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Abstract
Given a permutation m = (71,72, 73,...,Tn) over the alphabet
v = {0,1,...,n— 1}, m and iy, are said to form an adjacency if

g1 = T+ 1 where 1 < i< n— 1. The set of permutations over
¥ is a symmetric group denoted by S.. Sn(k) denotes the subset of
permutations with exactly k adjacencies. We study four adjacency
types and efficiently compute the cardinalities of S, (k). That is, we
compute for all k | S (k) | for each type of adjacency in O(n?) time.
We define reduction and show that S,(n —k) is 2 multiset consisting
exclusively of u € Z*t copies of Si(0) where p depends on n, k and
the type of adjacency. We derive an expression for u for all types of
adjacency.

Keywords: Adjacency, enumerative combinatorics, permutations, sym-
metric group, recurrences, time complexity.

1 Introduction

A permutation, on an alphabet ¥, is a sequence where every object in X
occurs precisely once. The set of permutations with n symbols is denoted
by S,. Given a permutation 7 in R, where 7= (w1, 72, 73,.....,Tn) over the
alphabet ¥ = {0, 1, ..., n—1}, m; and m; 1 form an adjacency if miy1 = mi+1;
we call this as a regular or Type 1 adjacency [4]. In contrast, m; and
m; form an inversion if m; > m; and i < j. Given w in Sp, (m, Tit1,
TipgyeyTj) i5 & sublist of m where 1 <1 < j < n. I,=1(0,1,2,..,n—1)
is the identity or sorted permutation of Sy; it has exactly n —1 Type
1 adjacencies. Likewise, the reverse order permutation denoted by R, is
(n—1,n—2,n—3,n—4,..,0); it has no adjacencies.

A natural way of sorting a permutation by comparisons is to increase
the number of adjacencies and reduce the number of inversions. Sort-
ing permutations with various operations has applications in genetics and
computer network architectures. In genetics, a genome is modelled by a
permutation and a mutation is modelled by the corresponding operation,
say a transposition. Given a permutation 7, a transposition 4(z, j, k) moves
the sublist (;,...,m;—1) to the position just after m,. A single application
of an operation that corresponds to a particular generator is called as a
move. For transposition, a generator is specified by a valid triplet (4, 7, k)
and all such triplets form a generator set of O(n?) size.
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The minimum number of moves that are required to sort a given per-
mutation n is called its distance. For example, the minimum number of
transpositions that are required to sort a given permutation 7 is called jtg
transposition distance, di(m). The problem of determining di(m) is known
to be computationally intractable [3]. Prefix transposition and suffix trans.
position are restricted versions of transposition where a moved sublist is
either a prefix or a suffix respectively. Transposition, prefix transposition,
and sufix transposition are called as block-moves [1].

Sn(k) denotes the subset of S,, with exaetly k& adjacencies. A maxima]

sequence of zero or more adjacencies between consecutive symbols of a per-
mutation is called as a block. If B = (m;, mi41...,m;) is a block then every
pair of consecutive symbols form an adjacency and ; and 7; do not form
adjacencies with m;_; and m;,, respectively. If = = (4,5,6,0,1,2,3) then
7 has two blocks (4,5,6) and (0,1,2,3) of sizes three and four respectively.
Further, (4,5,6) is the leftmost or leading block and (0,1,2,3) is the right-
most or trailing block.
A permutation with no adjacencies is irreducibe or reduced. Otherwise, it is
reducibe. A permutation 7 € S, (k) reduces to o € S,,_ k(0) if o is obtained
by eliminating all adjacencies in 7. For example, (3,4, 1, 2,0) in Ss re-
duces to an irreducible permutation (2, 1, 0) in S5. Let B denote ith block
from the left out of total p blocks of 7 and let B = (B, Bi, ... ,BE. )
The rank of B* is the rank of Bf when (B{, B, B, ..., BP) are considered
in increasing order. When the reduction process replaces a block B with
its first symbol f then we say that B is collapsed into f. In the following
Lemmas we show that reduction yields a unique permutation and then we
specify the resultant permutation. The following procedure reduces = into
a unique irreducible permutation. Chitturi and Das [4] design a linear time
algorithm to realize the same.

