Co-secure Domination in Mycielski Graphs

Manjusha.P¹ and Chithra M.R²
Department of Mathematics,
Amrita School of Arts and Sciences, Kochi
Amrita Vishwa Vidyapeetham, India
p.manjusha@gmail.com
chithramohanr@gmail.com

Abstract

A set $S \subseteq V(G)$ of a connected graph G is a co-secure dominating set, if S is a dominating set and for each $u \in S$, there exists a vertex $v \in V(G) - S$, such that $v \in N(u)$ and $(S - \{u\}) \cup \{v\}$ is a dominating set of G. The minimum cardinality of the co-secure dominating set in a graph G is the co-secure domination number, $\gamma_{cs}(G)$. In this paper, we characterise the Mycielski graphs with co-secure domination 2 and 3. We also obtained a sharp upper bound for $\gamma_{cs}(\mu(G))$.

AMS Classification: 05C69

Keywords: Mycielski Graph, Co-secure domination, Secure domination.

1 Introducton

Let G=(V,E) be a simple graph with |v(G)|=n and |E(G)|=m. The degree of a vertex v in G, deg(v), is the total number of vertices adjacent to it. The open neighbourhood of a vertex v, $N(v)=\{u\in V(G):uv\in E(G)\}$ and its closed neighbourhood is the set $N[v]=N(v)\cup\{v\}$. A set $S\subseteq V(G)$ is a dominating set if for every vertex $v\in V(G)-S$, there exists $u\in S$ such that v is adjacent to u. The minimum cardinality of a dominating set is the domination number of G, $\gamma(G)$. The concept of domination has been studied extensively by T.W. Haynes, et.al in [6]. William.F. Klostermeyer and C.M. Mynhardt studied about several types of domination parameters in [7]. It contains a detailed survey on the historical development and the strategies of protection of graphs using mobile guards.

Secured dominating sets can be considered as one of the strategies for protection of a graph by placing one or more guards at every vertex v of a subset S of V(G), where a guard at a vertex v can protect any vertex in its closed neighbourhood. This minimizes the number of guards to secure a system so that it is cost effective [7].

Let $S \subseteq V(G)$ be a dominating set, if corresponding to each vertex $v \in V(G) - S$ there exists a vertex u in S such that v is adjacent to u and $(S - \{u\}) \cup \{v\}$ is a dominating set of G, then S is a secure dominating set of G. The minimum cardinality of a secure dominating set is the secure domination number, $\gamma_s(G)$. This concept was introduced by E. J. Cockayne, et.al in [4] and has been investigated by several authors in [1],[2] and [6].

J.M. Xu in [13] modelled the topology of an interconnection network by a simple graph, whose vertices represents components of a network and whose edges represents physical communication links between them. A detailed explanation of various network systems and the influence of graph parameters on the network system has been given in [9], [13].

The Mycielskian or Mycielski graph, $\mu(G)$ of an undirected graph G is a graph formed by a construction of Jan Mycielski with vertex set $V(\mu(G)) = \{u_1, u_2, \dots, u_n\} \cup \{u_{1'}, u_{2'}, \dots, u_{n'}\} \cup \{w\}$ and $E(\mu(G)) = E(G) \cup \{u_i u_{j'} : u_i u_j \in E(G)\} \cup \{u_{i'} u_j : u_i u_j \in E(G)\} \cup \{u_{i'} w\}$, where $i, j \in \{1, 2, 3, \dots, n\}$. Thus, $\mu(G)$ consists of 2n+1 vertices and 3m+n edges, where n is the number of vertices and m is the number of edges of the given graph G, [10].

The Mycielskian of a graph produce large networks and keep some properties like fast multi-path communication, reliable resource sharing, high fault tolerance and diameter, which are essential for a good network [12], [11]. In this paper, we have characterised the Mycielski graph with cosecure domination number 2 and 3 and also obtained a sharp upper bound for the co-secure domination of Mycielski graphs.

2 Co-Secure Domination

The idea of co-secure domination has been motivated by a situation in which the set of guards in the dominating set S continue to protect the graph even after every guard in S is replaced by another guard from V(G) - S. S. Arumugam initiated this study in [1].

