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Abstract

In this paper, we characterize the set of spanning trees of Gar (a
simple connected graph consisting of n edges, containing exactly one
1-edge-connected chain of r cycles C} and G, .. \ C; is a forest). We
compute the Hilbert series of the face ring k[A, (GL )] for the span-
ning simplicial complex As(Gn ). Also, we characterize associated
primes of the facet ideal Ix(As(Ga ). Furthermore, we prove that
the face ring k[A(Gn )] is Cohen-Macaulay.
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1 Introduction

The study of simplicial complexes arising form a simple graph has been an
important topic and attracted good literature. One popular chapter of this
literature is the complementary simplicial complex Ag of a graph G; for
example, see [13]. The notion of spanning simplicial complex (SSC) AL(G)
associated to a simple connected graph G(V, E) was firstly introduced in
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[1]. For uni-cyclic graphs Uy, m, it is proved that Ag(Up,m) is shifted in [1].
Zhu, Shi and Geng [14] further investigated the algebraic and combinatorial
properties of SSC associated to n-cyclic graphs with a common edge. In
[9], the authors investigated the algebraic properties of SSC A,(G,, ) as-
sociated to r-cyclic graphs G, (containing exactly r cycles having no edge
in common). Moreover, they proved that the facet ideal I F(As(Gnr))
has linear quotients with respect to its generating set and computed the
betti numbers of Ir(A,(G ,)) for particular cases. Some other interesting
classes of simple finite connected graphs are studied for SSC by Pan, Li
and Zhu in [11], Guo and Wu in [6] and Raza, Kashif and Anwar in [12].
In this paper, we investigate the class of spanning simplicial complexes
As(GL ) associated to Gl .. Where G . is a connected graph having n
edges, containing exactly one 1-edge-connected chain of r cycles C! and

nr \Clis a forest. In other words, G, . is a graph consisting of r cycles
such that every pair of consecutive cycles have exactly one edge common
between them. If C|, Cy,...,C, are the r cycles of the graph QA,,_ forming
C! with respective lengths my,ma, ..., m, then we fix the label of edge set
of G} .. as follows;

E = {611,-.-,€1m1,€21,---,€2m2-1,---,eﬂ,---,erm,—l,el,--wet} (1)

-
where, t =n— 3" m; 4 (r— 1) and {e;y,...,e;} is the edge-set of ith-cycle
such that v = 'r:zllfor t=1, v=m;—1fori>1and e;1 always represents
the common edge between ith and (¢ 4 1)th-cycle (for 1 < i < r). We
give the characterization of s(G!,) in 3.4. The formulation for f —vectors
is presented in 3.5 which further applied to device a formula to compute
the Hilbert series of the face ring k[Ag(GL )] (see 3.7). Moreover in 4.1,
we characterize all the associated primes of the facet ideal Iz (A, G ).
Finally, we prove that the face ring k[A,(G} )] is Cohen-Macaulay in 5.4.

2 Background and basic notions

In this section, we give some background and preliminaries of the topic and
define some notions that will be useful in the sequel.

Definition 2.1. A spanning tree of a simple connected finite graph G (V,E)
is a subtree of G that contains every vertex of G. We represent the collection
of all edge-sets of the spanning trees of G by s(G), in other words;

s(G) :={E(T;) C E, where T} is a spanning tree of G'}.

For any simple connected graph G, the authors mentioned the cutting-
down method to obtain all the spanning trees of G in [1]. According to this
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method a spanning tree is obtained by removing one edge from each cycle
appearing in the graph. However, for the graph G} . with r cycles having
one edge common in every consecutive cycles and the labeling given in (1),
one can obtain its spanning trees by removing exactly r edges from the
graph with not more than two edges deleted from any cycle. Also, keeping
in view that if a common edge between two cycles is removed then only
one edge can be removed from the non common edges explicitly from the
cycles on the either side of the common edge.

