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Abstract

A connected graph G = (V, E) is called a quasi-tree
graph if there exists a vertex vp € V(G) such that G —
vo is a tree. In this paper, we determine the largest
algebraic connectivity together with the corresponding
extremal graphs among all quasi-tree graphs of order n
with given matching number.
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1 Introduction

Let G be a simple undirected graph with vertex set V =
V(G) = {w,v1,...,v,_1} and edge set E(G). For a graph G,
A(G) is its adjacency matrix and D(G) is the diagonal matrix
of its degrees. The matrix L(G) = D(&) — A(G) is called the
Laplacian matrix of G. The Laplacian characteristic polynomial
of G, denoted by ®(G;z), is just det(z] — L(G)). As usual,
we shall index the eigenvalues of L(G) in nonincreasing order,
denote them as 11 (G) > pe(G) > - > pn-1(G) > u.(G) = 0.
The second smallest eigenvalue j,_1(G) of L(G) is called the
algebraic connectivity of G, denoted by a(G).

The investigation on the algebraic connectivity of a graph
is an important topic in the theory of graph spectra because
1t features many interesting properties and has a lot of appli-
cations in theoretical chemistry, control theory, combinatorial
optimization, etc. Much work has been done concerning the al-
gebraic connectivity of a graph, see e. g. [1, 2]. Given a set
of graphs, which graphs maximize the algebraic connec-
tivity? This problem arises in many diverse areas (see [15]) and
has been studied extensively. For example, maximizing the alge-
braic connectivity has been discussed by Fiedler [7] and Zhang
[24] for trees, Fallat et. al [6] and He et. al [11] for unicyclic
graphs, Fallat et. al [5] and Wang et. al [22] for graphs with
given diameter, Molitierno [18] and Barriere et. al 4] for pla-
nar graphs, Molitierno [19] for outerplanar graphs, Kirkland [13]
and [14] subject to the number of cut-points, Lu et. al [17] in
terms of the domination number, Lal et. al [16] subject to the
number of pendant vertices, Zhu [25] subject to matching num-
ber. Moreover, the reader may be referred to [2, 21, 23] and the
references therein.

A connected graph G = (V, E) is called a quasi-tree graph if
there exists a vertex vy € V(G) such that G-y, is a tree. In this
paper, we determine the largest algebraic connectivity together
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7ith the corresponding extremal graphs among all quasi-tree
raphs of order n with given matching number.

The rest of the paper 1s organized as follows. In Section 2,
;e recall some basic notions and lemmas used further, and prove
ome new lemmas. In Section 3, we give our main results.

> Preliminaries

et G—v denote the graph obtained from a graph G by deleting
he vertex v € V(G) and all the edges incident with v, and
7 — yv denote the graph obtained from a graph G by deleting
he edge uv € E(G). We denote the minimum degree of the
sertices of G by & = 6(G), and the complete bipartite graph
vith two parts of sizes s and t by K. Denote by «(G) and
:(G) the vertex connectivity and the edge connectivity of G
respectively. If G1 = (Vi, E1) and G2 = (Va, E,) are two graphs
with ViNVa = 0, their union is G1+G2 = (ViUVy, By UE,). The
join Gy V Gy is the graph G obtained from G, + G4 by joining
each vertex of Gy to each vertex of Gs,.

Lemma 2.1. ([7]) For a connected graph G and dlv € V(G),
a(G) € a(G—v)+ 1L

Lemma 2.2. ([8]) If T is a tree with diameter d, then

).

7
T = 21 =

a(T) < 2( cos ==

Lemma 2.3. ([12]) Let G be a graph of order n, e be an edge

of G and G' = G —e. Then

1(G) = (") 2 p(G) 2 1a(C') 2+ Z #na(G) 2 pina (&)

> pin(G) = pa(G') = 0.
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Lemma 2.4. ([7]) Let G be a non-complete graph. Then
o(G) < k(G) < ¢(G) <4(G).

