S, often denoted by $2.O_{d+1}$, is the graph whose vertices are the d-subsets and (d+1)-subsets of S, and two vertices x,y are adjacent whenever $x \subset y$ or $y \subset x$. It is easy to check that for vertices x,y, $\partial(x,y)=l$ if and only if $|x \cup y - x \cap y| = l$. By $[2, p. 260] \ 2.O_{d+1}$ is a distance-regular graph with diameter D=2d+1 and intersection numbers

$$b_i = d + 1 - \lfloor \frac{1}{2}(i+1) \rfloor, \quad c_i = \lfloor \frac{1}{2}(i+1) \rfloor \quad (0 \le i \le D),$$

where $\lfloor a \rfloor$ denotes the maximal integer less than or equal to a. It is known that $2.O_{d+1}$ is bipartite and antipodal, whose antipodal quotient graph is called *odd graph* ([2, Proposition 9.18]). Note that $2.O_{d+1}$ is not Q-polynomial.

For later use we introduce the following lemmas.

Lemma 3.1. ([2, p. 141]) Let Γ denote a bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 3$. Assume that Γ is an antipodal r-cover of its quotient graph $\overline{\Gamma}$, then $\overline{\Gamma}$ is bipartite if D is even, and $\overline{\Gamma}$ is almost-bipartite and r=2 if D is odd.

Lemma 3.2. ([6, Theorem 1.1]) Let Γ denote an almost-bipartite distance-regular graph with diameter $d \geq 4$. Then Γ is Q-polynomial if and only if one of (i)-(iii) holds.

- (i) Γ is the (2d+1)-gon.
- (ii) Γ is the folded (2d+1)-cube.
- (iii) Γ is the Odd graph on a set of cardinality 2d+1.

We now give our first main result of this paper.

Theorem 3.3. Let Γ denote a bipartite and antipodal distance-regular graph with diameter $D \geq 8$ and valency $k \geq 3$. Assume the antipodal quotient of Γ is Q-polynomial, then the following (i), (ii) hold.

- (i) if D=2d, then Γ is the 2d-cube.
- (ii) if D = 2d + 1, then Γ is either the (2d + 1)-cube or the doubled Odd graph on a set of cardinality 2d + 1.

Proof. (i) This result can be easily obtained by [5, Theorems 10.2, 12.2]. (ii) Let $\overline{\Gamma}$ denote the antipodal quotient of Γ . By Lemma 3.1, $\overline{\Gamma}$ is an almost-bipartite Q-polynomial distance-regular graph with diameter $d \geq 4$ and valency $k \geq 3$, and Γ is an antipodal double cover of $\overline{\Gamma}$. Then by Lemma 3.2, $\overline{\Gamma}$ is the folded (2d+1)-cube or the Odd graph on a set of cardinality 2d+1. If $\overline{\Gamma}$ is the folded (2d+1)-cube, by [2, Proposition 9.2.8(ii)] we know that Γ is the (2d+1)-cube; if $\overline{\Gamma}$ is the Odd graph on a set of cardinality 2d+1, by [2, Propositions 9.1.8, 9.1.9], we know that Γ is the $2.O_{d+1}$ since $d \geq 4$.

4 The poset (X, \leq) for $2.O_{d+1}$

Recall the poset (X, \leq) from Subsection 2.2, and the graph $2.O_{d+1}$ from Section 3. In this section our aim is to show that the poset (X, \leq) for $2.O_{d+1}$ is not uniform. To do this, we need the following lemma.

Lemma 4.1. Let Γ denote $2.O_{d+1}$ with vertex set X and diameter $2d+1 \geq 9$. Fix a vertex $x \in X$. For $3 \leq i \leq 2d-1$ and i odd, there exist six vertices, say y, z, w_1, w_2, p_1, p_2 , satisfying

$$y \in \Gamma_{i-1}(x), \ z \in \Gamma_{i}(x), \ \partial(y, z) = 3,$$

$$w_{j} \in \Gamma_{i}(x), \ \partial(w_{j}, z) = 2, \ (j = 1, 2),$$

$$p_{j} \in \Gamma_{i-1}(x), \ \partial(p_{j}, y) = 2,$$

$$y < w_{j}, \ p_{j} < w_{j}, \ p_{j} < z.$$
(3)