A dominating set S of a graph G = (V, E) is called a co-secure dominating set (CSDS), if for each $u \in S$, there exists a vertex $v \in (V - S)$ such that $v \in N(u)$ and $(S - \{u\}) \cup \{v\}$ is a dominating set of G [1]. The minimum cardinality of a co-secure dominating set in G is the co-secure domination number $\gamma_{cs}(G)$. If G has isolated vertices, CSDS does not exists and hence the study of co-secure domination may be restricted to connected, non-trivial graphs.

We have characterized Mycielski graphs with co-secure domination number 2 and 3.

Theorem 2.1. Let G be a connected graph with n vertices. Then $\gamma_{cs}(\mu(G)) = 2$ if and only if G has at least two vertices of degree (n-1).

Proof. Suppose G has at least two vertices of degree (n-1), say u_1, u_2 . Clearly $S = \{u_1, w\}$ is a dominating set of $\mu(G)$, since u_1 dominates all the vertices $u_i, u_{i'}$ of $\mu(G)$, except $u_{1'}$, and w dominates the vertex $u_{1'}$, where $i \in \{1, 2, 3, ..., n\}$.

Now, we have to check the co-security condition for S. For, consider the vertex $u_1 \in S$, there exists a vertex $u_2 \in V(\mu(G)) - S$ such that $u_2 \in N(u_1)$ and $(S - \{u_1\}) \cup \{u_2\}$ is a dominating set of $\mu(G)$. Since u_2 dominates all the vertices $u_i, u_{i'}$, where $i \in \{1, 2, 3, 4, ..., n\}$ except $u_{2'} \in V(\mu(G))$ and the vertex w dominates $u_{2'}$. Now, consider the vertex $w \in S$, there exists a vertex $u_{1'} \in V(\mu(G)) - S$ such that $u_{1'} \in N(w)$ and $(S - \{w\}) \cup \{u_{1'}\}$ is a dominating set of $\mu(G)$, since u_1 dominates all the vertices $u_i, u_{i'}$, where $i \in \{1, 2, 3, 4, ..., n\}$ except $u_{1'}$ and the vertex $u_{1'} \in S$. Thus $S = \{u_1, w\}$ is a co-secured dominating set of $\mu(G)$ and $\gamma_{cs}(\mu(G)) = 2$.

Conversely assume that $\gamma_{cs}(\mu(G)) = 2$.

For any graph G without isolates, we have $\gamma(G) \leq \gamma_{cs}(G)$, [1].

Thus, we have,
$$\gamma(\mu(G)) \leq \gamma_{cs}(\mu(G)) \Rightarrow \gamma(\mu(G)) \leq 2$$
.

Case(I) Let
$$\gamma(\mu(G)) = 1$$

Clearly, a single vertex cannot dominate all the vertices of $\mu(G)$. Hence this case is not possible.

Case(II) Let
$$\gamma(\mu(G)) = 2$$

II(i) Consider
$$S = \{u_i, u_j\}$$
 in $\mu(G)$

S will not dominate the vertex w and hence $\gamma(\mu(G)) > 2$.

II(ii) Consider
$$S = \{u_{i'}, w\}$$
 in $\mu(G)$

S cannot dominate the vertex u_i and hence S is not a dominating set of $\mu(G)$.

II(iii) Consider
$$S = \{u_i, u_{j'}\}$$
 in $\mu(G)$

• When $i \neq j$

The vertex $u_{i'}$ is not dominated by the set S. Hence S is not a dominating set of $\mu(G)$ and not a CSDS set of $\mu(G)$.

• When i = j

(a)
$$deg(u_i) \neq (n-1)$$

The set S cannot dominates all the vertices of $\mu(G)$. Hence S is not a dominating set and not a CSDS set of $\mu(G)$.

