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Abstract

A double Italian dominating function on a digraph D with ver-
tex set V(D) is defined as a function f : V(D) — {0,1,2,3} such
that each vertex u € V(D) with f(u) € {0,1} has the property that
Yeen- f(@) 23, where N~ [u] is the closed in-neighborhood of
u. The weight of a double Italian dominating function is the sum
> wev(py f(v), and the minimum weight of a double Italian domi-
nating function f is the double Italian domination number, denoted
by 7ar(D). We initiate the study of the double Italian domina-
tion number for digraphs, and we present different sharp bounds
on v4r(D). In addition, several relations between the double Ital-
ian domination number and other domination parameters such as
double Roman domination number, Italian domination number and
domination number, are established.
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1 Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes,
Hedetniemi and Slater [10]. Specifically, let D be a finite digraph with
neither loops nor multiple arcs (but pairs of opposite arcs are allowed)
with vertex set V(D) = V and arc set A(D) = A. The integers n =
n(D) = |V(D)| and m = m(D) = |A(D)| are the order and the size of the
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digraph D, respectively. For two different vertices u,v € V(D), we use ,
to denote the arc with tail u and head v, and we also call v an out-neighp,
of u and u an in-neighbor of v. For v € V(D), the out-neighborhood ar
in-neighborhood of v, denoted by Nf(v) = N*(v) and Np(v) = N=(y
are the sets of out-neighbors and in-neighbors of v, respectively. The clos
out-neighborhood and closed in-neighborhood of a vertex v € V(D) are t}
sets Ni[v] = N+[y] = N*(v) U {v} and Np[v] = N7l = N=(v)
{v}, respectively. In general, for a set X-C V(D), we define N 5(X) :
N*(X) = Uvex N (v) and Np(X) = N~(X) = Usex N~ (v). The oy
degree and in-degree of a vertex v are defined by df,(v) = dt(v) = |N v
and dp(v) = d~(v) = |N ~(v)|. The mazimum out-degree, mazimum ir,
degree, minimum out-degree and minimum in-degree of a digraph D gp
denoted by A*(D) = A%, A™(D) = A-, 61(D) = 6* and 0=(D) = §-
respectively. The associated digraph D(G) of a graph G is the digrap]
obtained when each edge e of G is replaced by two oppositely oriented arc
with the same ends as e. The underlying graph of a digraph D is that grapl
obtained by replacing each arc uv or symmetric pairs uv, vu of arcs by th
edge uv. A digraph D is bipartite if its underlying graph is bipartite. If X
is a nonempty subset of the vertex set V(D) of a digraph D, then D(X
is the subdigraph of D induced by X. Let K be the complete digraph o
order n and K, g the complete bipartite digraph with partite sets X and
Y, where | X| = p and ¥ =q.

A set S C V(D) of a digraph D is a dominating set of D if N*[S] =
V(D). The domination number (D) of a digraph D is the minimum
cardinality of a dominating set of D. The domination number of a digraph
was introduced by Fu [8].

A double Roman dominating function (DRDF) on a digraph D is defined
in 9] as a function f : V(D) — {0,1,2,3} having the property that if
f(v) =0, then the vertex v must have at least two in-neighbors assigned 2
under f or one in-neighbor assigned 3, while if f(v) =1, then the vertex v
must have at least one in-neighbor assigned 2 or 3. The weight of a double
Roman dominating function is the sum Zvev( py f(v), and the minimum
weight of a double Roman dominating function f is the double Roman
domination number, denoted by var(D). A DRDF of D with weight v45(D)
is called a y4p(D)-function of D.

An Italian dominating function on a digraph D is defined in (14] as
a function f : V(D) — {0,1,2} such that every vertex v V(D) with
f(v) = 0 has at least two in-neighbors assigned 1 under f or one in-
neighbor assigned 2. The weight of an Italian dominating function is the
sum Zvev( p) f(v), and the minimum weight of an Italian dominating func-
tion f is the Italian domination number, denoted by Y1(D). An Italian dom-
inating function of D with weight v;(D) is called a Y1(D)-function of D.



