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ABSTRACT. Let G be a simple and finite graph. A graph is said
to be decomposed into subgraphs Hi and Hz which is denoted by
G = H; @ Ha, if G is the edge disjoint union of H; and Hj. If
G=H,®H;®---® Hy, where Hy, Hs, ..., H are all isomorphic to
H, then G is said to be H-decomposable. Futhermore, if H is a cycle
of length m then we say that G is Cy,-decomposable and this can be
written as Cy, |G. Where G x H denotes the tensor product of graphs
G and H, in this paper, we prove that the necessary conditions for
the existence of Cg-decomposition of K, X K, are sufficient. Using
these conditions it can be shown that every even regular complete
multipartite graph G is Cg-decomposable if the number of edges of
G is divisible by 6.

1. Introduction

Let Cpn, K and K,,, — I denote cycle of length m, complete graph on m
vertices and complete graph on m vertices minus a 1-factor respectively. By
an m-cycle we mean a cycle of length m. All graphs considered in this paper
are simple and finite. A graph is said to be decomposed into subgraphs H;
and H, which is denoted by G = H; @ Ha, if G is the edge disjoint union
of Hi and Hy. If G = H, ® Hy & --- & Hy, where Hy, Hj, ..., Hy are all
isomorphic to H, then G is said to be H-decomposable. Futhermore, if H
is a cycle of length m then we say that G is Cp,-decomposable and this
can be written as C,,,|G. A k-factor of G is a k-regular spanning subgraph.
A k-factorization of a graph G is a partition of the edge set of G into k-
factors. A Ci-factor of a graph is a 2-factor in which each component is a
cycle of length k. A resolvable k-cycle decomposition (for short k-RCD) of
G denoted by Ck||G, is a 2-factorization of G in which each 2-factor is a
C-factor.

For two graphs G and H their tensor product G x H has vertex set V(G) x
V(H) in which two vertices (g1,h1) and (g2, h2) are adjacent whenever
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9192 € E(G) and hyhy € E(H). From this, note that the tensor product
of graphs is distributive over edge disjoint union of graphs, that is if G =
Hi®oHy® - ®H,then Gx H=(Hy x H)@® (Hox H)&--- & (H x H).
Now, for h € V(H), V(G) x h = {(v,h)|v € V(G)} is called a column of
vertices of G x H corresponding to h. Further, for y € V(G), y x V(H) =
{(y,v)|v € V(H)} is called a layer of vertices of G x H corresponding to y.
The problem of finding Cy-decomposition of Ky, or Ky, — I where I is
a 1-factor of Ky, is completely settled by Alspach, Gavlas and Sagna in
two different papers (see [1, 13]). A generalization to the above complete
graph decomposition problem is to find a Ci-decomposition of K, * K,,
which is the complete m-partite graph in which each partite set has n
vertices. The study of cycle decompositions of K, * K, was initiated by
Hoffman et al. [5]. In the case when p is a prime, the necessary and
sufficient conditions for the existence of Cp-decomposition of K, * K.
p = 5 is obtained by Manikandan and Paulraja in [7, 8, 10]. Billington
[2] has studied the decomposition of complete tripartite graphs into cycles
of lenght 3 and 4. Furthermore, Cavenagh and Billington [4] have studied
4-cycle, 6-cycle and 8-cycle decomposition of complete multipartite graphs.
Billington et al. [3] have solved the problem of decomposing (K, * K,)
into 5-cycles. Similarly, when p > 3 is a prime, the necessary and sufficient
conditions for the existence of Cy,-decomposition of K, * K, is obtained
by Smith (see [14]). For a prime p > 3, it was proved in [15] that Cap-
decomposition of K,, * K,, exists if the obvious necessary conditions are
satisfied. As the graph K,,, x K,, & K, * K,, — E(nK,,) is a proper regular
spanning subgraph of K,, * K,. It is natural to think about the cycle
decomposition of K, x K,,. The results in |7, 8, 10} also give necessary and
sufficient conditions for the existence of a p-cycle decomposition, (where
p = 5 is a prime number) of the graph K,, x K,. In [9] it was shown that
the tensor product of two regular complete multipartite graph is Hamilton
cycle decomposable. Muthusamy and Paulraja in [11] proved the existence
of Cin-factorization of the graph Ci x Ky, where mn # 2(mod 4) and & is
odd. While Paulraja and Kumar [12] showed that the necessary conditions
for the existence of a resolvable k-cycle decomposition of tensor product of
complete graphs are sufficient when k is even.

In this paper, we prove that the obvious necessary conditions for K,, x K,,,
2 < m,n, to have a Cg-decomposition are also sufficient. Among other
results, here we prove the following main results.

It is not surprising that the conditions in Theorem 1.1 are ”symmetric”
with respect to m and n since K, x K, = K,, x K,,,.

Theorem 1.1. For2 < m,n, Cs|K;pnx Ky, if and only if m = 1 or 3 (mod 6)
orn=1 or 3 (mod 6).
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Theorem 1.2. Let m be an even integer and m > 6, then Cg|K,, — I X K,
if and only if m =0 or 2 (mod 6)

2. Cs Decomposition of C3 x K,
Theorem 2.1. For all n, C4|Cs x K.

Proof. Following from the definition of tensor product of graphs, let U L=
{uy, v1, w1}, U? = {ug, va,wa},..., U™ = {tn, vn, wn} form the partite set of
vertices in C3 X K,,. Also, U and U? hasanedgeinC3x K, for 1 <i,57 <n
and ¢ # j if the subgraph induce K33 — I, where I is a 1-factor of Kj3.
Now, each subgraph U? U U7 is isomorphic to K33~ I. But K33~ I is a
cycle of length six. Hence the proof. |

Example 2.2. The graph C3 x K7 can be decomposed into cycles of length
6.