(b)
$$deg(u_i) = (n-1)$$

Clearly S is a dominating set of $\mu(G)$. But S is not a CSDS of $\mu(G)$. For, consider a vertex $u_j \in N(u_i)$, even if $deg(u_j) = (n-1)$, this vertex cannot replace $u_i \in S$, as the vertex $u_{j'}$ is not dominated by $(S - \{u_i\}) \cup \{u_j\}$. Hence S is not a CSDS of $\mu(G)$.

II(iv) Consider
$$S = \{u_i, w\}$$
 in $\mu(G)$

(a)
$$deg(u_i) \neq (n-1)$$

The set S cannot dominates all the vertices of $\mu(G)$. Hence S is not a dominating set of $\mu(G)$.

(b)
$$deg(u_i) = (n-1)$$

Since u_i is adjacent to all the vertices u_x , where $x \in \{1, 2, 3, ..., n\}$ of $\mu(G)$ and w dominates all the vertices $u_{x'}$, S is a dominating set of $\mu(G)$. Now, consider the co-security condition of the set S. Any vertex $u_j \in N(u_i)$, where $u_j \in V(\mu(G)) - S$ can replace u_i in S, only if $deg(u_j) = (n-1)$. Thus the set S will be a CSDS only when at least two vertices in G have degree (n-1). Hence the proof.

Theorem 2.2. Let G be a connected graph of order n. Then $\gamma_{cs}(\mu(G))=3$ if and only if

i) G has exactly one vertex of degree (n-1)

OI

ii) $\gamma(G) = \gamma_{cs}(G) = 2$, where the vertices in the co-secured sets are adjacent.

Proof. Case (i): Assume that G has exactly one vertex u_i of degree n-1).

Consider $S = \{u_i, u_{i'}, w\}$ in $\mu(G)$. Clearly, S dominates all the vertices of $\mu(G)$. We have to prove the co-security condition of S. For, consider he vertex $u_i \in S$, there exists a $u_j \in V(\mu(G)) - S$ such that $u_j \in N(u_i)$ and set $(S - \{u_i\}) \cup \{u_j\}$ is a dominating set of $\mu(G)$. Since $u_{i'}$ dominates all the vertices u_x and w, except u_i , where $x \in \{1, 2, 3, ..., n\}$ and the vertex u_i is dominated by the vertex $u_j \in S$. Now, consider a vertex $u_k \in V(\mu(G)) - S$, where $u_k \in N(u_{i'})$. This vertex defends $u_{i'} \in S$, since he set $(S - \{u_{i'}\}) \cup \{u_k\}$ is a dominating set of $\mu(G)$. The vertex u_i dominates all the vertices $u_x, u_{x'}$ except $u_{i'}$ in $\mu(G)$ and u_k dominates $u_{i'}$ and the vertex $w \in S$, where $x \in \{1, 2, 3, ..., i-1, i+1, ..., n\}$. Consider the vertex $w \in S$, there exists $u_{j'} \in V(\mu(G)) - S$ such that $u_{j'} \in N(w)$ and $(S - \{w\}) \cup \{u_{j'}\}$ is a dominating set of $\mu(G)$. Hence, S is a minimum co-secure dominating set of $\mu(G)$ and $\gamma_{cs}(\mu(G)) = 3$.

Case(ii): Assume that $\gamma(G) = \gamma_{cs}(G) = 2$, where vertices in the lominating set are adjacent.

Let $\{u_i, u_j\}$ be a dominating set of G. Since $\gamma_{cs}(G) = 2$, there exists vertices u_x and u_y in V(G) - S such that $(S - \{u_i\}) \cup \{u_x\}$ and $(S - \{u_j\}) \cup \{u_y\}$ are dominating sets of G, where $u_x \in N(u_i)$ and $u_y \in N(u_j)$. Consider the set $S = \{u_i, u_j, w\}$ in $\mu(G)$. Clearly S dominates all the vertices of u(G). The vertices u_i and u_j in S can be replaced by the vertices u_x, u_y respectively in $V(\mu(G)) - S$. Consider the vertex w, it is replaced by a vertex $u_{i'} \in V(\mu(G)) - S$ and the set $(S - \{w\}) \cup \{u_{i'}\}$ is a dominating set of $\mu(G)$, where $u_{i'} \in N(w)$. Hence $\gamma_{cs}(\mu(G)) = 3$.