An Italian dominating function f of a digraph D can be represented by the
ordered partition (Vo, V1, V2) of V(D), where V; = {v € V(D)| f(v) = i}
for i € {0,1,2}. In this representation, its weight is w(f) = |Vi| + 2|V2l.

In this paper we continue the study of Roman and Italian dominat-
ing functions in graphs and digraphs (see, for example, (1, 2, 3, 4, 5, 6,
7. 9, 11, 12, 13, 14]). Inspired by an idea of the work (3], we define
the double Italian domination number of a digraph as follows. A dou-
ble Italian dominating function (DIDF) on a digraph D is defined as a
function f : V(D) — {0,1,2,3} such that each vertex u € V(D) with
flu) € {0,1} has the property that Ysen- (@) 2 3 The weight of
a DIDF is the sum . cy(py f(v), and the minimum weight of a DIDF
f is the double Italian domination number, denoted by var(D). A double
Italian dominating function of D with weight var(D) is called a yqr(D)-
function of D. A double Italian dominating function f of a digraph D
can be represented by the ordered partition (Vo, V1, Vo, V3) of V(D), where
V, = {v € V(D)|f(v) = 1} for i € {0,1,2,3}. In this representation,
its weight is w(f) = |Va| + 2[Va| + 3|Vs|. Clearly, every double Roman
dominating function is a double Italian dominating function of D and thus
va1(D) < var(D). Therefore all the upper bounds for v4r(D) in [9] are
also upper bounds for v41(D).

Our purpose in this paper is to initiate the study of the double Italian
domination number for digraphs. Several relations between the double Ital-
ian domination number and other domination parameters such as double
Roman domination number, Italian domination number and domination
number, are established. Furthermore, we present different sharp bounds
on v47(D). Finally, we improve a lower bound of the double Roman domi-
nation number of Hao, Chen and Volkmann [9)].

2 Relations to other domination parameters

In this section, we shall relate the double Italian domination number to
other domination parameters such as Italian domination number, double
Roman domination number and domination number.

Proposition 1. Let D be a digraph and let f = (Vo,V1, Va) be a y1(D)-
function. Then 447(D) < v4r(D) < 2|Va| + 3|Val.

Proof. Define the function g : V(D) — {0, 1,2,3} by g(v) =0 for v € W,
g(v)=2forve Vyand g(v) =3 forve V. Then g is a DRDF on D and
thus yar(D) < var(D) < 2/Vi| + 3[V2]. L

Theorem 2. If D is a digraph, then v41 (D) < var(D) < 271(D).
If va1(D) = 2v/(D) and f = (Vo,V1,V2) Is a v1(D)-function, then
|V2| = 0 and the subdigraph D[V1] is empty.



Proof. If f = (Vo, V1, V2) is a 7 (D)-function, then Proposition 1 implies

Yar(D) £ var(D) < 2Vi| +3[Va| = 2([Vi| + 2|Va|) — |V

= 2v1(D) — |Va| £ 2v;(D),

and this is the desired bound.

Now let v4r(D) = 2v;(D), and let f = (Vo, V4, V2) be a v;(D)-function
Then the inequality chain above shows that |V5| = 0. Suppose that there
exists an arc uv in the subdigraph D[V;]. Define the function g: V(D) —
{0,1,2,3} by g(x) =0 for z € Vj, g(v) = 1 and g(y) =2for y e V] \ {v}
Since v has the in-neighbor u of weight 2 and g(N- [z]) > 3 for each vertex
z € Vo, g is a DIDF on D of weight 2y7(D) — 1. This is a contradiction,
and thus D[V] is empty. C

Example 3. Let H be the digraph consisting of an arbitrary digraph Q
with vertex set V(Q) = {vi,vz,...,v:} and a further vertex set V] =
{zl,yl,xg,yg,...,rk,yk} such that z;v;, y,v; € A(H) for 1 < 5 <k Itis
easy to see that vq;(H) = 2v;(H) = 4k. This example demonstrates that
Theorem 2 is sharp.

