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Abstract

A Hamiltonian walk in a nontrivial connected graph G is a
closed walk of minimum length that contains every vertex of G.
The 3-path graph Ps(G) of a connected graph G of order 3
or more has the set of all 3-paths (paths of order 3) of G as
its vertex set and two vertices of P3(G) are adjacent if they
have a 2-path in common. With the aid of Hamiltonian walks
in spanning trees of the 3-path graph of a graph, it is shown
that if G is a connected graph with minimum degree at least 4,
then P3(G) is Hamiltonian-connected.
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1 Introduction

Let G be a nontrivial connected graph. A Hamiltonian walk in G is a closed
walk of minimum length that contains every vertex of G. This concept was
introduced by Goodman and Hedetniemi [4]. They showed that if G is a
connected graph of order n and size m, then the length of a Hamiltonian
walk W in G is at least n and at most 2m. The length of W is n if and
only if G is Hamiltonian (in which case W is a Hamiltonian cycle). Every
edge of G occurs at most twice in W and the length of W is 2m if and only
if G is a tree in which case each edge of G appears exactly twice in W.
Hamiltonian walks in graphs have been used to study structural properties
of graphs (see [3]).
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In [1] the concept of Hamiltonian walks has been applied to esta},
lish results dealing with Hamiltonian properties of certain type of derive¢
graphs. One of the most familiar derived graphs is the line graph. The [,
graph L(G) of a nonempty graph G has the set of edges in G as its vertey
set where two vertices of L(G) are adjacent if the corresponding edges of
G are adjacent. Harary and Nash-Williams [5] characterized those graphs
whose line graph is Hamiltonian. Their characterization primarily involved
the existence of a circuit in G called a domitating circuit C' in which every
edge of G is incident with a vertex of C.

Theorem 1.1 (Harary and Nash-Williams)  Let G be a graph withoyt
wsolated vertices. Then L(G) is Hamiltonian if and only if G is a star Kl,t
for some t > 3 or G contains a dominating circuit.

It is easy to give an example of a connected graph containing vertices
of small degree whose line graph is not Hamiltonian. However, even a
connected graph with no vertices of degree 1 or 2 need not have a Hamil-
tonian line graph (see [1], for example). As was stated in [2], if G is a
connected graph with 6(G) > 3, then L(G) has a spanning subgraph con-
taining an Eulerian circuit, which is then a dominating circuit of L(G)
and, consequently, L(L(G)) is Hamiltonian. While L(L(QG)) is Hamiltonian
for every connected graph G with d(G) > 3, the graph L(L(G)) need not
be Hamiltonian-connected. Figure 1 shows a connected 3-regular graph G
and L(L(G)). In this graph G, the edges of interest are labeled 1,2,...,9.
Consequently, the corresponding vertices in L(G) are labeled 1,2, 5158,
producing edges 12,13, 23, 14,15,45, etc. in L(G) and thus those vertices
in L(L(G)). The graph L(L(G)) of Figure 1 is not 3-connected and there-
fore is not Hamiltonian-connected. For example, there is neither a 14-15
nor a 12-13 Hamiltonian path in L(L(G)).

The goal of this paper is to describe how the concept of Hamiltonian
walks and the technique introduced in [1] can be used to show that if G is
a connected graph with §(G) > 4, then L(L(G)) is Hamiltonian-connected.
First, we introduce some definitions and notation. For an integer & > 2
and a graph G containing k-paths, the k-path graph Pi(G) of G has the set
of k-paths of G as its vertex set where two distinct vertices of P.(G) are
adjacent if the corresponding k-paths of G have a (k —1)-path in common.
Therefore, P2(G) = L(G) and P3(G) = L(L(G)). We prove the primary
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Figure 1: A connected 3-regular G and the line graph L(L(Q)) of L(G)

result in this paper by observing that L(L(G)) is the 3-path graph P3(G)
of G and making use of Hamiltonian walks and certain spanning trees of a
graph. Every embedding of a tree T'in the plane gives rise to a Hamiltonian
walk in 7. For example, suppose that T is a star K4 whose edges are
a,b,c,d. Figures 2(a) and 2(c) show two different embeddings of T' in the
plane. :