1: procedure REDUCE

g for all 7 do

3 replace B* with Bi.

4: from every remaining symbol greater than Bi subtract 4745, — 1.
5 end for

6: end procedure

Lemma 1 Procedure REDUCE yields a unique permutation.

Proof: Let B be the i*" block that will be processed in iterationi (1,2, .. ).
Let n;_; be the number of symbols in the resultant permutation at the end
of iteration z — 1. We prove the Lemma by showing that the following loop
invariant P holds after every iteration. P: Iteration i yields a unique per-
mutation with alphabet (0,1,2,...,n,_1 —(|Bf| - 1)) where all adjacencies
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in B® are eliminated.

The default values at the beginning of the first iteration are: the size
of imaginary block |B°| = 1 and ng = n — 1 so that the alphabet is
0,1,2,---,m — 1). P trivially holds at the beginning of the first itera-
tion. Clearly, all adjacencies in B? are eliminated in iteration i because
B¢ collapses into Bj. Consider the first iteration. We have following two
cases. Case(i): BY ~=n—1and Case(ii): Bi_., <mn—1. Recall that the
alphabet is (0,1,2,3,..: 0 =1).

Case(i): liast — 1 symbols with largest values are removed from their re-
spective positions of the current permutation and the symbols to their right
are moved to the left by 1jq5¢ — 1 positions. This clearly results in another
unique permutation over (0,1,2,...,n— (|1B] - 1)).

Case(ii): ligst — 1 symbols are removed from the current permutation
from their respective positions and the symbols to their right are moved
to the left by liae — 1 positions. Clearly this yields a permutation of
0,1,2,3,..., i Bt + liast, Bi + ligst +1,...,m — 1). However, all the
symbols with value greater than B} are decremented by ligs: — 1. Thus,
we obtain a unique permutation over (0,1,2,...,n — (|BY| - 1)).

This argument can be extended to the subsequent iterations. Thus, after
the last iteration we obtain a unique permutation in Sp_i(0) where k is
the total number of adjacencies in 7.8

In the above procedure we considered blocks from the left end. However,
the result holds even if we collapse the blocks in an arbitrary order.

Lemma 2 Let 7 be a member of S, constituted by exactly k blocks and
let o be its reduced form. The following assertions hold: (a) o € Sx(0) and
(b) a block with rank 4 in 7 reduces to ¢ in o.

Proof: Let the blocks be By, Ba, ..., Br with corresponding first symbols
fi, fay. .., fr where fi < fa <,..., < fi—1 < fi Because 7 is a permuta-
tion and from our definition of a block it follows that f; = 14+Xj=1...i-1|Bj.
Collapsing any B; where j > i does not alter B;. When all blocks B;
where j < % are collapsed, each block reduces in size by |B;| — 1 and all
symbols in B; are decremented by |Bj|—1. So, the total decrement for f;is
Ej:l...z'——l(lle —1). Thus,ino, fi =1+ Ej:l...i—llBj' = Ej:l...'i-l(Ile -
1) =1+ (¢ — 1) = 1. However, when B, is collapsed then corresponding to
B; only f; = ¢ remains.&

We extend Type 1 adjacency to yield three variations: Types 2 through 4.
Type 2 has an adjacency in addition to Type 1 where if 7, = n—1 then it
forms a b-adjacency with (an imagined) mn 41 = 7. Type 3 has an adjacency
in addition to Type 1 where if 71 = 0 then it forms an f-adjacency with
(imagined) mp = —1. Type 4 is the union of Type 1 adjacency, b-adjacency
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and f-adjacency. Christie [2] showed that if 7 is reduced to & then (i
di(m) = dy(0) and (ii) an optimum sorting sequence exists that does no
break any existing adjacencies in w. This result applies to all block-move
and yields a correspondence between adjacency types and types of block
moves. For example, Type 2 adjacency is directly applicable to a prefi;
transposition where a moved sublist is always a prefix. When we sort ¢
permutation with prefix transpositions then we need not move: n-1j
it is already in the last position and (ii) a tfailing block with highest ran]
if it exists [10]. Thus, the size of the perthutation that we need to sor
effectively reduces. In fact, the permutation that we need to sort is shorte;
than the given permutation by the number of adjacencies. Likewise, Typ
3 adjacency is directly applicable to a suffix transposition where a movec
sublist is always a suffix. Type 4 adjacency is directly applicable to a trans
position where any sublist can be moved. Here, if 0 is at the first index o
a leading block with lowest rank exists; or n — 1 is at the final index or :
trailing block of highest rank exists then they need not be moved again. Ir
fact, the permutation can be reduced and one can sort the resultant per-
mutation. This concept is employed to design a more efficient algorithrr
to sort permutations with transpositions [4]. Sorting permutations with
an operation O having a generator set G has applications in computation
of genetic dissimilarity (under O) and latency in computer interconnection
networks. Cayley graph with n! vertices and O(n!|G|) edges models the
interconnection network corresponding to O [4, 10].