If v € V(G), let L,(G) be the principal submatrix of L(G)
formed by deleting the row and column corresponding to the
vertex v. Similarly, if H is a subgrap}ii of G, let Ly (G) be the
principal submatrix of L(G) formed by deleting the rows and
columns corresponding to all vertices of V (H).

The following lemmas display the relations between the char-
acteristic polynomial of L(G) and the polynomial of L,(G).

Lemma 2.5. ([10]) Let v be a vertex of a graph G, let o(v)
be the collection of cycles containing v. Then the Laplacian
characetristic polynomial ®(L(G)) satisfies

®(L(G)) = (z = d(v))2(Ly(G)) — Eu(®(Luu(G)))

— 2Zz¢,) (- 1)1®(L2(G)),

where the first summation extends over those vertices w adjacent
to v, the second summation extends over all Z € ¢(v), and |Z|
denotes the length of Z.

Lemma 2.6. ([10]) Let H be a proper subgraph of G, and let v
be a vertex of G such that v ¢ V(H). Then we have

(Lu(G)) = (z—d(v))2(Lu(G)) — SuverGyugv (i) (B(Liuw(G)))

— 2 zep)vnvn=o(—1)Z1®(Ly z(G)).

Denote by T'(n, k;p1,...,px) the tree of order n, shown in
Fig. 2.1, obtained from star graphs K x, K ,, K1 p,,. . ., Ky p,
by identifying the pendent vertices of K 1,x and the centers of
Ki,p1s- -5 K1, p,, Tespectively, where p; > py > -+ > e > 0,
Pr2p2>0,k22 14+k+pi+pr+---+pp=n.
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Yo i > Uk +p1+p2

Uk

S(S,t) T(n‘k;ph""pk)

Fig. 2.1  S(s,t), T(n,k;p1,. .., Dx)

Lemma 2.7. ([24]) Let T(n,k;p1,...,px) be a tree of order
. with diameter 4, where k > 2,py 2 -+ 2 Pk 2 0. Then
i(n, k; D1y - Dr) < iiéﬁ with equality if and only if kK > 2 and
5 =pa =1, 1e, T(n,k;pr,...,Pk) is T(n. & 1,.. .. 15000050,

Lemma 2.8. ([20]) Let G and H be two connected graphs of
srder 7 and s, respectively. If o(G) = (i (G), u(G), - - - 1 (G))
(lnd U(H) = (Ml(H)) /"’2(H)a v o i § IJ‘S(H))J then

a(GvH)=(r+s,u1(G)+s,...,ur_1(G)+s,u1(H)+7‘,...,

te—1(H) +1,0).

where o(G) and o(H) denote the Laplacian spectrum of G and
H respectively.

A double star S(s,t), shown in Fig. 2.1, is a tree obtained
from two stars K; s and K ; by adding an edge between the
centers of the two stars. Without loss of generality, we may
assume that s+t +2=nand 1<s<t<n-3.

Lemma 2.9. ([9]) The algebraic connectivity of the double star
S(s,t) is a strictly decreasing function of s for1 <s <3 —1.

Lemma 2.10. ([3]) Let f be real-valued and continuous on a
connected subset S of R*. If f takes on two different values in
S, say a and b, then for each real ¢ between a and b there exists
a point = in S such that f(z) = c.
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Lemma 2.11. Let G be the graph, shown in Fig. 2.2, of orde
n with matching number 8. If 8 > 4, then a(G;) = 5_2—‘/5
Proof. Let T1 = Gl — V9. Then 1y = T(n,n—-ﬁ; 1,...