(b)
Figure 2: Two embeddings of K1 4 in the plane

In (a), the edges a, b, ¢, d of T appear consecutively in clockwise order about
v, while in (c), the edges a,c, b, d appear consecutively in clockwise order
about v. The embedding of T in Figure 2(a) gives rise to the Hamilto-
nian walk Wy = (w,v,z,v,y,v, z,v,w), Where the edges of T are traced
in the manner shown in Figure 2(b). The embedding of T' shown in Fig-
ure 2(c) gives rise to the Hamiltonian walk Wy = (w,v,y,v,,v,2,0,w).
In terms of the edges of T, these two walks can also be described as
W, = (a,b,b,c,c,d,d,a) and Wy = (a,¢,¢,b, b,d,d,a). While every edge
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of T occurs twice in both W; and W, this is not true for all 3-paths in T
For example, the 3-path (w,v,z) = ab occurs in W1 but not in W, whi),
the 3-path (w, v, y) = ac occurs in Wy but not in W;.

2 Orderings of the Edges of a Star

To prove that the 3-path graph of every connected graph G with §(G) > 4 ;.
Hamiltonian-connected, it is useful to establish two lemmas, each of which
describes how pairs of the edges of a star can be ordered to satisfy certain
desirable conditions.

Lemma 2.1 Let E = {f1i, f2,. .., fx} be the edge set of a star of size
k> 2 Fort= (g), there is a sequence Hy, H,, ..., H, of the £ distinci
pairs fif; of edges of E where

(¢) H; and Hiyy have an edge in common fori=1,2,...,4—1 and
(%) Hi = fif2 and Hy = f, f.

Proof. We proceed by induction on k. For k = 2, Hy = f,fs verifies
the statement. For k = 3, the sequence Hy = fyfo, Hy = fofs, Hs = fify
verifies the statement. Thus, the statement is true for £ = 2,3. Suppose
that the statement is true for some integer k > 3. Let {fi, fa,..., Sy fot1}
be the edge set of a star of size k41 = 4. Applying the induction hypothesis
to the set {fy, fo,... , fx}, there is a sequence sg : Hy, Hy, ..., Hy, where

= (g), consisting of the ¢ distinct ordered pairs f;f; where 1 <i#£j <k
such that

(¢) H; and H;,q have an edge in common for i = 1,2,... £ —1 and
(#7) Hi= fif2 and H, = f, f..

Thus, Hy = f,f; or Hy = f, f; for some integer j with 3 < j < k (neces-
sarily, Hy = fofs if k = 3). We now insert the sequence

s fafierty oy fictfotts Fiv1 Fatts . . s Jefe+1y Fi fott
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between Hy = fifz and Hp and add fifiy1 after fifi, producing the
sequence

g8 = Hy= fifes Bl s fieiferts Fiet fodts oo o Tofotan
fifet1, Hz, Ha, .., He = fu1fe, f1fes1,

which has the desired property. s

Lemma 2.2 Let E = {f1, f2,..., fx} be the edge set of a star of size
k> 2 Fort= (';), there is a sequence Hy,Ha, ..., Hy consisting of the ¢
distinct pairs f; f; of edges of E where

(i) H; and Hiy1 have an edge in common for 1 = 1,2,...,4—1 and
(ii) Hy = fife and He = fe—1S k-

Proof. We proceed by induction on k. It is straightforward to show that
the statement is true for & = 2, 3, 4. Suppose that the statement is true for
an integer k > 4. Let {f1, fo,.- -, fx, fe4+1} be the edge set of a star of size
k+1 > 5. Applying the induction hypothesis to the set {f1, fay-- s fic}s
there is a sequence sg : Hy, Ha, ..., He, where £ = (';), consisting of the £
distinct ordered pairs f;f; where 1 < # j < k such that

(1) H; and H;yy have an edge in common for ¢ = 1,2,...,£—1 and
(1) Hy= f1f2 and He = fic—1fk-

Thus, Hy = f1f; or Ha = faf; for some integer j with 3 < j < k. Let

st fifert, fofeats - os fim1Fetts Fivtferty oo fo—1fot1s fi et

We now insert s’ between Hy = f1f2 and Hp and add fi fi 1 after fi_1fi,
producing the sequence

s ¢ Hy= fife, fifests Fofests - Fimtfotts fita foats- oo fe=1fietr,
fife+1, H2, Ha, ..o, fe—1 ks fiefer1s

which has the desired property. |
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3 The Main Theorem

We are now in a position to state and prove the primary result.

