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Abstract

In this paper we provide bounds for the crossing number of mesh
connected trees and 3-regular mesh of trees.
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1 Introduction

A drawing D of a graph G is a representation of G in the Euclidean plane
R? where vertices are represented as distinct points and edges by simple
polygonal arcs joining points that correspond to their end vertices. A
drawing D is good or clean if it has the following properties: no edge
crosses itself, no pair of adjacent edges crosses, two edges cross at most
once, not more than two edges cross at one point.

The number of crossings in a drawing D is denoted by Cr(D) and is
called the crossing number of the drawing D. The crossing number Cr(G)
of a graph G is the minimum Cr(D) taken over all good drawings D of
G. If a graph G admits a drawing D with Cr(D) = 0 then G is said to
be planar; otherwise it is non-planar. The study of crossing numbers has
applications to VLSI design in theoretical computer science [6]. The VLSI
(Very-large-scale integration) is the process of creating an integrated circuit
(IC) by combining hundreds of thousands of transistors or devices into a
single chip. VLSI began in the 1970s when complex semiconductor and
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communication technologies were being developed. The microprocessor is
a VLSI device. The grid and the mesh of trees are among the best-known
parallel architectures in the literature. Both of them enjoy efficient VLS]
layouts. Most of the problems of VLSI design are modeled to some graph
theoretic problem and most of the algorithms of VLSI physical design are
based on graph structure.

For an arbitrary graph computing Cr(G) is NP-hard [5]. Hence from
a computational standpoint, it is infeasible to obtain exact solutions for
graphs, in general, but more practical to explo?e bounds for the parameter
values {3]. In this paper we consider the class of parallel architectures,
called the mesh-connected trees [4] and 3-regular mesh of trees [8]. These
networks are widely used in the area of broadcasting [7].

We obtain bounds for the crossing number of mesh connected trees,
propose a new drawing and obtain a finer bound. We also consider the
crossing number problem for the 3-regular mesh of trees. The problem of
determining the VLSI layout area is open.

2 Mesh connected trees

A complete binary tree with h levels, denoted T'(h), has 2" — 1 vertices and
2" —2 edges. The root of T'(h) which is assumed to be at level 1, has degree
2, and each internal vertex has degree 3. The diameter of T'(h) is 2(h — 1).
Throughout this paper the symbol N stands for 2% — 1.

The mesh connected trees or simply the MCT network is the multi-
dimensional cross product of complete binary trees [4]. Informally, the
NT-node r-dimensional MCT, denoted as MCT,(N), is obtained from the
NT-node r-dimensional grid by replacing the liner connections along each
grid dimension by the connections of an N-node complete binary tree.

The notation MCT [4] is used to refer generically to the class of net-
works that are called mesh connected trees, while the notation M CT.(N)
is used to refer specifically to the N™-node r-dimensional grid by replacing
the linear connections along each grid dimension by the connections of an
N-node complete binary tree. Figure 1 shows the 49-node 2-dimensional
mesh connected trees MCT5(7).

The N™ node r-dimensional mesh-connected trees, MCT,.(N), is the
graph whose vertices comprise all the r-tuples ¢ = z,_q,- - -, &1, Lo, such
that, for every ¢, z; is a vertex of T'(h), and the pair (z,y) defines an edge
in MCT,(N) if and only if « and y differ exactly in one index position i and
(z3,;) is an edge in T'(h). In what follows we let » = 2 and we estimate
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Figure 1: MCT,(7) or M(3)
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the crossing number of MCT(N), N = 2h _1. For convenience of notation
we write MCTo(N) as MCTy(h) or simply M(h). There are three types
of trees in M(h); row trees, column trees and middle trees. Further there
are four subnetworks M{h — 1) in M(h). We call these subnetworks as
top left (TL), top right (TR), bottom left (BL) and bottom right (BR)
subnetworks.