By Lemmas 2.7 and 2.8, we obtain a(G,) = 5‘2—‘/5 O

Lemma 2.12. If § > 4, then a(G, — V) = 5—‘2@

1,0,...,0)

Proof. Since 3 > 4, it follows that n > 8. For n = 8 and 9, by
computation with computer, we can check that a(Gy — vov;) =

-——5_2‘/5. Next we assume n > 10. By Lemmas 2.5 and 2.6, we
have

O(Gy —wovy; 7) = 2(z — 2)" 72+ (2% — 51 4+ 5)03, (1),
where .
filz) = 28— (2n—-B+5)z°+ (n® - Bn + 10n — 43 + 3)z?
—(5n* — 58n + 10n — 10)z + 5n2 — 48n — 2n.
Taking the first and second derivatives of f1(z) with respect to
z, we obtain that
fil) = 42 -3(2n—B+5)22 + 2(n* +10n — nB — 48 + 3z
—5n* — 10n + 508 + 10,
filz) = 12z*-6(2n - B +5)z + 2(n® +10n — nB — 48 + 3).
Since n > 2 and 8 > 4, it follows that

1(z) = 122°—6(2n— B +5)z + 2(n® + 10n — nB — 48 + 3)
—12(2n — B+ 5) + 2(n® + 10n — nf — 48 + 3)
2n(n— B —2) + 48 — 54
2n(B—-2)+48 54> 4(n+B) —54> 0

v
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wheIl 0 <z <2 This 1mphes that fi(z) is strictly increasing

on the 1nterval [0,2]. Since f{(3) = -2n(n-pF-2)-2p-5<
3'.-—2n(5 ) 215 2 <0,it follows that fi(z) < 0for0 <z < 2.

This 1mpheS that fl( ) is strictly decreasing on the interval [0, ]
*Noting that

f1( \/d) = nf—2n—54+10 > 4(n—5)—2n+10 = 2(n—>5) > 0,

“we have that the least root of fi (x) is greater than ..5—2\/3 It
follows from the characteristic polynomial ®(G; — vov1; z) that

0(G1—vov) = 558, O

S

E;_Lemma 2.13. If B > 4, then a(G, — vova) < 252

Proof. By Lemmas 2.5 and 2.6, we have
®(G) — vovg; ) = z(x — 2)" 28+ (22 — 5z + 5)5 4 fa(),
where

folz) = 2= (2n—B+10)z° + (n* +19n —nB — 86 + 35)z*
—(9n2 + 65n — 9nB — 188 + 44)z® + (28n° + 97n —
2B — 66 — 2)z* — (35n* +63n — 31nB + 84 — 24)z
+15n2 4+ 16n — 12n8.

It follows that fy(1) =2n — 38+ 4 > 0,
| 6
5P fz(g) = —2475n% + 34090n — 3150n3 — 193208 + 8356

< —2475n% 4+ 21490n — 68424 < 0.

By Lemma 2.10, there exist at least one root of fo(z) in the
interval (1, ). This implies that a(G — vova) < & < 25 ‘/_. O

Lemma 2.14. Let G, be the graph, shown in Fig.2.2, of order
n with matching number 8. If B > 4, then a(Gg) 5—”—2‘@
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PI'OOf. Let T2 == G2 — p. Then TZ = T('ﬂ,ﬁ - 13 1’ 1: Ty 1)
By Lemmas 2.7 and 2.8, we obtain a(Gy) = 5—‘:?35 0

Lemma 2.15. If B > 4, then a(Gy — Uy ) = ti,—‘/—g

Proof. By Lemmas 2.5 and 2.6, we have
(G2 ~ vovy; 7) = 2(2® - 5z + 5)72(2® — (38 + 2)22
+(26% + 86 — 5)z — 652 + 65).
Let f3(z) = 2% — (38 + 2)2* + (26° + 86 — 5)z — 632 +60. Since
B > 4, it follows that
f3(z) = 32% - (68+4)z + 282 + 88 —5

> —2(68+4)+252+83~5

= 282 -48-13>0
when 0 < z < 2. This implies that f3(z) is strictly increasing
on the interval [0, 2]. Noting that f3(5—"215) = —@(262 —~ 76+
5) < 0, we have that the least root of f3(z) is greater than 5—3@ :

It follows from the characteristic polynomial ¢(G, —Upvy; ) that
a(G’2 r— ’Uo’Ul) = -5:—2\/—5 O

S

Lemma 2.16. If 3 2 4, then a(Gy — Vota) < 2=

.