Theorem 3.1 If G is a connected graph with 6(G) > 4, then P3(G) is
Hamaltonian-connected.

Proof. It suffices to show that for every two distinct 3-paths P and Q
of G, there exists a sequence

S:P=A,A,...,A,=Q (1)

consisting of the distinct 3-paths 4; (1 < 7 < p) of G that begins with
P and ends with @ such that A; and A;,; have an edge in common for
1=1,2,...,p—1. Let there be given two distinct 3-paths P and Q of G. We
consider five cases, depending on the location of P and Q in the graph G.
In each case, a spanning tree T' of G is constructed based on the location
of P and Q. The tree T' is then appropriately embedded in the plane from
which a Hamiltonian walk W is constructed. The walk W then gives rise
to a cyclic sequence S; consisting of those 3-paths of T that lie on W.
With the aid of Sj, a sequence S as in (1) is constructed containing all
3-paths of G possessing the desired property, thereby showing that P3(G)
is Hamiltonian-connected.

Case 1. P and Q have an edge in common. There are three possibilities
here, namely

(1) P and Q have the same interior vertex,
(2) P and Q have adjacent interior vertices and form a 4-path or

(3) P and Q have adjacent interior vertices and form a 3-cycle.
We consider these three subcases.

Subcase 1.1. P and Q have the same interior vertezx v. Let P = ab and
@ = bc and let d be a fourth edge incident with v. Let T be a spanning tree
of G containing P and Q as well as the edge d. The tree T is embedded in
the plane so that the edges c, a, b, d appear consecutively in clockwise order
about v (see Figure 3). Any other edges of T incident with v lie between
the edges d and c in this embedding of 7T'.
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Figure 3: A planar embedding of T' in Subcase 1.1

We now consider the Hamiltonian walk W in T obtained from this
embedding of T’ that encounters the edge a before the edge b. By proceeding
along W, we obtain a cyclic sequence Sy of all 3-paths of T lying on W.
If T contains a 3-path whose interior vertex has degree 2 in T, then this
3-path occurs twice in &;. The sequence S; contains the 3-paths P = ab
and bz as two consecutive terms for some edge z (where z = d if b is a
pendant edge). The 3-path Q = bc is not a term in Sy. We now insert Q
between ab and bx to produce a sequence

452IP=ab$Bl,Bg,...,Bg_1:b.’l:,Bg:bC:Q

consisting of all 3-paths on W as well as the 3-path bc such that B; and
B;.+1 have an edge in common for 2 =1,2,... ,£ — 1. While any 3-path in
T having an interior vertex of degree 2 occurs twice in Sz, all other 3-paths
on W occur exactly once in S;. We now describe additions that we make
to So at each vertex u of T depending on the degree of u in T'.

First, suppose that u is an end-vertex of T, where e is the edge in T that
is incident with u. Let fi, fo,. .., f4 be the edges of G incident with u that
are not in T, where d = deg; u — 1 > 3. Applying Lemma 2.1 to the set
E ={e, f1,f2,..-, fa} for £ = (d?;l), there is a sequence s : Hy, Ha, ..., H,
consisting of the £ distinct pairs of edges of E where (i) H; and H;yq have
one edge in common for i = 1,2,...,£—1 and (iz) H; = ef; and H, =efy.
We insert s between two consecutive terms containing e in Sp. This is
now done for each end-vertex u of T, producing a sequence Sz of 3-paths,
consisting of all 3-paths of 7' lying on W and all 3-paths of G having an
interior vertex of degree 1 in T such that every two consecutive terms in
Sz have a single edge in common.
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Second, suppose that T’ contains g vertex u of degree 2, incident w
edges e and f. Then the 3-path ef occurs twice in S3. Since deg, u >
there are edges €1,€2,...,eq (d > 2) distinct from e and f that are incide
with « and belonging to G but not to T. Since d > 2, there are 3-pat
in G having the interior vertex u that do not belong to S;, namely, ee, (1
1<d), fe; (1<i< d) and ge; (1<i<j< d). In the second occurrep,
of the 3-path ef in S3, there are three cofisecutive terms he,ef, fg in .
for some edges A and 9- In this case, we replace the 3-path ef here by tt
sequence eeq, eeq_y, . . ., ee1, 8", feq, feq_q, ... » fe1 of 3-paths, where S
a sequence of distinct 3-paths eie; (1 <i<j<d beginning with e,
and ending with €d—1€4 such that consecutive 3-paths in $” have an edg
in common. By Lemma 2.2, such a sequence S” exists. We do this f¢
each vertex u of degree 2 in T, producing a sequence Sy of distinet 3-path
(having ab and be are two consecutive terms), consisting of all 3-paths of ]
lying on W and all 3-paths of G having an interior vertex of degree 1 or
in T, where every two consecutive terms have an edge in common.