The integer sequences that we generated in this article were also gen-
erated by other equations in other contexts. Tanny [8] calls Type 1 ad-
jacency a succession and Roselle (5] states that a rise in a permutation
exists at a position ¢ if m; < m;;;. Roselle determined the cardinality of
S(n,r,s), the number of permutations in Sy, with r rises and s successions:
S(n,r,8) = (";1)S(n — s, — 5,0). Tanny studied the cardinalities of the
sets of permutations with » symbols and k successions. He gave the ex-
pression for f(n, k) as follows where D; is a derangement number for size i.
Fln, k) = ("1} (D5 + Dr—1-k). Tanny also studied circular successions
where 7; and 7, form an adjacency if Ti+1 = (14 m;) where i +1 is com-
puted mod n. Tanny showed that limy o (Q*(n, k) /nl) = e~1/k! where
Q*(n, k) denotes the number of permutations with k circular successions.
The cardinalities of So(n) and S;(n) ete. for Type 1 adjacencies occur in
OEIS [6] with sequence numbers A000255, A000166 etc.. The cardinali-
ties of So(n), S1(n), S2(n),... of Type 2 adjacency (applicable to Type 3
adjacency also) occur in OEIS with sequence numbers A000166 denoting
subfactorial or rencontres numbers; derangements: number of permutations
of n symbols with no fixed points; A000240: rencontres numbers: number
of permutations of S,, with exactly one fixed point etc.. The cardinalities
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of So(n), S1(n) and Sz(n) of Type 4 adjacency occur in OEIS with the
following sequence numbers. A000757: Number of cyclic permutations of
n symbols with no [i] immediately followed by [i+1] where [;] denotes i
mod n; A135799: second column (k = 1) of triangle A134832 (circular
succession numbers); A134515: third column (k = 1) of triangle A134832,
etc..

We construct recurrence relations for the cardinality of S,(k), that is
f(n, k) for all types of adjacencies. We show that f (n, k) is exclusively
determined by f(n — 2,z) and f(n —1,y) for appropriate values of z and
y. Thereby, we show that f(n, k) for all k can be computed in O(n?) time.
Furthermore, we show that there are integral copies of S, (0) in S, (n — k).

2 Type 1 adjacencies

Recall that 7; and m;4; form an adjacency if 734y =m;+1. The following
Theorem establishes a recurrence relation to compute |S,, (k)| for the Type
1 adjacencies.

Theorem 3 Let f(n, k) be the cardinality of S,(k). Then f(n,k) =
fin=1L,k=1)+(n—-1—k)x f(n—1,k)+ (k+1)* f(r — 1,k + 1) where
02 k<n

Proof: We denote the number of adjacencies in a permutation 7 in S,
with a(7) and the number of permutations in S, having a(7) adjacencies
with f(n,a(m)). Recall that the alphabet of S,_; is {0,1,2,3,...,n — 2}
whereas the alphabet of S, has » — 1 in addition. Let a(r*) = ¢ for =*
in S,—1. When a 7 € S, is formed from 7* by inserting n — 1 we have
the following three cases: (i) a(m) = a(7*), (ii) a(7) = a(#*) + 1 and (iii)
a(r) = a(r*) — 1.
Case (i): If n — 1 neither succeeds n— 2 nor is inserted between a, a + 1 for
some a then o(r) = a(7*).
Case (ii): The symbol n —1 can create an adjacency only if it immediately
succeeds n — 2. However, in such a case it cannot destroy an existing
adjacency; a(m) = a(r*)+ 1. Thus, it is not possible to insert n—1 in any
position where it simultaneously creates one adjacency and destroys one
adjacency.
Case (iii): If n — 1 is inserted between a,a + 1 for some a then a(r) =
a(n*)—1. We determine the number of permutations 7 of S, with a(7) = k
that can be generated from some permutations in S,_; corresponding to
each of these cases.