For example by using the above said cutting-down method for the graph
Glo 2 given in fig. 1:

s(Glo2) = {{e1, €2, €3, €4, €13, €11, €23, €21}, {e1, €2, €3, €4, €13, e11, €23, €2},
{e1, €2, €3, €1, €13, €11, €21, €22}, {€1, €2, €3, €4, €13, €23, €21, €22}, {e1, €2, ea,
€4, €12, €11, €23, 621}: {61: €2, €3, €4, €12, €11, €23, 622}: {611 €2, €3, €4, €12, €11,
e1, €22}, {e1, €2, €3, €4, €12, €23, €21, €22}, {€1, €2, €3, €4, €13, €12, €23, a2},
{e1, €2, €3, €, €13, €12, €23, €21 }, {€1, €2, €3, €4, €13, €12, €21, €22}, {e1, €2, €3,
ea, €13, €23, €21, €22}, {€1, €2, €3, €4, €12, €23, €21, €22}

€2
€12 €11 €21 Ie3
e em eas ez es
Fig. 1. G 2

Definition 2.2. A simplicial complex A over a finite set [n] = {1,2,...,n}
is a collection of subsets of [n], with the property that {i} € Aforall ¢ € [n],
and if F € A then A will contain all the subsets of F' (including the empty
set). An element of A is called a face of A, and the dimension of a face F
of A is defined as |F| — 1, where |F| is the number of vertices of F. The
maximal faces of A under inclusion are called facets of A. The dimension
of the simplicial complex A is :

dimA = max{dimF|F € A}.
We denote the simplicial complex A with facets {Fi,..., Fy} by
A={(F,....F)

Definition 2.3. For a simplicial complex A over [n] having dimension d,
its f —vector is a d + 1-tuple, defined as:

FOA) = (foi Fuys o3 Fi)

where f; denotes the number of i — dimensional faces in A.
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Definition 2.4. (Spanning Simplicial Complex )

Let G(V, E) be a a simple finite connected graph and s(G) = {E, Ea, .. .,
E.} be the edge-set of all possible spanning trees of G(V, E), then we defined
(in [1]) a simplicial complex A,(G) on E such that the facets of A,(G) are
precisely the elements of s(G), we call A (G) as the spanning simplicial
complex of G(V, E). In other words;

AS(G) = (El,Eg, ey Et> s

Here we recall a definition from [4].

Definition 2.5. Let A be a simplicial complex with vertex set V = [n]
and facets Iy, Fy, ..., Fi,. A vertez cover for A is a subset A of V such that
ANF;#Qforallie {1,2,...,q}. A minimal vertex cover of A is a subset
A of V such that A is a vertex cover, and no proper subset of A is a vertex
cover for A.

For example, the minimal vertex covers for the spanning simplicial com-
plez A, (Gl 5) given in Fig. 1, are as follows:

{e1}, {e2}, {e3}, {ea}, {e13, €2}, {23, €22}, {e23, €21}, {22, €21}

3 Spanning trees of G, . and Face ring A,(G} )
In this section, we discuss the combinatorial properties of G ,. We use
7(Ga,r) to denote the total number of cycles contained in Gy »- We begin
with the elementary result, that tells the total number of cycles contained

by G, .-
Proposition 3.1. The total number of cycles in the graph Gy - will be

r(r+1)
2

Proof. As the graph G} | contains one-edge connected chain C? of 7 cycles
{cnco. ..,

C:}. By removing the common edges between any number of consecutive
cycles, we obtain a cycle by the remaining edges. The cycle obtained in
this way by adjoining consecutive cycles C;, Ci11, ..., Ciyx is denoted by
Ciit+1,...,i+k- Therefore, we get the following cycles

T(Gar) =

C1,2,C28;: -+ 1 Cr—1,1C1,23)+- -y Cr—90~1,0y .-, C23,...7,C123.... r
Hence, the set of all possible cycles contained in the graph G . will be

{Ci.i+1,...,z'+k l 1E {1,2,...,7‘—-k} aIldOSkST——l}
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erefore, we get the total number of cycles contained in the graph Ga.r 38

r—1r—k

_ _r(r+1)
”'(gyl;,r) = Zzl "

k=0 i=1
O

It is clear from above proposition that the cyele C; s41,...,i+k 18 obtained
removing the common edges between the adjacent cycles C;, Cigp1y-- -
k- We denote the length of cycle Ci,i+1,...,i+k by lCi,i+1,...,i+kl-