Next, suppose that T contains a vertex u of degree 3 in T. Then every
3-path of T having interior vertex occurs exactly once in both W and Sy
Let ey, e5, e3 be the three edges of T incident with . We may assume that
these three edges appear in counter-clockwise order about u as €1, €2, €3 in
T. Then Z€1, €1€2, e2y are three consecutive terms in S; for some edges x
and y. Let fy, f, ... » fa be the edges of @ that are incident with u but are
not in 7', where d — degou—3 > 1. Applying Lemma 2.1 to the set £ =
{ey, fi, fs, . .. , fa, e2}, for £ = (“32), there is a sequence s : Hy, Hy, ... H,
consisting of the ¢ distinct pairs of edges of E where (¢) H; and H;y1 have
exactly one edge in common for ¢ = 1,2,...,¢ —1 and () Hy = e1fi
and Hy = eje5. We now delete ejey from S4 and insert s between ze,
and epy. F‘urthermore, insert the sequence esfi,e3fo,. .., e3 fa between two
consecutive terms in S, containing e3. We do this for each vertex u of
degree 3 in T, Producing a sequence Ss of distinct 3-paths (having ab and
bc as consecutive terms) consisting of all 3-paths of T lying on W, the 3.
Path bc and all 3-paths of @ having an interior vertex of degree 1, 2 or 3 in
T', where every two consecutive terms have an edge in common.

Finally, let « be a vertex of degree 4 or more in T First, suppose that
every edge incident with 4 belongs to T, Say ey, eq,...,eq are the edges
incident with « where 4 — degru = degou = d 2 4. We may assume
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that the edges of T' incident with u appear consecutively in T in counter-
clockwise order about u as eq,es,...,e;. Thus, ejeg, ezes, .. ., €d_1€4, €41
 are 3-paths in W. Consequently, there are (g) —d (> 2) 3-paths of G with
the interior vertex u that do not lie on W. Let X be the set of 3-paths
whose interior vertex is w that do not appear in Ss. For each integer ¢ with
1<i<d-2,let X; = {e;e; € X : 1+1 < j} and let s; be any ordering of
the 3-paths in X,;. For 1 < ¢ < d—1, insert the 3-paths in X; in the order
~ s; between two consecutive terms containing e; in S5. We do this for every
~ vertex u of degree 4 or more, each of whose incident edges belongs to 7.

Next, suppose that there are edges of G incident with « that do not
belong to T'. Let ey, ea,. .., eq be the edges incident with u that belong to
T and let fi, fa,..., fo be the edges incident with u that do not belong to
T. Thend >4 and d’ > 1 and d+d' = deg; u > 5. We may assume that the
edges of T incident with u appear consecutively in T in counter-clockwise
order about u asey, eg, ..., eq. Thus, ejeg, eses, .. ., eq_1e4, ege; are 3-paths
in W. Then zey, ejez, ey are three consecutive terms in Ss for some edges
x and y. Applying Lemma 2.1 to the set E = {eq, fi, f2,-.., fa, ez}, for
g = (dlj 2), there is a sequence s : Hy, Hy, ..., H; consisting of the £ distinct
pairs of edges of E where (i) H; and H;, ; have exactly one edge in common
fori=1,2,...,£—1 and (it) Hy = e1f1 and Hy = ejes. We now delete
ere2 from S5 and insert s between ze; and egy. Let Y be the set of 3-paths
whose interior vertex is u, at least one of whose edges is in T' that are not
inSs. For1<i<d letY,={esej:i+1<j}U{ef;:1 <j<d}CY
for 1 <7< d, where {e;e; 114+ 1< j} =0ifi =d—1,d and let s; be any
ordering of the 3-paths in Y;. For 1 < < d, insert the 3-paths in Y; in the
order s; between two consecutive terms containing e; in Ss. We do this for
every vertex u of degree 4 or more in G, producing the sequence S with the
desired properties as described in (1).