In the construction of M (h), the roots of the row trees, column trees
and middle trees of the four copies of M (h — 1) are connected by paths of
length two (trees on three vertices). The new vertices are connected so as
to form two middle trees in M (k). The edges of the trees on three ver-
tices are termed as additional row edges (ARE), additional column edges
(ACE) and additional middle edges (AME). These additional edges cross
the four subnetworks M (h — 1) and contribute to the crossing number of
M (). There are three types of crossings in M(h).

1. Crossing of the additional row or column edges of M(h) with the
edges of M (h —1).

2. Crossing of the additional row or column edges of M(h) with the
additional column or row edges of M(h).

3. Crossing of the additional middle row or middle column edges of M (h)
with those of M (h).
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In the study of crossing numbers there is no specific method to obtain a
lower bound for the crossing number. There is a simple inequality men-
tioned in [2] that provides a lower bound for the crossing number. This
may or may not match with an upper bound. We use the notation cr(A, B)
to denote the number of crossings between any two edge subsets A and B
(10].

Theorem 2.1. (g (Eiler’s formula) In a connected plane graph G with v
vertices, € edges and ¢ faces (regions), v — € . = 2.

Theorem 2.2. [ If G is a connected plane graph with girth g, then g¢ <
2e.

Let D be a good drawing of M(3) as in Fig.1. Then we have the fol-
lowing result.

Lemma 2.3. Let G be M(3). Then Cr(G) < 28.
Theorem 2.4. Let G be M(h),h > 3. Then

h—3 .
Cr(G) < Z4h‘2"i[(i+1)2i+2(2i+1~1)+(i3+i)+2i+1(2“'+1—1)+(i.2i+1+1)]

=0

Proof. We use induction on k. By Lemma 2.3, the theorem is true for 4 — 3.
We first prove that it is true for h = 4. Let D be a, good drawing of M (4) as
in Fig.2. There are four copies of M (3) in M (4) along with additional edges.
To estimate Crp (M (4)) we use the bound for Crp (M(3)) from lemma,
2.3 and using symmetry of the network we begin counting the number
of crossings of the additional row edges with the edges of top left (TL)
subnetwork.

We observe that the top left subnetwork is M (3) and it contains four
copies of M(2). The additional row edges in M(4) cross the edges of two
copies of M(2). This accounts for 22(3) number of crossings. Further the
additional row edges cross the M (3) edges other than those in M (2). This
accounts for 22(3) number of crossings. Hence the number of crossings of
the additional row edges with the edges of top left (T'L) subnetwork is
23(3).

In the case of the number of crossings of additional row edges with the
edges of top right subnetwork (T'R) it is the same count as above together
with two extra crossings. Hence the number of crossings of additional row
edges with top left and top right subnetworks is 2(23(3)) + 2. A similar
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Figure 2: M(4)

count is obtained in bottom left (BL) and bottom right (B R) subnetworks.
Thus Crp (ARE, M(4)) = 4 (23(3)) +2(2). Similarly Crp (ACE, M(4)) =
4(23(3)) +2(2).

The next count is the number of crossings of the additional row edges
with additional column edges. In T'L this count is 3(3). The count in T'R

is 3(3) along with 3 extra crossings. In BL the count is 4(3) and in BR
the count is 4(3) along with 3 extra crossings. Thus

Crp (ARE, ACE) = (2-3(3) +3) + (2-4(3) + 3)
=2*.3

The number of crossings of the additional middle row or additional middle
column trees with additional column edges or additional row edges of M (4)
is 5 each. Thus Crp (AME, M (4)) = 4(5). Consequently