Proof. By Lemmas 2.5 and 2.6, we have
Q(G2 — vovg; ) = z(z? - 5z + 5)5‘31‘4(3:),
where

fa(z) = 2°~(38+7)zt + (262 + 228 + 13)z®
~(148° + 508)2? + (30432 + 348 — 8)z — (1862 + 4B).

Since f > 4, it follows that f4(0) = —188% — 48 < 0,
59 f4(§) = 405082 — 106408 + 2616 > .

By Lemma 2.10, there exist at least one root of f4(z) in the
interval (0, 2). This implies that (G2 —wow) < & < =5
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Lemma 2.17. Let G5 be the graph, shown in Fig.2.2, of order
. with matching number 3. If 6 = 4, then a(Gs) = ___5~2\/5_,

proof. Let Ts = G3—vo. Then T3 =T(n,8;1,1,...,1,0). By

Lemmas 2.7 and 2.8, we obtain a(G3) = 5;2@ O

S

5—

Lemma 2.18. If 3 > 4, then a(G3 — vov1) = =5

|

Proof. By Lemmas 2.5 and 2.6, we have
®(G3 — vov1; T) = z(z? - 5z + 5" 2(z* — (B+3)z+ 20+ 1)
(- (28 +3)z+ 68 —1).
Let gi(z) = 22 — (B +3)z + 28+ 1 and golz) = 2 — (28 +
3)z + 68 — 1. The axis of symmetry of g1(z) is T = ‘—%3 >
5-¥5 when B > 4. Noting that gl(%‘/—g) = _"____(3_2)(2\/5.«1) > 0,

2
3—\/B2— .
we have 25 f B s %‘/—5 Similarly, we can prove that

W B L
2044 V‘f AT B30 2‘/5 It follows from the characteristic

polynomial ¢(Gz — vou1; z) that a(Gs — vov1) = 5—‘—2@ O

Lemma 2.19. If 3 > 4, then a(G3 — Vo) < -S—’Qﬁ

Proof. By Lemmas 2.5 and 2.6, we have
P (G3 — voU; T) = z(z? — 5z + 5)°7° fs(),
where

fo(z) = 2°—(38+11)z° + (28° + 318 + 46)z*
—(188% + 12153 + 91)z® + (586° + 2198 + 90)z*
—(788% + 1818 + 51)z + 365" + 565 + 19.

Since 3 > 4, it follows that fs(0) = 3643% + 563 + 19 > 0,
58 fs(g) = —162003% + 295108 + 18001 < 0.

By Lemma 2.10, there exist at least one root of fs(z) in the
interval (0, $). This implies that a(Gs — vove) < £ < -5;2—‘/—5 O
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3 Main results

Let Q,(n, 8) denote the set of all quasi-tree graphs with n ver-
tices and matching number B. If = 1, then Qi(n, B) =
{ Kin_1}. It is known that a(Kin-1) = 1. For 8 > 2, we
obtain the following theorems. ¢

Theorem 3.1. et ¢ € Qi(n,B) and G, (1. = 1,2,3) be the
graphs shown in Fig. 2.2. If B> 4, then

a(G) < ° “2‘/5,

and the equality holds if and only if G € {G1,Gy, Gy — Uy, Gy ~
vou1} forn = 28: G € 3 A G — vovr, G3 — vy} for n =
26+1;Ge{G,,G, - vov1} form > 28 + 2.