.oposition 3.2. Let G} . be a graph containing the one-edge connected
ain C! of r cycles {Cy,Ch, - - ., Cr}, then the length of cycle C; it1,....itk
l1 be

k
Cz','i+1,...,i+kl = Z |Cita| — 2k

a=0

vof. It is clear from above that C;;41,... i+ is obtained by deleting the
mmon edges shared by the adjacent cycles {C, Cit1, .-, Citr} in 3
serefore, the length of the cycle C; s41,...i+k 1S obtained by adding lengths
all C;, Ciy1,- - ., Citr and subtracting 2k from it, since the common edges
e being counted twice. Hence, we have

k
C‘i,i+1,...,i+k\ = Z |Ci+a‘ — 2k

a=0

O

We use [Ciip1,.. itk [)Cjjtt,...0| to denote the number of edges
1ared by the cycles C; ;41 itk and Cj 1,5+t The following propo-
tion characterizes |C; i11,....i+k [ ) Cj, G41,gt] i g,,{,,,.

roposition 3.3. Let Q}h, be a graph containing the one-edge connected
iain CL of r cycles {C1,Cq,...,Cr} of lengths mq, ms, ..., my, then for
<k <1l <r we have

( 1’ . i+k= 7 - 1z

ICij41,jbal =% GtE=jt+os0<ask-1

|Cjj41,mitrl — 1 it+k=3j+k

|G} 1, 4ihs itk=j+landl=Fk;

Ci,i+l,...,i+kanJ+1,...,j+l\ = ﬁ 1Cisttmsitrl — 2 ivtk=j4+o k+r1<agl-y
|Ciin1,.irkl =1, t+k=j+]

lCi,£+1,...,i+k_al -2, i+k=j+l+051<a< k:

L i=i4+l+1

L 0 otherwise.
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Proof. Here we denote My it 1,... itk = Cz‘,z‘+1,...,i+k,-
Now for 1 < % <! < r we discuss the following cases for
Chit1,.. itk N Cj,j+1,--.,j+t, :

Case (i) Ifi+k =;—1, then the right most edges of the cycle C; ;11 4k
are from its adjoining cycle Citr and the left most edges of the cycle
C},j+1,...,j41 aTe from its adjoining cycle €4, and since Citx and
C';4+1 are consecutive so they have only one edge in common.

Case (ii) Ifi+k =j+a; 0 < o < k—1, then the left most o adjoining cy-
cles of the cycles of Cii41,.. 41, 1€, C5, Ciy1y- .., Cjy 4 coincide with
the right most & adjoining cycles of the cycles of Cy 41 . i4%x. There-
fore, the intersection Ciit,.. itk Cj.541,...,j+1 Will contain all edges
of Cjj41,..j+a €Xcept its two edges, one the edge of Cj 11 jta
which is the common edge of Cjta and Cj 441 and second the edge
of Cj j+1,....i+o Which is common edge between C; and C;-1.

Case (iii) If it +k=j+kand k < L, then ¢ = j and therefore the cycle
Ciyit1,...,i+4 lies completely in the cycle Cj ;11 i1 except its one
edge which is the common edge between its adjoining cycle C; 4 and
the cycle C; 4 1. Therefore the intersection Cirittyitk VCijtt, . g
will contain all edges of Cj i +1,....j+k €Xcept one.

Case (iv) fi+k=j4il+a; 1<a < k, then the left most k —a + 1 ad-
joining cycles of the cycle Cijit1,... ik, Whichare C;, Cyyq, . . ., Citk—a
coincide with the right most & — o + 1 adjoining cycles of the cycle
Cj j+1,....j+1- Hence the intersection Cz-,i+1,.._,i+kﬂC_.,-,jH,,__,H, will
contain all the edges of the cycle Cijit1,...itk—a €Xcept two; one is
the common edge of its adjoining cycle C; and the cycle C;_ 1 and the
other is the common edge of its adjoining cycle C;, _,, and the cycle
Ci+k—a+1-

The remaining cases can be proved in the similar way. O

Lemma 3.4. Characterization of s(Ga )

Let G}, be the r—cycles graph with edge set E as defined in eq (1),
then a subset E(T(jlil,j2izr--,jrir)) C FE, where j, € {1,2,...,7}, iy €
{1,2,...,m;_ —1}; jo > 2 and ta €{L,2,...,m1}; jo =1, will belong to
s(G, ) if and only if it satisfies any of the following:

1. If jota 5% Jol for all o except for which 7474 = ri,, then
E(T(j161,4252,...504,)) = B\ {e14,, €43y 5 « 5By §
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3. If futa: = Jod for any o, then E(T(jl,-hjz,-%__,jr,;r)) — E\{e,-,il,ejziz, .
3j,z'r} where, {ejniu €jaigy -+ + 1 €ju—ria-11 Elatriatrr = ejr%'.-} will con-
tain exactly one edge from C;_¢j.+1) \ {€(a—1)1) €501}