267



Crp [M(4)] = 4Crp (M(3)) + Crp (ARE, M(4)) + Crp (ACE, M(4))
+Crp (ARE, ACE) + Crp (AME, M(4))
= 4(28) +4 (2°(3)) +2(2) + 4 (2°(3)) + 2(2) + 2*- 3+ 4(5)
= 380

proving the result for A = 4. Assume that the theorem is true for A =
k,k > 4. We prove that it is true for h = k + 1. It is clear that M(k + 1)
contains 4 copies of M (k). As before using symmetry of the network we
begin counting the number of crossings of the additional row and column
trees with the edges of the top left (T'L) subnetwork. There are (2* — 2)
additional row edges of M (k+1) contributing to the crossing number of D.
Each of a collection of 2¢~1 additional row edges crosses (25! — 1) mesh
edges. Further the additional row edges cross the non-mesh edges of M (k),
(k —2)2%=1(2*=1 _1) number of times. This is because of the count follows
the pattern 1-22(3),2-2%(7), 3-2%(15), etc. Hence the number of crossings
of the additional row edges of M (k + 1) with the top left (T'L) subnetwork
is 2k—1(2k~1 _ 1) 4 (k — 2)25-1(2%-1 — 1) = (k — 1)2%Y (21 _1). In
the case of the number of crossings of additional row edges with the edges
of TR, the count is the same but with (k — 2)3 4 (k — 2) extra crossings.
This is because the extra crossings in TR follow the pattern 2 = 13 4 1,
10=2%+42, 30 = 3% + 3 for k = 3,4 etc. Hence

Crp (ARE,M(k+ 1)) = 4(k— 12121 1) + 2 ((k - 2)* + (k — 2))

Similarly the number of crossings of the additional column trees with the
edges of M(k + 1) is given by

Crp (ACE, M(k+1)) = 4(k — )25 1251 — 1)+ 2 ((k - 2)° + (k - 2))

The next count is the number of crossings of the additional row edges with
additional column edges. In TL this count is (2=1 — 1)(2*~1 — 1). The
count in TR is (251 — 1) along with (25~ — 1) extra crossings. In BL
the count is 25~1(2¥=1 — 1) and in BR the count is 2~1(2*~! — 1) along
with (28—1 — 1) extra crossings. Thus
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Crp (ARE, ACE) =2 (261 —1)® 4 (251 1) 4 2. 28— (251 _ 1')
+ (281 =1)
= (21 —1) 28!

‘he number of crossings of the additional middle row or additional mid-
le column trees with additional column edges or additional row edges
f M(k+1) is (k —2)2¢~! + 1 each. Hence Crp (AME, M(k+1)) =
[k —2)2k~1 + 1]

“hus

Jrp [ARE, M(k + 1)] + Crp [ACE,M(k+1)] + Crp [ARE, ACE]

Crp [AME, M(k + 1))

= 4k — 125125 — 1)+ 2((k - 2)° + (k- 2))

Ak —1)2F 1@ = 1) +2((k—2)° + (k- 2) + o= _ fjpetd
+4((k—2)25"1+1)

= 8(k — 1)2F 125t — 1)+ 4((k—2° + (k—2) + (2% — 12kt
+4((k—2)2°"1 + 1) '

— a2k —1)2F 1@ =) + (k-2 + (k- 2) + fi-L 2

+(k—2)25"1 +1)

=4[k - 125 ~ 1)+ (k -2’ + (k-2 + (2‘° L3

+ (k—2)251 4+ 1]

We now proceed to the main proof. By induction hypothesis

k-3 .
Or (M(k)) = Y 45727 (i + 1222 — 1) + (& +4)
1=0
+ 2i+1(2z‘+1 . 1) ot (2 . 2i+1 + 1)]

Now,
Cr(M(k+1)) = 4(CrM(k)) + Additional crossings in M (k + 1)
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k-3

= 4[2 4"“2""[(2' + 1)2i+2(2i+1 — 14 (3 + i) + 201 (21 _ 1)
i=0

+ (-2 4 )]+ 4[((k —1)2%25 1 — 1)+ (k—2)° + (k- 2)

+ (21 —1)2k=1 4 (k- 2)2k-1 4 q)

k-3
=) 451G 4 1)27 22— 1) o (B 4 ) 4+ 20 (28 )
=0 3

+ @2 )]+ 4k - 2R - 1)+ (k- 2)° + (k- 2)
+ 2571 QR L 1) 4 (k- 2)28 1 1)
k-2
= Y AR 4 1)2 2@ 1) 4 (68 ) 4 20 (2 )
=0