Theorem 4. If D is a digraph, then Yar(D) > v1(D) + 1.

Proof. Let f = (V, Vi, Vs, V3) be a v4;(D)-function. If V3| > 1, then every
vertex in V3 can be reassigned the value 2, and the resulting function is an
IDF on D. This implies

Yar(D) = [Vi| + 2|Va]| + 3|V5| > Y1 (D) + |V3| > (D) + 1,

and this is the desired bound. Next suppose that [V3| = 0 and [V3] > 1.
Let w € V5, and define the function 9:V(D) — {0,1,2} by g(v) = 0 for
v € Vo, g(v) =1forve W, g(w) =1 and 9(z) =2 for z € V3 \ {w}. Then
g is an IDF on D of weight Yar(D) — 1 and thus v4;(D) > v1(D) + 1.
Finally, let |V3| = [Va| = 0. Let w € Vi, and define the function
h: V(D) - {0,1,2} by h(v) = 0 for v € Vp, h(w) = 0 and h(z) =1 for
r € V1 \ {w}. Since w has at least two in-neighbors in V], the function A is
an IDF on D of weight Yar(D) — 1 and so v4;(D) > v1(D) + 1. O

We now establish relations between the double Italian domination num-
ber and the domination number.

Theorem 5. If D is a digraph, then Yar (D) < 3v(D), with equality if and
only if there exists a v4;(D)-function = Vo, V1, Vo, V3) with Vil = |Va] =
0.
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proof. Let S be a dominating set such that |S| = v(D). Define f = (Vo =
V(D)\'S, 0,0, Vs = S). Then f is a DIDF on D and thus var (D) € 3|5| =
3y(D).

’Y(Nc)mr suppose that v (D) = 3v(D), and let S be a dominating set such
that |S| = (D). Define the function g : V(D) — {0,1,2,3} by g(v) = 3 for
veSandgw)=0forveV(D)\S Thengisa desired 747 (D)-function.

Conversely, assume that [Vi| = |[V2| = 0. Then V5 is a dominating
set of D and so |Va| = (D). Therefore va1 (D) = 3|Va| = 3vy(D). Since
~a1(D) < 37v(D), we obtain var{D) = 3y(D). O

Theorem 6. If D is a digraph of order n > 2, then ¥(D) + 2 < var(D)-

Proof. Let g = (Vo, V1, Va, V3) be a v41(D)-function. We distinguish two

cases.
Case 1. Let |Va| > 2 or |V3] > 1. Then

v(D) < |Va] + |Va| + V3| <| Vi| +2[Va| + 3|Va| — 2 = var(D) — 2.

Case 2. Let [V3] = 0 or |Vo| < 1. If [Vi| = 0, then n = 1, a contradiction
ton > 2. If V4] = 1, then |Vo| = 1 and V2 is a dominating set of D.
Thus ¥(D) =1=3-2= var{D) — 2. Let now |Vi| = 2. Ifu,v € V; are
two distinct vertices, then Va U (V4 \ {u,v}) is a dominating set of D and
therefore (D) < v41(D) — 2. ‘ O

Example 7. Let C,, be a cycle of order n, and let D(C,) be its associated
digraph. Let H be the digraph consisting of D(C,) with n > 3 and a
vertex set Vo of () further vertices. Let each vertex of Vp have exactly
three in-neighbors in V(D(Cy)) such that the in-neighborhoods of every
two different vertices of V are distinct.

The function f : V(H) — {0,1,2,3} with f(z) =1 forz € V(D(Cp))
and f(z) =0forx e Vpisa ~q1 (H)-function and thus vyar(H) = n.