Proof. For convenience let the graph $2.O_{d+1}$ be defined on set $S := \{1, 2, ..., 2d+1\}$. Since $2.O_{d+1}$ is distance-transitive, without loss of generality, le $x = \{1, 2, ..., d\}$. Then put

$$\begin{split} y' &= \{1, 2, \dots, t\} \cup \{d+1, d+2, \dots, l\}, \\ z' &= \{1, 2, \dots, t\} \cup \{d+2, d+3, \dots, l+2\}, \\ w'_1 &= \{1, 2, \dots, t\} \cup \{d+1, d+2, \dots, l+1\}, \\ w'_2 &= \{1, 2, \dots, t\} \cup \{d+1, d &\stackrel{\circ}{+} 2, \dots, l, l+2\}, \\ p'_1 &= \{1, 2, \dots, t\} \cup \{d+2, d+3, \dots, l+1\}, \\ p'_2 &= \{1, 2, \dots, t\} \cup \{d+2, d+3, \dots, l, l+2\}, \end{split}$$

where $t+l=2d,\ l-t=i-1\ (d+1\leq l\leq 2d-1).$ By simple calculation for any odd i with $3\leq i\leq 2d-1$ and for any j=1,2 we have

$$\begin{aligned} |y'| &= d, \ y' \in \Gamma_{i-1}(x), \ |z'| = d+1, \ z' \in \Gamma_{i}(x), \ \partial(y', z') = 3, \\ |w'_{j}| &= d+1, \ w'_{j} \in \Gamma_{i}(x), \ |p'_{j}| = d, \ p'_{j} \in \Gamma_{i-1}(x). \end{aligned}$$

Moreover, it is not difficult to verify that the above vertices satisfying relation (3).

Denote by $\operatorname{Aut}_x(\Gamma)$ the stabilizer subgroup of x in the automorphism group of $2.O_{d+1}$. Since $2.O_{d+1}$ is distance-transitive, $\operatorname{Aut}_x(\Gamma)$ is transitive on $\Gamma_i(x)$ $(0 \le i \le 2d+1)$. Pick any $\sigma \in \operatorname{Aut}_x(\Gamma)$ and assume $y = \sigma(y'), z = \sigma(z'), \ w_1 = \sigma(w'_1), w_2 = \sigma(w'_2), p_1 = \sigma(p'_1), p_2 = \sigma(p'_2)$. It follows that these vertices $x, y, z, w_1, w_2, p_1, p_2$ also satisfy the statement of our lemma.

Theorem 4.2. The poset (X, \leq) for $2.O_{d+1}$ is not uniform.

Proof. Suppose on the contrary that there exists a tridiagonal matrix $U = (e_{ij})_{1 \leq i,j \leq 2d+1}$ and a column vector $f = (f_1, f_2, \dots, f_{2d+1})^t$ such that the following equation

$$e_i^- R L^2 + L R L + e_i^+ L^2 R = f_i L$$

holds on E_i^*V for $1 \le i \le 2d+1$. Then for $1 \le i \le 2d+1$ and any given vertices $y, z \in X$, we have

$$e_i^-(RL^2E_i^*)_{yz} + (LRLE_i^*)_{yz} + e_i^+(L^2RE_i^*)_{yz} = f_i(LE_i^*)_{yz}.$$
 (4)

We now calculate (y, z)-entry of both sides of (4).

By simple calculation, it is direct that

$$(RL^{2}E_{i}^{*})_{yz} = \sum_{u,v \in X} (E_{i-1}^{*}RE_{i-2}^{*})_{yu} (E_{i-2}^{*}LE_{i-1}^{*})_{uv} (E_{i-1}^{*}LE_{i}^{*})_{vz}$$

$$= |\{(u,v)|u < y, \ u < v, \ v < z, \ u \in \Gamma_{i-2}(x), \ y,v \in \Gamma_{i-1}(x),$$

$$z \in \Gamma_{i}(x)\}|. \tag{5}$$

$$(LRLE_{i}^{*})_{yz} = \sum_{u,v \in X} (E_{i-1}^{*}LE_{i}^{*})_{yu} (E_{i}^{*}RE_{i-1}^{*})_{uv} (E_{i-1}^{*}LE_{i}^{*})_{vz}$$

$$= |\{(u,v)|y < u, \ v < u, \ v < z, \ z, u \in \Gamma_{i}(x), \ y, v \in \Gamma_{i-1}(x)\}|.$$
(6)

$$(L^{2}RE_{i}^{*})_{yz} = \sum_{u,v \in X} (E_{i-1}^{*}LE_{i}^{*})_{yu} (E_{i}^{*}LE_{i+1}^{*})_{uv} (E_{i+1}^{*}RE_{i}^{*})_{vz}$$

$$= |\{(u,v)|y < u, \ u < v, \ z < v, \ y \in \Gamma_{i-1}(x), \ z, u \in \Gamma_{i}(x),$$

$$v \in \Gamma_{i+1}(x)\}|. \tag{8}$$

$$(LE_i^*)_{yz} = 1 \text{ if } y \in \Gamma_{i-1}(x), \ z \in \Gamma_i(x), \ y < z, \text{ and } 0 \text{ otherwise.}$$
 (8)