+ (¢ - 27 4 )]

a

3 Proposed new drawing of mesh connected
trees

In this section we propose a new drawing of the mesh connected trees M (h).
We describe the drawing for M(3) and use it to construct M (h). The row
trees and column trees in M (3) are divided into two types each. The row
tree in Fig.3(a) is called a row tree of type(1) and a reflection about a
horizontal line is called a row tree of type(2). The column tree in Fig.3(b)
is called a column tree of type(1) and a reflection about a vertical line is
called a column tree of type(2). This applies only for drawing. The mesh
connected tree M (3) contains seven row trees and seven column trees. The
row trees in M(3) will be as follows: two row trees of type(1), one row tree
of type(2), two row trees of type(1) followed by two row trees of type(2).
The rotation through 90° of the row trees in the anticlockwise direction
gives the column trees. The middle row tree is a row tree of type(1) and
the middle column tree is a column tree of type(2).

As in the previous section, there are four subnetworks M (h—1) in M (h)
called top left (T'L), top right (T'R), bottom left (BL) and bottom right
(BR) subnetworks. In the construction of M(h), h > 3 the roots of the row
trees and column trees of M(h — 1) are connected by paths of length two
(trees on three vertices). The new vertices are connected suitably to form
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Figure 3: (a) A row tree of type(1), (b) A column tree of type(1), (c) M(3)

middle trees in M (k). These additional trees (row or column) continue to
be of types(1) or (2) depending upon their types in lower dimension. The
additional edges are termed as additional row edges (ARE), additional
column edges (ACE) and additional middle edges (AME).

These additional edges cross the four subnetworks M (h — 1) and con-
tribute to the crossing number of M (k).
In what follows we count Crp (ARE, M(h)),Crp (ACE, M(h)),
Crp (ARE, ACE) ,Crp (AME, M(h)). We have the following result from
Fig.3(c).

Lemma 3.1. Let G be M(3). Then Cr(G) < 16.
Theorem 3.2. Let G be M(h),h > 4. Then

h-3
C’J"(G) & 22h—2 £ Z4h—2—i[6 (2i+1 . 1) (2i+1 _ 3) s (2’54—1) + (23 + Z)
i=1

+ 2i+1 (2i+1 . 1) + (Z 3 2i+1 4 1)]

Proof. We use induction on h. By Lemma 3.1, the theorem is true for A = 3.
We first prove that it is true for h = 4. Let D be a good drawing of M(4)
as in Fig.4. There are four copies of M(3) in M(4) along with additional
edges. To estimate Crp (M(4)) we use the bound for Crp (M(3)) from
Lemma 3.1 and using symmetry of the network we begin counting the
number of crossings of the additional row edges with the edges of top left
(T'L) subnetwork.

We observe that the top left subnetwork is M(3) and it contains four
copies of M(2). The additional row edges does not cross the edges of M(2).

271



The additional row edges of M(4) cross the top left subnetwork of M (3)
edges 3(3)+2 number of times.

In the case of the number of crossings of additional row edges with the
edges of top right subnetwork (T'R) it is the same count together with 9
extra crossings. Hence the number of crossings of additional row edges
with top left and top right subnetworks is 2(3(3)+2)+2. A similar count is
observed in bottom left (BL) and bottom right (BR) subnetworks. Thus
Crp (ARE, M(4)) = 4(3(3)+2) + 2(2). Similarly Crp (ACE, M(4)) =
4(3(3) +2) +2(2).