If uw and v are two distinct vertices of D(Ch), then it is easy to see that
V(D(Cp)) \ {u,v} is a dominating set of H of cardinality ¥(H) and so
y(H) = n — 2. Consequently, var(H) =n = (n—2)+2=7(H)+2. This
example shows that Theorem 6 is sharp. '

Theorem 8. If D is a digraph, then v4r(D) < 2va1(D) — 2.

Proof. Let f = (Vo, V1, V2, V3) be a var(D)-function. If Vi = 0, then f
is also a DRDF on D and so v4r(D) = var(D) £ 27yqr(D) — 2. Now let
Vi = {v1,v2,..., 0} # 0. Define the function g : V(D) — {0,1,2,3} by
g(v) = 0 for v € Vp and g(vy) =0, glva) = glvg) = ... = g(v;) = 2 and
g(v) = 3 forv € Vo U Vs. Since v; has at least one in-neighbor in V2 U V3
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or two in-neighbors in Vj, we note that g is a DRDF on D such that

Yr(D) < 2[Vi| -2+ 3|Vo| + 3| V3]

= 2] +2Vy| +3[V3) - 2 — V| — 3| V4
= 2va1(D) — 2 - |Va| - 3|V3] < 2v4;(D) — 2.

This is the desired bound, and the proof is complete. O

Let @ = K3, ,,,.. . be the complete r-pa;tite digraph with r > 4 and
3<mn <ng <...<mn. Then 74(Q) = 4 and 74r(Q) = 6 and thus
6 = v4r(Q) =2-4— 2 = 274(Q) — 2. This example shows that Theorem
8 is sharp.

3 Upper and lowers bounds

In this section we present upper and lower bounds on the double Italian
domination number in terms of its order, maximum out-degree and mini-
mum in-degree.

Proposition 9. If D is a digraph of order n, then Yar(D) < 2n with
equality if and only if D is empty.

Proof. Define the function f : V(D) — {0,1,2,3} by f(z) = 2 for each
x € V(D). Then D is a DIDF on D and thus Yar(D) < 2n. If D is empty,
then obviously v47(D) = 2n. Now assume that Yar(D) < 2n, and suppose
to the contrary that D contains an arc uv. Define the function g:V(D)—
{0,1,2,3} by g(v) =0, g(u) = 3 and g(z) =2 for z € V(D)\ {u,v}. Them
g is a DIDF of weight 2n — 1, a contradiction. O

Proposition 10. If D is a bipartite digraph of order n with 0=(D) > 1,
then va7(D) < y4r(D) < (3n)/2.

Proof. Let D be a bipartite digraph with the partite sets X and Y. Assume,
without loss of generality, that |X| < |Y|. Define the function f:V(D)—
{0,1,2,3} by f(z) =3forz € X and f(y) =0fory € Y. Since 0~ (D) >1,
every vertex y € Y has an in-neighbor in X, and hence f is DRDF on D
of weight 3|X|. Consequently,

%r(D) € %an(D) < 3X| < (X1 +]¥)) = 2n.
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If C is an oriented cycle of even length, then 7a1Cr) = var(C) =
'3n)/2, and therefore Proposition 10 is sharp. If C7 is an oriented cycle
»f odd length, then var(Cr) = var(C) = (3(n —1))/2 + 2, and thus
Proposition 10 is not valid in general.

Theorem 11. If D is a digraph with §~(D) > 2, then
var(D) < V(D) +2 =67 (D).

Proof. Let V(D) = {u1,u2,. .. ,Un}, and let U = {ug,uz,..  yUny2-6- (D)}
Define the function f : V(D) — {0,1,2,3} by f(z) = 1 forz € U and
f(z) = 0forz € V(D)\U. Then ) cn-) f(z) > 2 for u € U and
S eN- () f(z) > 3 for v € V(D) \ U. Hence f is a DIDF on D of weight

n+2— 6" (D) and so var(D) < V(D) +2 -0 (D). O

We observe that yar(K2) =3 = [V(K;)| +2 - 8~ (K}) for n > 3.
If K}, n,....n, 15 the complete r-partite digraph with the property that
n =pg=..=n,=2andrt 22, then

vt (Ko 0 ) = 4= V(B )|+ 27 07 (B in )

var(K33) =5 = |V(K33)| +2+ 6 (K3a),

yar (K5 q) = 6= |V(Ef )| + 2+ 67 (Kia),

var (K3 33) =5=|V(K3s3)| +2+ 07 (K333)

All these digraphs demonstrate that Theorem 11 is sharp.