Subcase 1.2. P and Q have adjacent interior vertices and form a 4-
path. Let P = ab and Q = bc where v is the interior vertex of P, shown
in Figure 4. Let T be a spanning tree of G containing the 4-path a, b, c as
well as an edge w incident with v distinct from a and b (see Figure 4).

There exists a Hamiltonian walk W of T and a cyclic sequence S; of the
3-paths of T' on W such that za, ab, be, cy are four consecutive terms in S;
for some edges = and y in T (where possibly z = w if a is a pendant edge
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Figure 4: A planar embedding of 7' in Subcase 1.2

of T'), that is, S : P = ab = By, Bs,..., By = bc = Q is a sequence of all
3-paths of T on W where B; and B;;; have a single edge in common for
t=1,2,...,£—1. We now proceed as in Subcase 1.1 to produce a sequence
S with the desired properties as described in (1).

Subcase 1.3. P and Q have adjacent interior vertices and form a 3-
cycle. Let P = ab and Q = bc and let v be the interior vertex of P. Let T
be a spanning tree of G containing the 3-path P (but not the edge c), an
edge w incident with v distinct from a and b as well as an edge z incident
with the interior vertex of @ different from b and ¢ such that w and z are
not adjacent (see Figure 5).

in G : inT :

Figure 5: A planar embedding of 7" in Subcase 1.3

There exists a Hamiltonian walk W of T' and a cyclic sequence S; of
the 3-paths of T lying on W such that ab, bz are two consecutive terms in
&1 but be is not a term of S;. We insert bc between ab and bz producing
the sequence Sz : P = ab = By, By, ..., bz, By = bc = Q, which consists
of bc and all 3-paths of T lying on W where B; and B;;; have an edge
in common for 2 = 1,2,...,£— 1. We now proceed as in Subcase 1.1 to
produce a sequence S with the desired properties as described in (1).

The remaining four cases deal with situations in which P and Q do not
have an edge in common. In these cases, P = ab and Q = cd, where then
a, b, ¢, d are four distinct edges of G.

Case 2. P and Q do not have an edge in common and there is a path
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in G containing P and Q. Let R be a shortest path in G containing P
and Q. There are two possibilities here. Either P and Q have a vertex in
common or P and Q are vertex-disjoint (see Figure 6). We consider these
subcases.

(e}

o

(o2

Figure 6: The 3-paths P and @ in Case 2

Subcase 2.1. P and Q have a vertex in common and so R = (a,b, c,d).
Let T be a spanning tree of G containing R. Then there is a Hamiltonian
walk W of T such that R is a path in W, resulting in a cyclic sequence
S; of 3-paths of T' occurring in the order they are encountered on W. We
may assume that T is embedded in the plane so that ab, bc,cd are three
consecutive terms in S;. Since each edge of T is encountered twice in W,
each edge of T that is not a pendant edge of T" occurs in two consecutive
3-paths twice in §;. Thus, in addition to ab, be, there is another pair of
consecutive 3-paths in §; containing b, say xb and by (where possibly ¢ = ¢
and/or y = a). If the 3-path bc occurs twice in Sy, then we remove bc from
its first occurrence (between ab and cd). Otherwise, we remove bc from S;
and insert bc between xb and by, producing a sequence

82:Pzaszl,Bg,...,Bg_l,Be_—'Cd:Q (2)

consisting of all 3-paths on W where B; and B, have an edge in common
for i = 1,2,...,£ — 1. We now proceed as in Case 1 to place all 3-paths
in G that are not in S to produce a sequence S that begins with P and
ends with Q consisting of all distinct 3-paths of G such that consecutive
3-paths in S have an edge in common, as described in (1).