The next count is the number of crossings of the additional row edges
with additional column edges. In T'L this count is 3(3). The count in TR
is 3(3) along with 3 extra crossings. In BL the count is 4(3) and in BR
the count is 4(3) along with 3 extra crossings. Thus

Crp (ARE, ACE) = (2-3(3) +3) + (2-4(3) + 3)
= 16(3)
=2%.3

The number of crossings of the additional middle row or additional middle
column trees with additional column edges or additional row edges of M (4)
is 5 each. Thus Crp (AME, M(4)) = 4(5). Consequently

Crp [M(4)] = 4Crp (M(3)) + Crp (ARE, M(4)) + Crp (ACE, M(4))
+Crp (ARE, ACE) + Crp (AME, M(4))
= 4(16) + 4 (3(3) +2) + 2(2) +2(2) + 4 (3(3) + 2) + 2(2)
+2% -3 4 4(5)
ws P08

proving the result for ~ = 4. Assume that the theorem is true for b —
k,k > 4. We prove that it is true for h = k + 1. It is clear that
M(k + 1) contains 4 copies of M (k). As before using symmetry of the
network we begin counting the number of crossings of the additional row
and column trees with the edges of the top left (T'L) subnetwork. There
are (2% — 2) additional row edges of M (k 4+ 1) contributing to the crossing
number of D. The additional row edges cross the non-mesh edges of M (k),
3(25=1—1)(2"1 — 3) + 252 number of times. This is because of the count
follows the pattern 3(3)+2, 15(7)+4, 39(15)+8, etc. Hence the number of
crossings of the additional row edges of M(k + 1) with the top left (T'L)
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Figure 4: M (4)

subnetwork is 3(26—1 — 1)(2F~1 — 3) + 2¥=2. In the case of the number of
crossings of additional row edges with the edges of TR, the count is the
same but with (k — 2)3 4 (k — 2) extra crossings. This is because the extra
crossings in TR follow the pattern 2 = 21 4 =22 8=2%for k = 3,4 etc.
Hence

Crp (ARE, M(k +1)) = 4(3(2* 1 — 1)(2¥ 7' = 3) + 257%)
+2((k—2)°+(k—2))

Similarly the number of crossings of the additional column trees with the
edges of M(k + 1) is given by

Crp (ACE, M(k+1)) = 4(3(2°~1 — 1)(2871 = 3) + 27%)
+2((k—2°%+ (k- 2))

The next count is the number of crossings of the additional row edges with
additional column edges. In T'L this count is (25~1 —1)(2*=' —1). The
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count in TR is (257! — 1) along with (25~1 — 1) extra crossings. In BL
the count is 2°71(2*~! — 1) and in BR the count is 2¥-1(25-1 _ 1) along
with (2°~! — 1) extra crossings. Thus

Crp (ARE, ACE) =2 (271 — 1) 4 (2571 1) +-2. 251 (2571 1)
+ (281 -1)
= (2=t — [} o

The number of crossings of the additional middle row trees with additiona]
row edges and with additional column edges of M (k+1) is (k —2)2F1 11
each. Hence Crp (AME, M(k +1)) = 4 [(k—2)28-1 +1].

Thus Crp [ARE, M(k 4+ 1)]+Crp [ACE, M(k + 1)] +Crp [ARE, ACE] +
Crp [AME, M(k+ 1))

=4(3(2° 1 —1)(2" 1 - 3) + 252 L 2((k — 2 + (k- 2))
+4(325 T = 1)(25 = 8) +28) 1 2((k — 2)® + (k — 2))
+ (2871 — 1)2F L 4 g((k - 2)251 4+ 1)

=8(32" 1 — 1)@ - 3) + 2F2) 4 4((k — 2)® + (k — 2))
+ (25— 128 (k- 2)25 1 1)

=4[6(2" 1 —1)(2* T - 3) + 2* ) 4 (k-2 + (k—2)
+ (25 =125 (k- 2)28 1 1)

We now proceed to the main proof. By induction hypothesis

k-3
Cr (M(k)) = 22672 4 ) "4k=21[6 (9i+1 _ 1) (2841 _ 3) 4 (2i+1)
i=1
+ (% +d) + 25 (2 1) 4 (5 28F 4 1)