Conversely assume that $\gamma_{cs}(\mu(G)) = 3$. We have $\gamma(\mu(G)) \leq \gamma_{cs}(\mu(G))$. When $\gamma(\mu(G)) \leq 3$, we consider the following cases.

Case (i) Consider $\gamma(\mu(G)) = 1$.

Clearly, a single vertex cannot dominate the graph $\mu(G)$. Hence this case is not possible.

Case(ii) Consider $\gamma(\mu(G)) = 2$.

ii(a) Let $S = \{u_i, u_j\}$ in $\mu(G)$.

Clearly S cannot dominate all the vertices of $\mu(G)$ and hence not a dominating set of $\mu(G)$.

ii(b) Let $S = \{u_i, u_i\}$ in $\mu(G)$.

Here,
$$\gamma(G) = 2$$
 and $\gamma_{cs}(G) > 2$
 $\gamma_{cs}(\mu(G)) = 2 \gamma(G) + 1 = 5.$

Figure 1:

• If a cycle C_n is connected to a path P_m by an edge, where $m, n \geq 3$, as in Figure 2, $\gamma_{cs}(\mu(G)) = \gamma_{cs}(G) + 1$.

Here,
$$\gamma_{cs}(G) = \gamma_{cs}(C_n) + \gamma_{cs}(P_m)$$
.
 $\gamma_{cs}(\mu(G)) = \gamma_{cs}(G) + 1$.

Figure 2:

Conclusion

In this paper we have characterised Mycielski graphs for co-secure domination number 2 and 3. A sharp upper bound is obtained for the co-secure domination number of Mycielski graphs. The result can be used to obtain the co-secure domination number of generalised Mycielski graphs.

References

- [1] S. Arumugam, Karam Ebadi, Martn Manrique, Co-Secure and Secure Domination in Graphs, *Util. Math.*, **94** (2014), 167-182.
- [2] A.P. Burger, M.A. Henning, J.H. Van Vuuren, Vertex Covers and Secure Domination in Graphs, Quaest. Math., 31(2) (2008), 163-171.
- [3] A.P. Burger, A.P. De Villiers, J.H Van Vuuren, On minimum secure dominating sets of graphs, *Quaest. Math.*, **39(2)** (2016), 189-202.

- [4] E.J. Cockayne, P.J.P. Grobler, W.R. Grundlingh, J. Munganga, J.H. Van Vuuren, Protection of a graph, *Util. Math.*, 67 (2005), 19 32.
- [5] S.V. Divya Rashmi, S. Arumugam, I.Venkat, Secure Domination in Graphs, Int. J. Adv. Soft Computing. Appl., 8(2) (2016), 79 83.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, CRC press, (2013).
- [7] W.F. Klostermeyer, C.M.Mynhardt, Protecting a Graph with Mobile Guards, Appl. Anal. Discrete Math., 10(1) (2016), 1-29.
- [8] W. Klostermeyer, C.Mynhardt, Secure Domination and Secure Total Domination in Graphs, Discuss. Math. Graph Theory., 28(2) (2008), 267-284.
- [9] Lih-Sing Hsu, Cheng-Kuan Lin, Graph Theory and Interconnection Networks, CRC press, (2009).
- [10] W.Lin, J.Wu, P.C Lam, G.Gu, Several parameters of generalized Mycielskians, *Discrete Appl. Math.*, **154(8)** (2006), 1173-1182.
- [11] K.S. Savitha, A. Vijayakumar, Some network topological notions of the Mycielskian of a graph, AKCE Int. J. Graphs Comb., 13(1) (2016), 31-37.
- [12] K.S. Savitha, M.R.Chithra, A. Vijayakumar, Some Diameter Notions of the Generalized Mycielskian of a Graph, Lecture Notes in Comput. Sci., 10398 (2017), 371-382.
- [13] J.Xu, Topological Structure and Analysis of Interconnection Networks, Springer Science and Business Media, (2013).