Solution. Let the partite sets (layers) of the tripartite graph C3 x K7 be
U = {un,uz,..,ur}, V= {v1,ve,...,v7} and W = {wy,wy, ..., wr}. We
assume that the vertices of U,V and W having same subscripts are the
corresponding vertices of the partite sets. A 6-cycle decomposition of C3 x
K7 1s gwen below:

{w1,v2, w1, u2, v1, wa},{u1,v3, wi,us, v, ws},{uz, v3, wa, u3, v2, w3},

{w1, va, w1, ug, v1, wa},{uz, va, we, ug, vo, wa},{us, v, ws, ug, v3, wa},

{ula Us, W1, Us, V1, wS}J{uQ, V5, W2, Us, V2, ’w5},{U3, Vs, W3, Us, V3, wS}y

{’Uu;, V5, Wy, U5, V4, wS}:{ula Vg, W1, U6, V1, wﬁ}:{“% Vg, W2, U6, V2, wﬁ};

{us, ve, w3, ug, v3, we },{ud, ve, wy, us, va, we },{us, ve, ws, us, vs, we },

{u1, v7, wi, ur, vy, wr },{ug, v7, wo, ur, v2, wr},{us, v7, w3, ur, v3, wr},

{ua, v7, w4, ur, v4, wr}t,{us, v7, ws, uz, vs, wr},{ue, vz, we, uz, ve, wr}.

Theorem 2.3. [6] Let m be an odd integer andm > 3. Ifm =1 or 3 (mod 6)
then C3| K.

Theorem 2.4. [13] Let n be an even integer and m be an odd integer with
3 <m <n. The graph K, — I can be decomposed into cycles of length m
whenever m dwides the number of edges in K, — I.

3. Cg Decomposition of Cg x K,

Theorem 3.1. [13] Let n be an odd integer and m be an even integer with
3 < m < n. The graph K, can be decomposed into cycles of length m
whenever m diwvides the number of edges in K.

Lemma 3.2. C¢|Cs x K>

Proof. Let the partite set of the bipartite graph Cg x K3 be {u1,us, ..., us},
{v1,v2, ..., vs}. We assume that the vertices having the same subscripts are
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the corresponding vertices of the partite sets. Now Cg x K> can be decom-
posed into 6-cycles which are {uy, vs, u3, V4, Us, Ve } and {v1, ug, vs, uy, vs, ug}.

O
Theorem 3.3. For all n, Cs|Cs x K.

Proof. Let the partite set of the 6-partite graph Cs x K, be U = {u1,uz, ...,
un}a V = {'U],’Ug,...,'vn}, W = {w13w23-"7wn}1 X = {x17I27"'azn};
Y = {y1,92,..,9n} and Z = {21,22,...,2,}: We assume that the ver.
tices of U,V,W, XY and Z having the same gubscripts are the corre-
sponding vertices of the partite sets. Let Ul — {w1, 01,01, 21,91, 21 },
U? = {uz,vg,wg,zg,y2,22}, ey U™ = {un,vn,wn,xn,yn,zn} be the sets
of these vertices having the same subscripts. By the definition of the ten-
sor product, each U%, 1 < { < n is an independent set and the subgraph
induced by each U* UU7,1 < 4,7 <n and i # 7 is isomorphic to Cg x K.
Now by Lemma 3.2 the graph Cs x K, admits a 6-cycle decomposition.
This completes the proof. g

4. C¢ Decomposition of K, x K,

Proof of Theorem 1.1. Assume that C6|Kn x K, for some m and » with
2 < m,n. Then every vertex of K x K, has even degree and 6 divides in the
number of edges of K, x K,,. These two conditions translate to (m—1)(n—
1) being even and 6|m(m — 1)n(n —1) respectively. Hence, by the first fact
m or n has to be odd, i.e., has to be congruent to 1 or 3 or 5 (mod 6). The
second fact can now be used to show that they cannot both be congruent to
5 (mod 6). It now follows that m = 1 or 3 (mod 6) or n'=1 or 3 (mod 6).
Conversely, let m = 1 or 3 (mod 6). By Theorem 2.3, C3]K,,, and hence
Ko % Ky = ({C3 x Ko)®---@(C3 x K,)). Since Cg|C3 x K, by Theorem
2.1,

Finally, if n =1 or 3 (mod 6), the above argument can be repeated with
the roles of m and n interchanged to show again that Cs|Km x K,,. This
completes the proof.

Proof of Theorem 1.2. Assume that Cs|Km —Ix K,,m > 6. Certainly,
6|mn(m—2)(n—1). But we know that if 6)m(m—2) then 6|lmn(m—2)(n—1).
But m is even therefore m = 0 or 2 (mod 6).

Conversely, let m = 0 or 2 (mod 6). Notice that for each m, ™ 22 is a
multiple of 3. Thus by Theorem 2.4 C3|Km — I and hence K, — I x K, =
(Cs3xK))® o (C3 x K,,)). From Theorem 2.1 CslCs x K,,. The proof

is complete.

5. CONCLUSION

In view of the results obtained in this paper we draw our conclusion by the
following corollary.
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~orollary 5.1. For any simple graph G. If

(1) C3|G then Cs|G x K., whenever n 2 2.
(2) Cs|G then Cs|G x K, whenever n > 2.

Proof. We only need to show that C3|G. Applying Theorem 2.1 gives the
-esult. [
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