Now,
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Cr(M(k+1)) = 4(CrM(k)) + Additional crossings in M (k + 1)

k-3
— 4(22k~2) + 4[2 4k—2—z‘[6 (2i+1 _ 1) (2i+1 _ 3)
i=0
+ (@ +4) + 27 @7 - 1)+ (27 + 1)
FA[6(2F - 1)@ —3) + 2 ) + (k—2)° + (K~ 2)]
F4 (2 - 1)2F 4 (k—2)2°7 + 1]
k-3
= (22k) + 24'“_1"":[6 (2i+1 . 1) (2z+1 _ 3)
=0
+ (8 4+ 4) + 2@ - 1) + (2T +1)]
a6t 1)@t =3+ 25 ) + (k-2 + (k- 2)
4ok 2kl — 1) 4 (k—2)25 1 + 1]

k—2

- 22k + Z4k—1—i[6 (2'i+1 _ 1) (2i+1 _ 3)
=0

+ (i +a) + 25 (@ - )+ (27 + 1)

a

The table in Fig.5 gives the number of crossings of the mesh connected
tree M (k) in the given form and in the new drawing. The comparison is
illustrated by a graph drawn in Microsoft Excel. See Fig.5.

4 Mesh of trees

The 2-dimensional mesh of trees has a very natural and regular structure.
Let N = 2. The N x N mesh of trees M,, is constructed from an N x N
grid of vertices by adding vertices and edges to form a complete binary
tree in each row and each column; see Fig.6(a). The leaves of the tree are
precisely the original vertices of the grid and added vertices are precisely
the internal vertices of the trees [7]. This network has 3N? — 3N vertices.
The leaf and root vertices have degree 2 and all other vertices have degree
3. '

Let G be an N x N mesh of trees. This graph is modified by adding new
edges to G so that the modified graph is 3-regular. This graph is called a
3-regular mesh of trees and is denoted by MT'(n) [8].
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Cr{D) h=3 h=4 h=5 h=6

M(h) given 28 380 3196 21740
M(h) proposed 16 228 2116 13972
Comparison
25000 = womrn -
o 20000 - - -
-8 !
E 15000 -
a .
e
w 10000 - ———M(h) given
g s
I 5000 M(h) proposed
0 -
h=3 h=4 h=5 h=6
Dimension

Figure 5: Comparison of crossing numbers of the two diagrams of M (k)

The graph MT'(n) contains 2™ row trees R; and 2™ column trees Lol X
,7 < 2". The R;’s are listed from top to bottom and the C;’s are listed
from left to right.

The edges of a complete binary tree between levels i — 1 and 7 are called
level(z) edges, or L; edges, 1 < i < n. The graph MT (n) is constructed
from four copies of MT(n — 1) by including additional edges which form
paths of length 2 and these are level(1) edges of the complete binary tree
of height n, the middle vertex of each path of length 2 being the root of
the complete binary tree. Further consecutive roots are joined by an edge

to make the graph 3-regular. Fig.6(b) depicts a 3-regular mesh of trees
MT(2).

In what follows the notation L;(R;) would stand for the set of level(i)
edges of the jth row tree. Similarly L;(C;) is defined.

Lemma 4.1. Let G be MT(2). Then Cr(QG) < 8.

Proof. Let D be a good drawing of G as in Fig.6(b). No two row (column)
trees intersect. The second and the third row trees cross the second and
the third column trees. This gives a count of 4. Further each pair of chords
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Figure 6: (a) The My (b) 3-Regular MT(2)

in each 8-cycle contributes 1 to the crossing number of D.

Lemma 4.2. Let G be MT(3). Then Cr(G) < 80.

Proof. Let D be a good drawing of G. There are four copies of MT'(2)
in MT(3). In view of symmetry we need only to count the number of
crossings of the additional edges with the edges of, say, the top left copy of
MT(2). The row (column) trees Ry and Rg (C1 and Cj) do not contribute
for crossing in MT(3). The L; edges of Rz and R4 cross the Ly edges of
C3 and C4. This count is 4. L; edges of Rs and R3 cross Ly edges of C3
and Cy4. This count is 4. Similarly L; edges of C> and C3 cross Lo edges
of R3 and Ry, the count being 4. Hence