3. If jote = jal for a € {ri,r1+1,.. .,T2}, where 1 <7 < 12 <7 then

(a) If ;. 1,85, 4ay1s- - -» €., 1 I€ COMIMNON edges from consecutive
cycles then E(T(jlihjzig,...,jri,-)) = E\{ej1i1» €5zizs - - - » €jri, } SUCh
that {ejlil, €jginy - ej,,-r} \ {6jr1 1, e.’i(r1+1)1’ y— ejr21} will con-
tain exactly one edge from Cj_ ji.. 11y.iny X {e(jrl s ej,21}.

(b) If none of €j, 1,€j, 41y1s - - -1 €jrp 1 ATE COMMON edges from con-
secutive cycles then E(T{;,;, ,jziz,...,jri,-)) = E\{ej i) €0+ -
e; i} such that for each edge e; 1 case 2 holds.

(c) If some of ej, 1,€j(, 1115+ -1 €jr,1 2I€ COMMON edges from con-
secutive cycles then E(T(j i, jpi,....jrir)) =& \ {&j1411€jatar -+ o>
e;,4, } such that (3.(a)) is satisfied for the common edges of con-
secutive cycles and (3.(b)) is satisfied for remaining common
edges.

In particular, if we denote the above classes of subsets of £ by C(1),C(2),
C(3a)> C(30)> C(3¢) respectively then,

s(6L,) = ey e UCea UCun UCea

Proof. Since G} . is a r-cycles graph with cycles Cy,Ca, . .., Cr and ey, €21,
..., €(r—1)1 as common edges between consecutive cycles and by cutting
down process a total of 7 edges must be removed with not more than one
edges from the non common edges of each cycle. Therefore, in order to ob-
tain a spanning tree of Q,},’,. with none of common edges e11, €21, - -+, €r_1)1
to be removed, we need to remove exactly one edge from the non common
edges from each cycle. This explains the case (1) of the above lemma.

Now for a spanning tree of G} . such that exactly one common edge
e;.1 is removed, we need to remove precisely 7 — 1 edges using cutting
down process from the remaining edges. However, from the non common
edges of the cycle C;_(;,+1) , We cannot remove more than one edge (since
that will result in a disconnected graph). This explains the proof of case
of (2) of the lemma.

Next for the case (3.2), we need to obtain a spanning tree of G, such
that ro — 7y common edges must be removed from consecutive cycles. If
Ci.yCirygrr 1 Cip, BTE consecutive cycles then the remaining r—(r1 —732)
edges must be removed in such a way that exactly one edge is removed from
the non common edges of Cj, j, 41y»-i-, 20d the remaining r — (r; — T2)
cycles of the graph G}

- Which concludes the case.



The remaining cases of the lemma can be visualised in similar manner
using the above cases . Consequently, if we denote the above disjoint classes
of subsets of E by C(1),C(2),C3a), C(3b); C(3c) respectively, then, we get the
desired result for s(G; ) as follows:

s(Gh ) =Cwy U U Cia | Cun | Ciq

2

Our next result is the characterization of the f-vector of Ds (G r)-

Proposxtxon 3.5. Let A, (G ,_) be a spanning simplicial complex of the
graph G}, then the dim(A, (gn r)) = n—r—1with f—vector f(A,(G}, ) =
(f07f17 . >f'n. r—1 ) and

r=( 0 )+z( 1y

k

k r—1 r-—k.}. n-= 121 Tni’ji“j +1F""i'j +k",‘ + E 1 Ici,“,i.“+l,...,i,“+k,_ ﬂ C""a- sty +l,.,.,i,,+k,, i
= Uv=
2, b B k k
j:lk.jzﬂ i.:-=l 41— Zm . . + 2 IC . ) nc ) I
= toy ,t.i-}-],...,:,:. +k,j - Toyslag 41,0 giag +hay Tagvisgtlyis, ks,

where0<i1<n—-r—1

Proof. Let E be the edge set of G .. and Ca1)sC(2),C(3a)> C(3p), C(3c) are dis-
joint classes of spanning trees of G . then from lemma 3.2 we have

s(Gr ) = Ciny UC(z) U C(3a) U C3p) U C(ac)
Therefore, by definition 2.4 we can write