In particular, we consider the concrete value of (y, z)-entry for (5)-(8) in the case of y, z in Lemma 4.1: $y \in \Gamma_{i-1}(x), z \in \Gamma_i(x) \ (3 \le i \le 2d-1, i \text{ odd})$ with $\partial(y,z)=3$. Combining Lemma 4.1 with the fact that $c_3=2$, we get

$$P_{12}^3(y,z) = \{w_1, w_2\}, \text{ where } w_1, w_2 \in \Gamma_i(x),$$
 (9)

$$P_{21}^{3}(y,z) = \{p_1, p_2\}, \text{ where } p_1, p_2 \in \Gamma_{i-1}(x).$$
 (10)

From (5)–(10), it is easy to verify

$$(RL^{2}E_{i}^{*})_{yz} = 0, \qquad \text{(by } \{(u,v)|(u,v) \text{ in } (5)\} = \emptyset)$$

$$\text{(by } \{(u,v)|(u,v) \text{ in } (5)\} = \emptyset$$

$$\text{(by } \{(u,v)|(u,v) \text{ in } (5)\} = \emptyset$$

$$\text{(by } \{(u,v)|(u,v) \text{ in } (5)\} = \emptyset$$

$$(LRLE_i^*)_{yz} = 2, \qquad \text{(by } \{(u,v)|(u,v) \text{ in } (14)\} = \{(w_1,p_1),(w_2,p_2)\})$$
(12)

$$(L^2 R E_i^*)_{yz} = 0,$$
 (by $\{(u, v) | (u, v) \text{ in } (7)\} = \emptyset$) (13)

$$(LE_i^*)_{yz} = 0.$$
 (by (8))

From (11)-(14), it follows that (4) does not hold for the vertices y, z in Lemma 4.1, a contradiction.

Acknowledgement

This work was supported by the NSF of China (11471097) and Hebei Province Foundation for Returness (CL201714).

References

- [1] Bannai, E., Ito, T. Algebraic Combinatorics I: Association Scheme The Benjamin-Cummings Lecture Notes Ser., vol. 58. Benjamin Cummings, Menlo Park (1984).
- [2] Brouwer, A.E., Cohen, A.M., and Neumaier, A. Distance-Regula Graphs. Springer, Berlin (1989).
- [3] Hou, L., Hou, B., Gao, S. The folded (2D + 1)-cube and its uniform posets. Acta Mathematicae Applicatae Sinica, English Series 34 (2018 281–292.
- [4] Kang, N., Chen, L. Uniform posets and Leonard pairs based on unitar spaces over finite fields. Linear Multilinear Algebra 64 (2016) 1163 1184.
- [5] Lang, M. A new inequality for bipartite distance-regular graphs. J Combin. Theory, Ser. B 90 (2004) 55–91.
- [6] Lang, M., Terwilliger, P. Almost-bipartite distance-regular graph with the Q-polynomial property. Eur. J. Comb. 28 (2007) 258–265.
- [7] Liu, W. The attenuated space poset $A_q(N, M)$. Linear Algebra Appl 506 (2016) 244–273.
- [8] Miklavič, Š., Terwilliger, P. Bipartite Q-polynomial distance-regula graphs and uniform posets. J. Algebr. Combin. 38 (2013) 225–242.
- [9] Terwilliger, P. The incidence algebra of a uniform poset. Math. Appl 20 (1990) 193–212.
- [10] Terwilliger, P. The subconstituent algebra of an association scheme I J. Algebr. Combin. 1 (1992) 363–388.
- [11] Terwilliger, P. The subconstituent algebra of an association scheme III. J. Algebr. Combin. 2 (1993) 177–210.
- [12] Worawannotai, C. Dual polar graphs, the quantum algebra $U_q(sl_2)$ and Leonard systems of dual q-Krawtchouk type. Linear Algebra Appl 438 (2013) 443–497.