In order to generate © € S,, from 7% € S,_; one can insert n — 1 in
any of the n positions corresponding to n — 2 internal and two external
positions. Let a(7*) = k. We want to determine for a given =* how many
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7 € S, exist such that a(n”) = a(n). However, in order to maintaj
the same number of adjacencies k + 1 positions are forbidden; % positiop
corresponding to existing adjacencies and one corresponds to b-adjacenc;
that is, placing n—1 in the last position. Thus, the contribution of Sn—1(k
to f(n,k)is (n—1—k)* f(n—1,k). Let a(r*)=k—-1. In order to create |
7 € Sy from 7* where a(r)= k the only possibility is that n — 1 is inserte
to the immediate right of n — 2. Thus, contribution of Sn—1(k = 1)
f(n, k) is exactly f(n—1,k — 1). Finally, we determine the contributioy
of Sn_1(k+ 1) to f(n, k). Here, any one of the & + 1 adjacencies can b,
broken by inserting n— 1 in between. Thus, the contribution of Sn—1(k+1
to f(n,k)is (k+ 1)« f(n—1,k + 1). Note that f(n, k) is restricted to th
above cases. The Theorem follows.H

3 Adjacency Variations

3.1 Type 2 adjacency

Type 2 adjacency has b-adjacency in addition to the adjacencies of Type
1. If m,= n—1 then w,, and (imagined) 7,11 = n form an adjacency. I,
has n adjacencies and R,, has zero adjacencies. If 7 = (4635021 7)
then (4 6 3 502 1) is the reduced form of it where Ty is deleted because
mn=n—1. Type 2 and Type 3 are symmetric.

Theorem 4 Let f(n, k) denote the number of permutations in S, with
exactly k adjacencies. Then the recurrence relation for f(n, k) is:

f(n k) = (f(n—1,k—1) —f(n—2,k—2))*2+}°(n~2,k’—2)+

(F(n =1k +1) ~ f(n—2,k) (k+1) + f(n—2,k) » (n — k — 1)+
(f(n=1,k)— f(n—2, k—1))x(n—k—2)+ f(n—2, k+1)x(k+1); 0<k <n.

Proofs for Theorems 4, and 6 are identical. Please refer to the proof of
Theorem 6.
3.2 Type 3 adjacency

In Type 3 adjacency if 7 = 0 then (imagined) my = —1 and 7, form an
adjacency. I, has n adjacencies and Ry has none. Type 2 and Type 3
adjacencies are symmetrical. The recurrences governing |Sk(n)| for all k
and their base values are identical for Type 2 and Type 3 adjacencies.

3.3 Type 4 adjacency

Type 4 adjacency has a b-adj acency and an f-adjacency in addition to Type
1 adjacency. I, and R, have the maximum and the minimum number of
adjacencies; n+1 and zero respectively. If r = (0463521 7) then (4 6 3
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52 1) is the reduced form of it where 7, is deleted because 7,= n—1 and
1 is deleted because m1= 0. Theorem 6 establishes a recurrence relation
to compute | Sk(n) |. First, we prove the following lemma.

Lemma 5 The number of permutations in S,_; with k+1 Type 2 or Type
4 adjacencies that do not end with n —21is f(n — 1,k + 1) — f(n — 2,k).

Proof: Let n—2 be in the last position then it forms a b-adjacency. Thus,
the remaining n — 2 symbols that belong to S,_2 must form k adjacencies.
Among these symbols if n — 3 is placed in position n — 2 it is considered
as a b-adjacency (however, it forms a regular adjacency with n — 2 that is
already in position n — 1). That is, we are looking at all ways of obtaining
k adjacencies with n — 2 symbols. The corresponding count is f(n — 2, k).
So, the number of permutations with k 4 1 adjacencies that do not end

withn—2is f(n— 1,k + 1) — f(n —2,k).