Theorem 12. If D is a digraph of order n with maximum out-degree
At (D) = A*, then

(2n+2AT +6 2n+ AT
> 3
"‘“(D)*mm{ A* 12 ’A++1}

Proof. If AT =0, then D is empty, and therefore v4;(D) = 2n by Propo-
sition 9. Since (2n + AT)/(AT + 1) = 2n, the lower bound is valid in this
case. Let now AT > 1, and let f = (Vo, V1, Vo, V3) be a ~a1 (D)-function.
Define V; ={z € Vo : N~ (z)NV3 # 0} and V' = Vo \ V5. We distinguish
three cases.

Case 1. Assume that |Va|,|Va| > 1. Since every vertex of V3 has at
most A+ out-neigbors in VJ, we note that |[Vg| < A+|Vs|. As every vertex
of VJ' has at least two in-neighbors in V4 U V2, we observe that 2|Vy'| <
At (|V1| + |V2|) and hence.

.+.
Vol = Vg1 + Vg1 < A+Vl + SVl + 1Val)
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This leads to

AT +2 At +2
5 Yar(D) = 5

AT 3AT
= 5 Vil + ATVo| + —— (V3] + [Vi] + 2/Val + 3| V3

(Vi + 2[Va| + 3|V4)

At
= Vil + V2l + [Va| + A¥|Va| + —=(|Va] +|Va))

AT i
T(|V2|+IV3|) + |Va| + 2| V3|

> Vil + |Va| + V3| + | Vo
A+
' 3 —2—({V2}+|V3|)+|V2|+2|V3|

A+
= n++ T(|V2| + |V3|) + iVQl + 2|V3| 2 n -+ A+ -+ 3

and thus va1(D) > (2n + 2AT +6) /(AT +2).

Case 2. Assume that |[V;| > 1 and [V3] = 0. Since every vertex of Vi
has at least one in-neigbor in V; U V3, and every vertex of V has at least
two in-neighbors in V] U V,, we deduce that

2|Vo| < A*(|Vi| + Vo)) — |Vl
It follows that
AF 31 XY 41
5—a1(D) = 5 (Vi + 2|Va|)
A+ Vil
= S+ at+ By,

2
At 1% X
= Vil+IVal+ S (vl + wal) - L B

A+
> Vil +|Va] + Vo] + —2-le|

AT AT 2n+4+ At
n+ 5 |[Val| > n+ 5 >

and so v41(D) > (2n + AT) /(AT +1).

Case 3. Assume that |V5| = 0. Assume that exactly ¢ < V1| vertices
of V1 have an in-neighbor in V5. Then [Vi| — t vertices of Vi have at
least two in-neighbors in Vi. This implies that |Vj| < A*|Va| — ¢ and
3IVo'| < A*|Wi| — 2(]V1] — t) and therefore

AW 2 2
Vol = IVGl+1%) < At o v SO 2y 2

3 3
AtV 2
< ay+ 20 2y
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Using this bound, we find that

AF 4] At +1
var(D) = 3 (|V1| + 3|Val)

At 1%
—3-|V1\ + AT V3| + I—él—‘ + | Vsl

A p 2
*—3—|V1| + AT\ V3| - §IV1\ +|Va| + V3l
|Vo| + V| + [Vs| = n

I

IV

and hence v41(D) 2 (3n) /(AT +1) > (2n+ AT)(AT +1). Combining the
Cases 1, 2 and 3, we obtain the desired lower bound. O

Corollary 13. Let D be a digraph of order n > 2. Then vq1(D) = 3 if
and only if At(D)=n—-1.