Subcase 2.2. P and Q are vertez-disjoint. Let R=(a, b, €1, ez, ..., €k,
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¢, d), k > 1, be a shortest path in G containing P and Q. Let T be 1
spanning tree of G' containing R and embedded in the plane so that there
is a Hamiltonian walk W of T such that R is a path in W. This results
in a cyclic sequence S; of 3-paths of T occurring in the order they are
encountered on W. Thus,

za,ab, bey, €1€9,wu sy ekg, cd, dy (3)

are consecutive terms in S for some edges z ahd y. Each of the edges b, ¢, e,
(1 <1 < k) appears between consecutive terms only once in (3) and there is
another pair of consecutive terms in &) containing each such edge. We can
now delete each of the 3-paths bey, ejes, .. ., exc in (3) whose interior vertex
has degree 2 and move every other such 3-path to an appropriate position
in &1 where the interior vertex of the 3-path is encountered on W. (For
example, we can insert be; between consecutive 3-paths in S; containing e,
insert e; ez between consecutive 3-paths in S; containing e; or containing e,
and so on.) This creates a new sequence S; as in (2). We then proceed as

in Case 1 to produce a sequence S with the desired properties as described
in (1).

Case 3. P = ab and Q = cd do not have an edge in common but

have two vertices in common. There are two possibilities here, as shown in
Figures 7(a) and 7(b).

() (d)

Figure 7: The 3-paths P and Q in Case 3

Let R = (a,b,d) be the 4-path of G in the graphs shown in both Fig-
ures 7(a) and 7(b). Let T be a spanning tree of G containing R but not
the edge c. See Figures 7(c) and 7(d). There is an embedding of T in the
plane so that the resulting Hamiltonian walk W of T' contains the 4-path
R = (a,b,d). This, in turn, results in a cyclic sequence S; of those 3-paths
in T occurring in the order they are encountered on W. Thus, ab, bd are
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consecutive terms in 81 and the 3-path ed does not occur in W and so not
in Sy either. We then insert cd between ab and bd in Sp, resulting in a
sequence of 3-paths of G that begins with P = ab and ends with @ = cd
consisting of all distinct 3-paths of S1, together with cd, where consecutive
3-paths have an edge in common. We then proceed as Case 1 to add all
3 paths in G not in this sequence and produce a sequence S that begins
with P and ends with Q consisting of all distinct 3-paths of G such that
consecutive 3-paths have an edge in common, as described in (1).

Case 4. P = ab and Q = cd do not lie on a common path and have
ezactly one vertexr v in common. Here, P and @ produce one of the two
trees of order 5 that is not a path. We consider these two possibilities.

Subcase 4.1. P = ab and Q = cd form the tree of order 5 containing a
vertez v of degree 3 in Figure 8(a). Let f be an edge incident with v that
is distinct from a, b and c. The edges f and d may or may not be adjacent.

(a) (b) (c) (d)
Figure 8: The 3-paths P and Q in Subcase 4.1

First, suppose that f and d are not adjacent. Let T be a spanning tree
of G containing P, Q and f, which is embedded in the plane so that a, f, b, ¢
appear consecutively in clockwise order about v as shown in Figure 8(b).
Then there is a Hamiltonian walk W of T" and a cyclic sequence Sy consisting
of certain 3-paths of T’ occurring in the order they are encountered on W.
Thus, Si does not contain ab but does contain bc and cd as consecutive
terms. We then insert ab between bc and cd in Sy, resulting in a sequence
of 3-paths of G that begins with P = ab and ends with Q@ = cd consisting
of all distinct 3-paths of Sy, together with ab, where consecutive 3-paths
have an edge in common. We then proceed as in Case 1 to add all 3-paths
in G not in this sequence to produce a sequence S that begins with P and
ends with Q with the desired properties as described in (1).
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Next, suppose that f and d are adjacent as shown in Figure 8(c). Let
T be a spanning tree of G containing a, f,b and ¢ (but not d), which is
embedded in the plane so that a, f, b, ¢ appear consecutively in clockwise
order about v as shown in Figure 8(d). Then there is a Hamiltonian walk W
of T and a cyclic sequence S; consisting of certain 3-paths of T occurring
in the order they are encountered on W. Thus, S; contains neither ab
nor cd but contains zb, bc as consecutive térms for some edge x (where
possibly « = f). We now insert ab, cd between zb and bc in S1, resulting
in a sequence of 3-paths of G that begins with P = ab and ends with
@ = cd consisting of all distinct 3-paths of Sj, together with ab, cd, where
consecutive 3-paths have an edge in common. We then proceed as in Case 1
to add all 3-paths in G not in this sequence to produce a sequence S that
begins with P and ends with @ with the desired properties as described
in (1).