Theorem 6 Let f(n,k) denote the number of permutations in S, with
exactly k adjacencies. Then the recurrence relation for f(n, k) is:

fn, k) = (f(n—1,k) — f(n—2,k~1)) *(n—k—2)+

(f(n—1,k—1)— f(n—2,k—2)) * 2+

F(n—2, k—2)+ (f(n—1, k+1)— F(n—2, k) (k+1)+ f(n—2, k) x (n—k—1)+
f(n—2,k+1)x(k+1); 0<k<n+Ll

Proof: If 7, = n — 1 then 7, and imaginary m,4; form an adjacency.
Likewise, if m; = O then imaginary m9 = —1 and m; form an adjacency.
The recurrences are formed by studying the composition of 7 € S, from
n* € S,,_1 by inserting n — 1. Such composition can be partitioned into the
following cases where m € S, (k) can be obtained only from permutations
in Sp_1(x) where z € {k — 1,k,k + 1,k +2}. First we list the cases and
then we show the respective contribution of each case.

Case(i) z =k, that is a(7) = a(n*). The insertion of n —1 does not alter
the number of adjacencies.

Case(ii) ¢ = k — 1, that is a(m) = a(r*) + 1. n — 1 immediately succeeds
n—2, T, =n—1 or both. The last scenario occurs when 7, _; = n—2. Then
if 7, = n — 1 then the b-adjacency of n — 2 is broken. However, a regular
adjacency (between n —2 and n — 1) and one b-adjacency (7, =n—1) are
created.

Case(iii) ¢ = k + 1, that is a(r) = a(r*) - L. If 7},_; #n—2and n—1
is inserted between z,z + 1 for some x then a(r) = a(r*) — 1. Also, if
7% _, = n—2 then n—1 can be inserted in a position where it neither breaks
or creates an adjacency. That is, position n where it creates an adjacency
(Case (ii) covers this scenario) and k + 1 positions where adjacencies exist
are forbidden.

Case(iv) =z = k + 2, that is e(r) = a(r*) — 2. Consider 7" where
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Tp—1 = n — 2; here n}_; and (imagined) 7 form an adjacency; thus,

if n—1 is inserted into 7* in a position other than = then o) = a(r*) -1
further if n — 1 breaks an existing adjacency in 7* then a(r) = a(r*) - 2,

Contribution of Case(i): z = k. The number of permutations in Sh
that 7 generates such that a(7*) = a(r) is to be determined. To generate
T € 5, from 7 € S,_; one can insert n—1 in any of the n positions (n— 2
internal positions and the two extremes). <

Case(i~a): 7;_; =n —2. If n — 1 is inserted in the last position then
the number of adjacencies increases by one. That is, n — 1 forms two new
adjacencies by being at the last position and by succeeding n— 2. However,
the existing adjacency of n— 2 by being at the last position of its respective
permutation is broken yielding o(m) = k + 1.

If 7, # n — 1 then the existing adjacency of the last symbol of Ty i€
n — 2 is automatically broken because after inserting n — 1, n — 2 is not
the largest symbol. If n — 1 does not break an existing adjacency then one
obtains a(r) = k—1. Further, if n—1 breaks an existing adjacency of Type
1 then a(7) = k — 2. Thus, for this sub-case a(r)e {k+1,k—1k— 2}.
That is, if x = k and 7},_; = n — 2 then no permutations in Sn(k) can be
generated.

Case(i-b): 7}_; # n—2. If n — 1 is inserted in a position where it does
not create or break an adjacency then a(r*) = a(r). Out of n positions
n — k — 2 positions exist where n — 1 can be inserted. % of the excluded
positions correspond to existing adjacencies in 7* that must not be broken.
The remaining two excluded positions correspond to n and the position
succeeding n — 2 where the insertion would create a new adjacency.

Per Lemma 5, f(n — 1,k) — f(n — 2,k — 1) denotes the number of per-
mutations where m;_; # n —2 and a(7*) = k. Thus, the contribution of
Sn-1(k) to f(n,k) is (f(n—1,k) — f(n— 2,k — 1)) % (n— & — 2).