Ay(G ) = <C(1) UC(z) UC(3a) Uc(Bb) UC(3c)>

Since each facet B 4, jpi... irin) = E(T(mmzzz, ..jrir)) i obtained by
deleting exactly r edges from the edge set of gn -, keeping in view lemma
3.2, therefore dimension of each facet is same ie., n — r — 1 ( since
IE(ml,Jm, ..jrir)| = n—r ) and hence dimension of A, (g,{ ~) will be n—r—1.
Also it is clear from the definition of A, (gn ) that it contains all those sub-
sets of E which do not contain the sets {en, »€1m, } and {ei—1)1, €, -

eim;—1} for all 2 <4 < 7, i.e., those subsets of E which do not conta.m any
cycle in the graph g

Now by lemma 3.1 the total cycles in the graph Q,la rareCiip1 . itk 1€
{1,2,...,7r—k} and 0 < k < r — 1, and their total number is 7. Let
F be any subset of E of order ¢ + 1 such that it does not contain any

Ci.z'+1,...,i+k: 1 € {1,2, ceny T — k} and 0 < k <r-— 1, in it. The total
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pumber of such F is indeed f;. We use inclusion exclusion principle to find
this number. Therefore,

fi= Total number of subsets of E of order i+ 1 not containing Ci i1, ...yiths
= {1,2,...,7‘—k} and0 < k<r—1.

By Inclusion Exclusion Principle we have,

2y Fo da

1 r—1 T—ks;
7j=1 k"j =0 i’j =1

fo = ( Total number of subsets of E of order z + 1) - (

qumber of subsets of E of order ¢ + 1 containing Cj, .,_1,“,',-5"_'_,%5) +

r—1 r*k-’j :

2
(Z S° Y number of subsets of E of order i + 1 containing both

7+ r-1 T—ks;

Ci,, .z‘s,-+1,...,z'35+k,j) A o (—1)"( _ > ZJ number of subsets of E

j=1 k,J. =0 z'_,J. =]

of order i + 1 containing each Cz‘a,. T - +k,,.)

This implies

n L T M= My i+l
fi=(i+]_)—[z 2. ¥, ( oy slay Flreeifeg Hoay )]-l—

]=1 k’j =0 i"j =1 & + 1 - m'isl 11.’81 +11'v>gisl ’+k31

2 2

2 r—1 TRy L _);1 LCTCNES W R0 + El icf-...i...+1.4‘..i...+k.., NCi., iy #1ria, +Ea,
z T z = =]
j=1 k.,-—O 1-,’~1 i+1- Z 7"':'.]. viej -I-l,...,i_j+k,j + 2 IC{.M{.“_H. ..... SIS nCi.‘.i.'AFl IIIII i-.‘H‘».I
j=1 u,u=1
SRR (_1)7'
T T
r r—1 Tk ni= Z m‘.,— .*.,-+1.u-.i.,-+k.,; + ._T_a |Ci.,,.i..,+1,.4.,iw+k,“ nci‘, e, +1,__,‘.‘-__+k"|
il =
i=lky=0i,=1| {41~ Z LTSRS N S + lci,,.,i__ Hhnistka, NGy, ',-._+1J___,‘-"+k.'|
i=1 w,v=]1
This implies
n T
k
fi=\ ; + 2 (1)
( i+1 ) k=1
K k
R n—3. LIRS BN NE YN T Ici....ia“-fl,...,i.‘-i-k.unci.,.,i..-f-l ..... i ,_+k,.i
E S j=1p¢ u‘m’:
e e L TS My, iy HLyemmyie; Heas + 3 lCi,“,i,“«{-l,...,i,u-i-k,n ﬂC;,,,g,q.}-;,._l,i,_.,.k__I
i=1 u,u=1

a

Corollary 3.6. Let As(g,ll,z) be a spanning simplicial complez of a graph
with 2 cycles of lengths my, my having one edge common, then the
dim(As(GL ,)) = n—3 with f—vectors f(A(G}, 2)) = (fo. f1, - .-, fu-3) and
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. n _ n—m n—mso n—mj
fz— ( 1+ 1 ) [( z'-{—l—ml )+(i+l—m2 )+( i+1—m1,2 )]+

[ n—ml—m2+[01r102| n—m1—m1,2—{—101r101,2|

(i+1——Tn1—m2+|C1ﬂC'2|) (i+1~m1—m1,2+|01001,2')+

( n—mz —my 2+ [C2 N Cyol )]+

i+1—mg2—myo+|CoNC ol

[( n—my —mg—mys+|C1NCo|+|Cy NCyy| +|CaNC g )]
i+1—m1—mz—m1,2+|01ﬂCg|+|ClﬂC1,2|ﬁ+|Cgﬂ01,2|

where 0 <1< n—3.