Subcase 4.2. P and Q form the star K;4. Let T be a spanning tree
of G containing P and Q, which is embedded in the plane so that a,c, b, d
appear consecutively in clockwise order about v. See Figure 9.

Figure 9: The 3-paths P and Q in Subcase 4.2

Then there is a Hamiltonian walk W of T and a cyclic sequence S
consisting of 3-paths of T' occurring in the order they are encountered on W.
Thus, S contains neither ab nor cd but contains zb, bd as consecutive terms
for some edge z, where possibly z = c. Then we insert ab, cd between zb and
bd in Sy, resulting in a sequence of 3-paths of G that begins with P = b
and ends with @ = cd consisting of all distinct 3-paths of &, together
with ab, cd, where consecutive 3-paths have an edge in common. We then

proceed as in Case 1 to produce a sequence S with the desired properties
as described in (1).

Case 5. P and Q do not lie on a common path and are vertez-disjoint.
There are two possibilities, shown in Figures 10(a) and 10(c).
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Figure 10: The 3-paths P and @ in Case 5

Subcase 5.1. There is no path in G containing one of P and Q) and one
edge of the other. Necessarily, there is a path in G containing one edge of
each of P and Q. Let u be the interior vertex of P and v the interior vertex
of Q and let R be a shortest u — v path in G, say R = (ey,ea,...,ex) for
some positive integer k. See Figure 10(a). We consider two subcases.

Subcase 5.1.1. There s an edge f incident urth u distinct from a, b, ey
and an edge g incident with v distinct from c, d, ex such that f and g are
not adjacent. See Figure 10(b). Since R is a shortest u — v path in G
and there is no path in G containing one of P and @ and one edge of the
other, f is not adjacent to any of the edges ez, es3,...,ex,¢c,d,g and g is
not adjacent to any of a, b, f,e1,e2,...,ex—1. Let T be a spanning tree of
G containing P, @, f, g and R, which is embedded in the plane as shown
in Figure 10(b). Then there is a Hamiltonian walk W of T' and a cyclic
sequence S; consisting of those 3-paths of T' occurring in the order they are
encountered on W. Thus, S; contains neither ab nor cd. If k = 1, then S;
contains bey, e1d as consecutive terms; while if £ > 2, then §; contains

561,6162,...,ek_16k,ekd (4)

as consecutive terms. If £ = 1, we insert ab,cd between be; and e;d,
creating a new sequence beginning at P = ab and ending at Q = cd. If
k > 2, then we insert ab, cd between be; and eje; and delete each of the
3-paths ejea, ..., ex_1ex in (4) whose interior vertex has degree 2 and move
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every other such 3-path from the sequence in (4) to another appropriate
position, creating a new sequence that begins at P = aband ends at Q = ¢4,
We then proceed as in Case 1 to produce a sequence S with the desired
properties as described in (1).

Subcase 5.1.2. Subcase 5.1.1 does not occur. Hence, if f is an edge
incident with u distinct from a, b, ey and g is an edge incident with v distinct
from ¢, d, e, then f and g are adjacent. The:n deg;u = degov = 4 and
either k = 1 or £ = 2. See Figures 11(a) and 11(c). Let T be a spanning
tree of G containing P,Q, e, (if K = 1) or ej,es (if & = 2) and the edge
f but not g, which is embedded in the plane as shown in Figures 11(b)
and 11(d).
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Figure 11: The 3-paths P and @ in Subcase 5.1.2

We only consider the case when k = 2 since the argument for the case
when k = 1 is similar. From this planar embedding of T, a Hamiltonian
walk W of T is produced as well as a cyclic sequence S; of 3-paths that
contains

bey,eieq, eod, dx, . .., yd, de, cz (5)

as consecutive terms for some edges z,y and z of G. Note that S; contains
neither ab nor the three 3-paths dg, e2g, cg of G whose interior vertex is v but
51 does contain the 3-path cd on W. We insert ab between be; and e; e and
insert dg, e2g, cg between dc and cz so that dc, dg, e2g, cg, cz are consecutive
terms. We move the terms ejeg, ead, dz,...,yd in (5) and insert them
between dg and ezg such that dg,yd, ..., dc, exd, e1es, e2g are consecutive
terms and then delete each 3-path in the resulting sequence whose interior
vertex has degree 2. This produces a sequence P = ab, bey,...,gd, dc = Q
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consisting of all 3-paths of W together with the three 3-paths dg, eég, cgof G
whose interior vertex is v. We then proceed as in Case 1 (but exc}udihg the
vertex v) to produce a sequence S with the desired properties as described
in (1).