Contribution of Case(ii): z = k — 1. If Tp_1=n—2then m, =n— 1;
the corresponding contribution is f(n—2, k—2). Ifr}_, #n—2thenn—1
can be inserted at the last position or immediately after n — 2 with a con-
tribution of (f(n—1,k—1)— f(n—2,k— 2)) 2. Thus, the contribution of
Sn-1(k—1) to f(n,k) is (f(n—1,k—1)— f(n—2,k—2))+24+ f(n—2, k—2).

Contribution of Case(iii): z = k 4+ 1. If Tp—1 # n — 2 then any of the
existing k 4+ 1 adjacencies can be broken. Otherwise, 7, #n—1and n— 1
does not break any of the existing & adjacencies; hence the last position and
k other positions, i.e. a total of k + 1 positions are forbidden. Recall that
(f(n—1,k+1) — f(n—2,k)) is the number of permutations in S _1 with
k+1 adjacencies that do not end with n — 2 (Lemma 5). Thus, the contri-
bution of S,_1(k+1) to f(n,k) is (f(n—1,k+1) — f(n—2, k) *(k+ 1)+
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f(n—2,k)* (n—k—1).

Contribution of Case(iv): =z = k + 2. Two of the existing adjacen-
cies must be broken. Note that by inserting » — 1 between a and a + 1
for some a only one adjacency can be broken. Thus, the only feasibility is
that m%_, = n— 2 and n — 1 breaks one of the existing Type 1 adjacencies.
That is, by not being in the last position of 7, n —1 breaks the existing
b-adjacency of n — 2 in 7*. Additionally, it breaks a Type 1 adjacency.
Thus, the contribution of S,_1(k +2) to f(n,k) is f(n—2,k+ Dx(k+1).
The Theorem follows. &

Consider Type 2 and Type 4 adjacencies. When a permutation 7 starts
with a O then the number of Type 4 adjacencies of 7 is one greater than
that of Type 2 adjacencies. In general, the cardinalities of Sy (k) differ for
Type 2 and Type 4 adjacencies. However, the cases shown in the proof of
Theorem 6 are identical to the cases one obtains for Theorem 4. Thus, the
recurrence relations are identical. By symmetry, Type 2 and Type 3 have
the same recurrence relation. Therefore, the proof of Theorem 6 suffices
for Type 2, Type 3 and Type 4.

Theorem 7 (a) There are integral copies of Sg(0) in Sy(n — k). Let the
multiplicative factor be p € Zt. (b) For Type 1, p = (::{ ); for Type
2, p= X7 ("27"); for Type 3, pu = TP F (™7!) and for Type 4,
p= (o)) + 2 () + BT T (),

Proof: When permutations are denoted by their reduced forms, for any
type of adjacency, we seek to show that S,(n — k) is a multiset composed
exclusively of some u € Z* copies of Sk(0). 7 in S,(n — k) yields a par-
ticular -y of Sk(0) upon reduction (Lemma 1). Let & denote concatenation
operation where (7\".,', Tigly---s ﬂ'j) & (1rj+1, Mi42y--- ,‘Il'k) = (71‘,;, (EES PRI
TiyTiaty - Tk). (AL, A%, A% ., A¥)is a k-cut of I, if Al A2 A3e, ...,
DAF = I,,. Let rank(vy;) denote the rank of ; in v and the rank of A be the
rank of A% in {4], A3, ... A%} Let A= (A, A2 A3, .. A) be a k-cut of
I,,. Consider a permutation of A* of A where A* = (A%, A A%, .., A%)
and rank of A% equals rank(vy;). Due to Lemmas 1 and 2 we have the
following result.

The permutation A* = A» @ A2 ® A%®, ..., &A™ reduces to 7. (D

We call the leftmost and the rightmost blocks as the leading and trasling
blocks respectively. For each type of adjacency we consider an arbitrary
permutation 7y in Sy (0) and show that a particular number of permutations
from S, (n — k) reduce to it. Because this applies to every permutation in
Sx(0) it follows that there are integral copies of Sk(0) in Sp(n— k) proving
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part (a) of Theorem.

Type 1 adjacency We seek to count the number of permutations 7 in 5
that yield  in Si(0) upon reduction. Due to (I), A* is the only permy.
tation of A (where A is a k-cut of I,,) that reduces to . So, we have the
following result.