For a simplicial complex A over [7], one would associate to it the
Stanley-Reisner ideal, that is, the monomial ideal I n(A)in S = kfzy, z,, . ..
,Zn] generated by monomials corresponding to non-faces of this complex
(here we are assigning one variable of the polynomial ring to each vertex
of the complex). It is well known that the face ring k[A] = S/In(A) is a
standard graded algebra. We refer the readers to [8] and [13] for more de-
tails about graded algebra A, the Hilbert function H (4,t) and the Hilbert
series H;(A) of a graded algebra.

Our main result of this section is as follows;

Theorem 3.7. Let A,(Gy ) be the spanning simplicial complex of G
then the Hilbert series of the face ring k[A, (G1 )] is given by,

" d _nl)tz'+l d T &
H(k[AS(gn,r)]rt) =14 2% (11-1 T + Z Z (—'1)
i= =0k=1
x k .
& ro1 Tk [ M- _E!mi.s.i.,. i ke, T Ellci,“.i._+l....,i.‘+k,u NCi., o +10ta. +k1 |
2 2 X T e
FElig=tig= | 441 b LLL B Flote; kT > [C,,“ daatLeta, +k, (1 Ct, e +1,..,,i,,+k,_'
i=1 wr=1
it
-ty

Proof. From [13], we know that if A is a simplicial complex of dimension d

and f(A) = (fo, f1,- .., fa) its f-vector, then the Hilbert series of face ring
k[A] is given by

d N
ft_t‘z—f—l
H(k[AlLt) =1 e
(k[A]1) +§(1—t)’+1
By substituting the values of f;’s from Proposition 3.5 in this above ex-
pression, we get the desired result. 0O

4 Associated primes of the facet ideal ] F(As(GE,))

We present the characterization of all associated primes of the facet ideal
Ir(A,(Gy ) of spanning simplicial complex Ag(G) ) in this section.
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ssociated to a simplicial complex A over [n], one defines the facet ideal
\) C S, which is generated by square-free monomials z;1 . .. Z;5, Where
..., vis} is a facet of A.

xma 4.1. If A,(G} ) be the spanning simplicial complex of the r-cycles
h g} - then

1<i<r 2<jasr—1
Ir(AsGE N =1 [] (=) N N (B s gk
e.&C: 2<iastip <My ~1

A N Guead N N Emws)

2<iaFig<m 1<ig#ig<m,—1

»f. Consider the spanning simplicial complex As(Gy, ) and let
As(GL ) be the facet ideal of A, (GL ). Since from [4, Proposition 1.8],
cnow that a minimal prime ideal of the facet ideal Ir(A) has one to
correspondence with the minimal vertex cover of the simplicial com-
Therefore, in order to compute the primary decomposition of the
t ideal Ix(A,(Gh )); it is sufficient to compute all the minimal vertex

v of Ag(Gh 1)

‘ndeed clear from the definition of A,(GL ,) and by Lemma 3.4 that {e; }
minimal vertex cover of Ay(GL ) such that e, ¢ C; Vi € PR
oreover, {€; ;. ,€j.is} is also a minimal vertex cover of A,(G} ) with
ia #ig <my, —1for jo €{2,...,7=1},2< i, #ig <my forjo =1
1<iq#ig <my—1for jo=r. Indeed for any E(jlil,jzig,,__,jr,-r) €
1 ») the intersection {€j inr€inig} N E(jm,jziz,-..,jrir) is nonempty. O

Cohen-Macaulayness of the face ring of A,(G, )

his section, we include some definitions and results from [2] and use
m to show that the face ring of A, (g,i,r) is Cohen-Macaulay.

finition 5.1. [¢]

I C 8 = k[zy, %2, ..,Ts] be a monomial ideal, we say that I will have
quasi-linear quotients, if there exists a minimal monomial system of
erators my, ma, ..., M, such that mindeg(l,,) = 1 for all 1 < < 7,

Ire
Im‘. = (ml,mg,. . ,m,-_l) : (m,,)
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Theorem 5.2. [2/ Let A be a pure simplicial complex of dimension d over
[7]. Then A will be a shellable simplicial complex if and only if I F(A) will
have the quasi-linear quotients.