Subcase 5.2. There is a path in G containing one of P and @ and one
edge of the other. See Figure 10(c). Let R be shortest such path, say
R contains b and @, where R = (b,ej,e2,...,ex,c,d) for some positive
integer k. We consider two subcases.

Subcase 5.2.1. There is an edge f incident with u distinct from a,b, eq
that is not adjacent to d. Let T be a spanning tree of G containing P, Q,
f and R, which is embedded in the plane as shown in Figure 10(d). Then
there is a Hamiltonian walk W of T and a cyclic sequence S; consisting of
3-paths of T' occurring in the order they are encountered on W. Thus, &3
does not contain ab but contains

bei,ere, ..., ekc, cd (6)

as consecutive terms. We insert ab between be; and ejez in Sy, delete each
of those 3-paths ejes, ..., exc in the sequence (6) having an interior vertex
of degree 2 and move every other such 3-path in (6) to another appropriate
position in the sequence. This creates a new sequence that begins at P = ab
and ends at Q = cd. We then proceed as in Case 1 to produce a sequence
S with the desired properties as described in (1).

Subcase 5.2.2. Fvery edge f incident with u distinct from a,b,e; 1s
adjacent to d. First, suppose that f is incident with v. See Figure 12(a).
Let T} be the tree as shown in Figure 12(b) and let T' be a spanning tree
of G containing T} but not the edge c. The tree T'is embedded as shown
in Figure 12(b). Then there is a Hamiltonian walk W of T' and a cyclic
sequence Sp consisting of 3-paths of T' occurring in the order they are
encountered on W such that bf, fd are consecutive terms in S; but ab and
cd are not in S;. We now insert ab,cd between bf and fd, resulting in a
sequence of 3-paths of G that begins with P = ab and ends with Q = cd.
We then proceed as in Case 1 to produce a sequence S with the desired
properties as described in (1).

Next, suppose that f is incident with w. By the defining property of
R, it follows that k = 1 and R = e;. See Figure 12(c). Let T3 be the tree
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Figure 12: The 3-paths P and Q in Subcase 5.2.2

as shown in Figure 12(d) and let T' be a spanning tree of G containing T,
which is embedded in the plane as shown in Figure 12(d). Again, there is a
Hamiltonian walk W of T and a cyclic sequence S; consisting of 3-paths of
T such that bf, fd are consecutive terms in S; but ab and cd are not in ;.
We then insert ab, cd between bf and fd and proceed as in Subcase 5.2.1. m

A connected graph G of order n > 3 is called k-tree-connected (or k-
leaf-connected) for an intéger k with 2 < k < n — Lif for every set S of k
distinct vertices of G, there exists a spanning tree T of G whose set of end-
vertices is §. Thus, a 2-tree-connected graph is Hamiltonian-connected.
By Theorem 3.1, if G is a connected graph with §(G) > 4, then P5(G) is
2-tree-connected. The following were shown in [1].

Theorem 3.2 IfT is a tree of order at least 6 containing no vertices of
degree 2, 3 or 4, then P3(T) is 3-tree-connected.

Theorem 3.3 If G is k-tree-connected for some integer k > 2, then G is
(k 4+ 1)-connected.

Since S = {ab, ac, ad} is a vertex-cut in the 3-path graph P3(G) of the
graph G in Figure 13, it follows that P3(G) is not 4-connected and so P3(G)
is not 3-tree-connected by Theorem 3.3. Hence, if G is a connected graph
with §(G) > 4, then P3(G) need not be 3-tree-connected. However, no
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connected graph G is known such that §(G) > 5 and P3(G) is not 3-tree-
connected. Therefore, we conclude with the following conjecture.

Figure 13: A graph G whose 3-path graph is not 3-tree-connected

Conjecture 3.4 If G is a connected graph with §(G) > 5, then P3(G) 1s

3-tree-connected.
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