The number of valid k-cuts of I,, determine the number of permutations in
S, that yield ~. s - (I1)
Any k-cut A is specified by assigning size to each of A° (that is speci-
fying |A®| for all 1); the contents of A¢ are automatically determined. For
example, consider a 3-cut of I5 where [A!] = 1, |A?| = 2 and |43 = 2.
Clearly, the 3-cut is ((0),(1,2),(3,4)). That is, any valid k-cut can be
specified by assigning |A*| for all ¢ such that |4?| > 0 and $|A’| = n. The
solution to this problem is given by the number of solutions to the following
integer solutions problem: z;+ x5+, ..., zr = n where for all 5 z; > 0. The

number of solutions is (-] ). The next statement follows.

There are exactly (Ej ) copies of Sk(0) in S, (n— k) for Type 1 adjacency.
(I11)

Type 2 adjacency includes b-adjacency. Thus, a trailing block with highest
rank vanishes. That is (2,3, 1,4, 5,6) in its reduced form is (2,3,1) where
(4,5,6) vanishes due to b-adjacency. Due to this property, for Type 2 ad-
Jacency, there are additional permutations in Sn(n — k) that reduce to a
particular permutation -y in Sk (0) when compared to Type 1 adjacency. For
example, let (3,2,1) of S3(0) be obtained by reducing a permutation 7 in
S4(1). For Type 1 adjacency, the possibilities for 7 are (3,4,2,1),(4,2,3,1)
and (4,3, 1,2). However, for Type 2, 7 can also be (3,2,1,4). That is, a
trailing block of highest rank can exist that will vanish upon reduction.
Likewise, (3,2,1,4,5) and (3,4, 2, 1, 5) of S5(2) also yield (3,2, 1) of S3(0)
where the trailing blocks with highest rank are of sizes two and one re-
spectively. The reduced permutation has k symbols. Thus, the size of the
trailing block with highest rank is at most n — k. The statement below
follows.

A given trailing block with highest rank yields additional permutations in
Sn(n—k) for Type 2 adjacency. (IV)

Similar to Type 2 adjacency, in Type 4 adjacency a trailing block with high-
est rank vanishes. Moreover, due to the presence of additional f-adjacency,
a leading block with lowest rank also vanishes. Thus, the next observation
follows.

Every combination of a leading block with lowest rank and a trailing block

192



with highest rank yields additional permutations in S,(n — k) for Type 4
adjacency. (V)

Type 2 adjacency From (IV) there are (?-1) + b copies of Sp(n — k) in
§,, where b is the number of permutations due to a trailing block with high-
est rank. Clearly, this block can have sizes 1,2,...,n — k. In fact, (77} )
corresponds to the case when trailing block does not exist. Let the size of
the this trailing block be ¢ then the remaining n — 7 symbols must form &
blocks. The corresponding count due to (III) is (™;*7!). The next result
follows. Note that for Type 3 adjacency, leading block with lowest rank
takes place of the trailing block with highest rank. Thus, due to symmetry,
this result holds for Type 3 adjacency also.

The total count for Type 2 adjacency is £27F ("7:7"). (VI)

Type 4 adjacency Similar to Type 2 adjacency, we have up to n — k
adjacencies that can exist in the trailing block with highest rank; however,
we can also have up to n— k adjacencies that can exist in the leading block
with lowest rank (V). Thus, we have the following cases: (i) Neither a lead-
ing nor a trailing block that will vanish upon reduction exists. (i) Trailing
block that will vanish upon reduction exists. (iii) Leading block that will
vanish upon reduction exists. (iv) Both a leading block and a trailing block
that will vanish upon reduction exist. (III) yields the corresponding solu-
tion for Case(i). When the lower index starts from one instead of zero then
(VI) yields the corresponding solution for Case(ii). Recall that i = 0 in
(VI) corresponds to a lack of either leading or a trailing block and this sce-
nario is already covered in Case(i). Case(iii) and Case(ii) are symmetric.