Proof. Let G € g,(n, ) and vy € V(G) such that G — v is a
tree. Denote by d the diameter of G —vy. Since 8 > 4, it follows
that d > 4. If G has a pendant vertex, by Lemma 2.4, we have
a(G) <1< f’-:i‘@ If d > 4, by Lemmas 2.1 and 2.2, we have

5—+5
T

a(G) < a(G —up) +1 = 2(1—cosdi

I+l E 8B <

If d =4, then G — vo = T(n, kip1,...,pi), where k > 2 and
P12 py > 1. Namely G is a Spanning subgraph of K v
T(n,k;pl,...,pk). If G—wy # T(n,k;l,...,l,O,...,O), by
Lemma 2.7, we have a(G — ) < 3_—2‘/—5 By Lemma 2.8, we
have

90— vbH
a(G) < a(K;y V T(n, Kip1, ... py)) < 2\/—-

In what follows, we assume that G—vo=T(n,n-3: L,...,1,0,
..., 0) and G has no pendant vertices,



Case 1. n = 28. If G ¢ {G1,G2, G1 —vov1, Ga —vov1 }, then
G is a spanning subgraph of either G — vovp or Ga — Vv, By
Lemmas 2.3, 2.13 and 2.16, we have

5— /5

5
If G € {G1,Ga, Gy — vou1, Ga — vou1}, by Lemmas 2.11, 2.12,
9.14 and 2.15, we have a(G) = -5-:2—\@

Case 2. n= 26 + 1. ItaG ¢ {Gl, Gg, G1 — Vo1, G3 — 'Uol)l},

then G is a spanning subgraph of either G — vovs or G5 — voUs.
By Lemmas 2.3, 2.13 and 2.19, we have

a(G) < max{a(G — vova), a(Ga — vova)} <

a(G) < max{a(Gy — vov2), a(Gs — vove)} < 2 ‘2‘/5.

If G € {G1,G3,Gy — vou1, G3 — vou1 }, by Lemmas 2.11, 2.12,
2.17 and 2.18, we have a(G) = 52,

Case 3. n > 26+2. If G ¢ {G,G1— vou1 }, then G is a
spanning subgraph of Gi — vov2. By Lemmas 2.3 and 2.13, we

have g
5—140
(I(G) = G(Gl s UOUQ) <4 7 .
If G € {G1,G1 — vou1}, by Lemmas 2.11 and 2.12, we have
a(G) = 5’%@

Combining the above arguments, we have the proof. U

Ug
V3
U1
Un-1
G4
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Theorem 3.2. Let G € Qi(n,2) and G4 be the graph shown
Fig. 8.1. Then a(G) < 2 and the equality holds if and only
L = G4 or G4 Y

Proof. Let G ¢ Q(n, 2) and vy € V(G) such that @ — o)
is a tree. If G has a pendant vertex, by Lemma 2.4, we haye
a(G) <1< 2. Next, we assume that ¢ has no pendant vertices

Since = 2, it follows that @ — Vg is the star K 1,n—2. This
implies that G = Gy or G4 — vguy. Noting G, = K v K n_y,
by Lemma 2.8, we have a(Gy) = 2. By direct computation, we
have

(G4 — vouy; ) = z(z —n)(z —n+ 2)(z —2)"3,
This implies that a(Gq — vovy) = 2.
Combining the above arguments, we have the proof. O

Theorem 3.3. Let G € Q:(n,3) and G5 be the graph shown in
Fig. 3.1. Then a(G) < a(Gs), where the equality holds if and
only if G = G5, and a(Gs) — 1 is the least root of the equation
a:3—(n+1)$2+(3n—5)$—n+1=0. ‘

Proof. Clearly, G5 € Q:(n,3) and G5 = K1vS(1,n— 4). By
direct computation, we have

(S(1,n—4);z) = z(z— 1)" (2 - (n+1):c2+(3n—5)x—n+l).