Proof. Clearly, va1(D) > 3 by the definition. Let now A*t(D) =n—1, and
let w be a vertex of maximumn out-degree A*T(D). Define the function
¥ e VL) == {0,1,2,3} by f(w) =3 and f(z) = 0 for z € V(D) \ {w}.
Then f is a DIDF on D of weight 3. Therefore vq1(D) < 3 and thus
var(D) = 3. _

Conversely, assume that yar(D) = 3. If At = AT(D) < n -2, then
Theorem 12 leads to the contradiction

I +2AT +6 oan+ At
b i Sor =
’YdI(D) > mm{" -3 -l’\‘ : 1]}

> min{[4n+2]’[3n~2"} >4,
n n—1

and the proof is complete. 0

4 A new lower bound on v4r(D)

In [9], we presented the following lower bound on y4r(D)-
Theorem 14. [9] If D is a connected digraph of order n > 4, then

6n +3
v4r(D) 2 [m] -

For A*(D) > 2, we improve this bound
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Theorem 15. If D is a digraph of order n with A*(D) > 2, then

Yar(D) > [%&_—J .

Proof. Let AT = A*(D), and let f be vy4r(D)-function. According to
[9] (see Proposition 1), we can assume, without loss of generality, that
f(z) € {0,2,3} for each vertex z € V(D). If V; is the set of vertices assigned
¢ by the function f, then vqr(D) = 2|V2| + 3|V3| and n = |Vo| + |Va| + |V4).
Let now Vj ={z € Vo : N™(z) N V; # 0} and VJ’' = V5 \ V{. Since every
vertex of V3 has at most A* out-neigbors in Vj, we note that |Vj| < A*|V3].
As every vertex of V' has at least two in-neighbors in Va, we observe that

2|Vy'| < A*|V;| and hence

AT
|Val.

Vol = V] + IVg'| < A% V| + -

This bound and the hypothesis At > 2 lead to

A+3+ 17dR(D) B A+3+1

- %IVQ\ + AT V3] + §'|V2] + Vs

A+
2

Vol + 31Vl + 2Vl + |Vl = Vol + Vel + [Va| =

(2|Va| + 3|V3)

2 At
[Val + A% Va] + S [Val + S [Va| + [V

v

and 50 yar(D) > [(3n)/(A* +1)]. O

Since

3n - 6n + 3
At(D)+1 ~— 2A+(D)+ 3’

Theorem 15 is an improvement of Theorem 14 for At (D) > 2. Clearly, if
AF(D) = 0, then D is empty and thus y4r(D) = 2n. Therefore Theorem
15 is not valid when A* (D) = 0. The next example will show that Theorem
15 is not valid for A*(D) = 1, in general.

Example 16. Let the digraph H consisting of an oriented cycle Cp =
v1V2...Vx of order k > 3 and 2k further vertices T1,Y1,T2,Y2, ., Tk, Yk
such that z;v;, y;v; € E(H) for 1 < ¢ < k. Then n(H) = 3k and A*(H) =
1. Define the function f : V(H) — {0,1,2,3} by f(z:) = f(¥:) = 2 and
f(vi) = 0 for 1 <4 < k. Clearly, f is y4r(H)-function of weight 4k.

However, )
In(H 9%k
—_ =>4k = H).
AH) 1 2 k=)
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orollary 17. [13]If G is a graph of order n with maximum degree A(G) =

then
v4r(G) = [ng%-—l'} .

roof. 1f A(G) = 2, then let D(G) be its associated digraph. We observe
1at 1ar(G) = ar(D(G)), A+(D(G)) = A(G) and n(D(G)) = (G).
‘herefore the desired lower bound follows from Theorem 15.
If A(G) =1, then G = pK,UtK, with p > 1. Obviously, n(G) = 2p +1
nd 74r(G) = 3p+2t. Thus
6p + 3t 3n(G)

= > . o
var(G) =3p+2t 2 — NGETh

\nd the proof is complete. O
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