Case(iv): First we observe that the lengths of leading and trailing blocks
uniquely specify them. A leading block of length 7 is (1,2,3,...,i) and a
trailing block of length ¢ is (n —i,n—31+1,...,n—2,n — 1). Thus, the
lengths vary from 1 through n — k — 1. Note that if the length equals n—k
then either the leading or the trailing block is present and these scenarios
are covered by Cases (ii) and (iii). The subcases for the trailing block are
analyzed here. When the trailing block has size 7 then the leading block has
size j where j € {1,2,...,n—k—t}. For each valid value of j, the remaining
n—i—j symbols that do not belong to either the leading or the trailing block
form k Type 1 adjacencies. Thus, the total number of such permutations
is given by E?;lk—lﬂ_’;-’;f =t (n’,ij_l ) Let the size of the leading block be
i. Then the possible sizes of trailing block are {1,2,...,n —k —i}. How-
ever, when each of these sizes is considered for the trailing block then size
i for the leading block is also considered. Thus, all cases are covered and
the above equation yields the final count for Case(iv). Thus, for all cases

n—i-j—1

the total count is (z:} ) +2(E?;1k (",;i—ll ))+2?;1k_12?;f—i ( ) |

193



Let R be the subset of S, containing all reducible permutations of 5.
in reduced form. Then S,(0)J R is called a vector alphabet of S,, and it
is denoted by v(S,). Note that vector alphabet has permutations from
{S1,S2,53,...,5,}. Let n+ ¢ be the maximum possible adjacencies for
a given Type (1, 2, 3, or 4) of adjacency. That is, § = —1,0,0, 1 respec-
tively for adjacency Types 1 through 4. Let (Sk(0))°* denote c; copies of
the set Si(0) where ¢, € Z*. The corollaries given below follow. All per-
mutations are presumed to be represented by ‘their corresponding reduced
permutations.

Corollary 7.1 v(S,) = 7’H"s,S’k(O) ¢
Corollary 7.2 S, = Upt2(5,(0)) ¢

Corollary 7.3 For sufficiently large n, [v(Sn)| < (1 + €)|S.(0)]| for some
e— 0T,

Proof We denote |S;(0)| by s;. |S,(0)| = n!/e [5] [9].

V(Sn)] = Ty 50

=8n+8p-1+8sn—2+...+85 2

nlfe+ (n—1)/e+ (n—2)/e+ (1)!/e=
nl/e(l+1/n+1/(n(n—1))+...+1/n!).

For sufficiently large n and w — 0", the above expression is bounded above
by n!/e(1+ (1 +w)/n) < (1+¢€)|Sn(0)|. € can be made arbitrarily small by
choosing correspondingly large value for n.

Theorem 8 Cardinalities of S, (k) can be computed for all k in O(n?2)
time. '

Proof: Consider Type 2 adjacency. For a particular i and j we have the
following equation where f(i,7) denotes the cardinality of S;(5). f {1,7) =
(FG=1,7~1)~ f(i— 2,7 —2) 2+ fG—2,j — 2+
(FE—-L3+1)~fGE—2,7))*G+1)+ FE—2,5) (-5 — 1)+
(FG=1,5) = Fli— 27— 1) * (i—5—2)+ fli— 2,5+ 1)+ (G +1).

The computation of f(z,5) is done with direct dynamic programming.
Imagine a n x n table F' where F(s,j) is to hold the value of f(1,7). We
fill this matrix row wise starting from row 1. Clearly, F(1,0), F(1,1),
F(2,0), F(2,1) and F(2,2) can be easily computed by direct enumeration
of permutations of sizes one and two. Consider the computation of F(3,7)
it depends only on F(1,z) and F(2,y) for some values of z and y. However,
these values are already computed. Because there are fixed number of terms
on the RHS of the equation, F(3,j) can be computed in O(1) time. This
argument holds for any F(i, j) for 2 > 2. Table F has n? entries. Thus, for
all ¢ and j, F(¢,7) can be computed in n? O(1)= O(n?) time. Recall that
F(n, k) equals cardinality of S, (k). So, the last row contains cardinalities
of Sn(k) for all k. This argument holds for all adjacency types.HB
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Conclusion

The cardinalities of S, (k) i.e. ¥ | Sn(k) | for a given type of adjacency are
computed in O(n?) time. It is shown that an integral copies of Si(0) exist
in Sp(n — k) for all types of adjacency and the associated multiplicative
factors are derived.
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