Crp (MT(3)) = 4Crp (MT(2)) + Additional crossings in MT(3)

= (dx8)+4(4+4+4)
=32+48
= 80

Theorem 4.3. Let G be MT(n). Then Cr(G) < 22n—2{(n —1)% + 1}

Proof. We prove the above theorem by induction on =, where NV = 2™. We
assume that the theorem is true for n = k,k > 3. Let D be a good drawing
of M(k+1). By induction hypothesis, Crp [MT (k)] < 2%~2{ (k- 1241}
Now
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Figure 7: 3-Regular MT(3)

Crp[MT(k +1)] = 4Crp[MT (k)] + Additional crossings in MT'(k + 1)
We first compute the additional crossings in MT(k + 1). In the view
of symmetry we count the number of crossings of the row trees and col-
umn trees in a quadrant, say, the top left copy of MT(k — 1). There are
Li,La, Lg, ..., Lg_1 level in MT(k — 1). The L; edges of R; and Cy do
not contribute to crossing. The L; edges of R, R3, R4, Rs, ..., Roe—1 and
Cg, C3., 04, Cs, w3 % § Cgk—l Cross L(k—l): L(k_g), L(k_3), L(k_4), ceey L2 edges
of columns Cok-241 to Cox-1 and rows Rox-241 to Rok-1 edges in the fol-
lowing order.

Ly edges of Rax-244 to Rok-1 cross the Ly edges of Cox-2,; to Coe-1, the
count being 2F~2(2k-2).

Now the L) edges of Rgk-s,q to R3ok-s cross the Ly edges of Cok-241 to
Cak-1, the count being 25-2(2¥-2). Similarly the L; edges of Cox_s
C3.9x-3 cross the Ly edges of Ryk-2,; to Rok-1, count being 2'“‘2(21;
Hence the number of crossings of Ly edges and Lo edges in the top left
corner of MT'(k) is given by 2. 2F—2(2k-2),

A closer look at the crossings in MT'(k) yields the following observations
regarding

1 to

1. L1 edges:
Ly edges of Ryj-1_5 and Rgi-1_1,7 = 3,4,5,...,k cross the Ly_;
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edges of Cor-2,1 to Cye-1. The 2°~2 rows are grouped into 2-subsets
numbering 2573,

2. Ly_o edges:
L, edges of Roi-1_5 to Res—1_s,7 = 4,5,6, ...,k cross the L2 edges
of Cox-241 to Cox—1. The 28~2 rows are grouped into 4-subsets num-
bering 284
This process continues ... ,

3. L4 edges:
L1 edges of ng—5+1 to R3.2k-5, R5.2k—5+1 to R7.Qk-—5, Rg.gk-5+1 to
Ry .o%-s, Ryzor-s41 to Rysor-s cross the L, edges of Cok-241 toO
Cyr-1. The 2872 rows are grouped into 2k~4_subsets numbering 4.

4. L3 edges:
Ly edges of Ryk-sy to Rgox-4, R5ok-ayq tO R;.ox-4, cross Ly edges
of Cyr—2,q t0 Cor—1. The 272 rows are grouped into 2k-3_subsets
numbering 2.

Thus in each of the above (k — 2) cases all the 2572 rows cross all the
9k=2 columns, giving a count of (k — 2)2572(2F~?). The same pattern is
observed in column trees also. Hence the additional crossings in the first
quadrant is 25=2(2%72) + 2(k — BypR=2(pk=F '

The additional crossings in MT (k) is 4[25~2(25~2) +2(k — 2)2F~2(2F2)) =
22k—2 s (k _ 2)(221‘:—1).
Crp[MT(k + 1)] = 4Crp[MT (k)] + Additional crossings in MT(k+1)

— (22k—'2{(k . 1)2 + 1}) + (k +1— 2)(22(k+1)-—1) 8 22(k+1)—-2
= 92 ((k? 41— 2k) + 1} + (k— 1)2%F+ 2%
— 22(k+1)—2{((k + 1) _ 1)2 s 1}
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