Corollary 5.3. (2] If the facet ideal Ir(A) of a pure simplicial complex A
over [n] has quasi-linear quotients, then the face ring is Cohen Macaulay.

Theorem 5.4. The face ring of A,(G} ) is Cohen-Macaulay.

Proof. By corollary 5.3, it is sufficient to show that I ;(As(g}w)) has a
quasi-linear quotients in S = k(zyy, 219, .. ., Timy €21, T22, - - - T2(my 1) -

Lr1,Zr2y---,
Zr(m,—1)» 1 T2, - - -, ¢|. By lemma 3.4, we have

s(Gh ) =Cq) UC(z) U C(3a) UC(sb) Uc(3c)

=22

Therefore,
As(grlz,r) = <E(j1i1,jzi2,...,j.-‘ir) = E\{ejﬂu €jpiny - - - )ejr-ir-} ' E(j;ﬁ,jgiz,...,j...i,.) € s(gi',)>

and hence we can write,

I}'(AS(g’iﬂ')) i (xE(:ililvjziz,...,jr-ir) | E(jlilvj2i2r'wjrir) € s(g,i,r))-

Here, Ir(A,(G) ) is a pure monomial ideal of degree n — r with

xE(.‘il"'-;[..‘i‘ziz.---‘jr"r) as the product of all variables in .S eXCePt Tj 41y Tigigy - - -,

z;j,i,. Now we will show that Ir(A, (G} .)) has quasi-linear quotients with
respect to the following generating system:

{xé(ll,Zl,“.,rl) }’ {xé(llﬂl.....(r-l)l,j-,-ir) l i # 1}’ {xé(u.zl

----- (7‘_ 2)10(""1)ir—_[ yjri‘l")

7:1'—1 -‘,‘é 1},

':L‘E‘(u.zz ..... (r=3)1,(r=2)ippudpqip_1,drir) | A 1}, cee {xé(ll'zimjsia.-.,jri,.) |
i2 # 1},

{mé(lil.jziz ,,,,, Jrir) I z1 # 1}

Let us put

0(11’21""’(r—1)1’j'i') = {wE(um ..... (r—1)1,5rir) ! z,. # 1}’
0(11)21""S(r_z)]'?{r_l)if-l ljrif‘) = {xE(ll,Zl _____ ('._2)1'(.,.._1),.-7__].:-"{'_) l Zr._l # ]‘})

O(lihjﬁ?w-rjrir) = {mE(lilleiz ..... Frie) l il -_’é 1}
Also for any C(jlihjzizvngjrir)? denote Clirir,dainyjriy) 88 the residue col-
lection of all the generators which precedes Cljy1,j2ia,....j-1,) i the above
order. We will show that

(O(jl % ,jz‘iz,----jrir)) t (a;E(ni; 1dgiz



contains atleast one linear generator.

Now for any generator Ty , the above said system of

W= 1)1, Ghig s e drin)
generators guarantee the existence of a generator

4 in C — 1)1 dedp.....i.4.) such that j,2
zE(lli“"(k"l)lcjaia:jk‘l‘lik'i—lv--vjr‘.r) (11""’(}; 1)1"7’:2’5""’3"%) J& e #
jrix. Therefore, by using the definition of colon ideal it is easy to see that

(é(l1"'-:(k_l)l)jkikv""rjrif)) - (I(lli"':(k“l)l)jkikr-»ajr'ir))

contains a linear generator «;,; . Hence I7(A,(Gy, ) has quasi-linear quo-
tients, as required. 0

We conclude this section with an example.

Example 5.5. For the graph G}y o given in Fig. 1., the facet ideal of the
spanning simplicial complex is:

Ir(8s(Glo2)) = (211,21, C11,j2i2» Chiy i)

where Ci1 i, = 11,22, F11,23, £11,12, 211,13 a0d Clsy iy = T12,21, T12,22,

z z Z13 03. It is easy to see that, Ir(A,(Giy2)) has quasi-
12,23, L13,21, 13,22 £13,23 Y » 1¥(DBs\Y10,2 g
linear quotients with respect to the ordering given to its generators (by
applying above theorem). Hence, the face ring of As(gllm) is Cohen
Macaulay. ‘

Acknowledgments: The authors are grateful to the reviewer and editor
for their valuable suggestions to improve the manuscript.
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