Let fo(z) = 2% - (n+ 1)z*+ (3n~5)z —n+1. Taking the first
and second derivatives of fo(z) with respect to z, we obtain that

fo(z) =327 — (2n + 2)z+3n—5, flz)=6z—9m—9

Since fi'(z) < 0 for z < 1, it follows that fg(z) is strictly de-
creasing on the interval (—oo, 1]. Noting that fi(1) =n—4 0,
we have fg(z) > 0 for < 1. This implies that fg(z) is strictly
increasing on the interval (—00,1]. Since fﬁ(%—‘/g) =-1<0



and fo(1) =n—4>0,it follows that the least root of fs(z)
is less than 1 and greater than 322, By Lemma 2.8, we have

_5,.2£ < a(Gs) <2 and a(Gs) — 1 s the least root of fg(x).

Let G € Qi(n, 3) and vy € V(G) such that G — v is a tree.
Denote by d the diameter of G —vy. Since f = 3, it follows
that d > 3. If G has a pendant vertex, by Lemma 2.4, we have

a(G) <1< a(Gs). If d > 4, by Lemmas 2.1 and 2.2, we have
5— 5
2

)+1<

< a(Gs).

a(G) € a(G—w)+1< 2(1—cosdi :
Next, we assume that d = 3 and G has no pendant vertices.
In this case, G is a spanning subgraph of K; V S(s,t), where
1<s<t<n-—-4 s+t=n-3. By Lemma 2.9, we have

a(S(s,t)) < a(S(1,n —4)) and the equality holds if and only if
s = 1. It follows that a(K; V S(s,t)) < a(K; V S(1,n —4)) and
the equality holds if and only if s = 1.

If G is a spanning subgraph of K1V S(s,t) (s > 2), by Lemma
2.3, we have
a(G’) _<_ G(Kl V S(S,t)) < G(Kl V S(].,n — 4)) = a.(Gs).

If G is a spanning subgraph of K; V S(1,n —4), by Lemma 2.3,
we have a(G) < a(Gs) or a(G) < a(Gr), where Ge = G5 — Uova
and G7 = Gs — vov1. Again by Lemma 2.3, we have a(Gg) <
a(Gs) and a(G7) < a(Gs). Now we show a(Gg) < a(Gs) and
a(G7) < a(Gs).

Let a = a(Gs) and X = (xo, Z1, %2, - - - Tn_1)! be an eigen-
vector corresponding to a. Then a = a(Gs) < a(Gs) < 2, By the
eigenvalue equation L(Gg)X = aX, we have z4 = -+ = Tn-1,

(a—n+2)zo+z1+ 33+ (n—4)rs=0,
70+ (a—n+2)T1 + 22+ (n—4)z4 =0,
z, + (a — 2)ze + 13 =10,
To + T2 + (a — 2)z3 =0,
To + I1 +(a——2)_a:4=0.
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Since X is an eigenvector, it follows that

a—n-+2 1 0 1 n—4
1 a—n+2 1 0 n—4
0 1 a—2 1 0 = )
i 0 1 a— 2 0
1 1 0 - 0 a—2

This implies that a is the least positive root of the following
equation

T—n+2 1 0 1 n-4
1 T—n+2 1 0 n—4
0 1 T —2 1 0 = 1,
1 0 1 z—2 0
1 1 0 0 r—2

Denote the left hand side of the above equation by o(z). B
a computation, we have

() = z(2% - nz + n)(z® — (n + 2):1: + 3n — 4),

This implies that ¢ = 2= ”2“4” Since 2 AP —dn —vn%—dn strictly de-
creasing with respect to n, 1t follows that

~Vn? —dn  6— BT =5 &
a=" g "< g =3-v/3< 2 2\/g<a(G5).

Noting that G, = Gs — vovy, by a similar reasoning as the
proof of a(Gsg), we have a(G5) and a(G7) are the least positive
roots of the following polynomials

ves(z) = z2(z— n)(z® — (n + 4)z® + 5nz — 5n + 4),
ve: () = z(z*— (2n + 2)z® + (n% + n — 9)z?
—(5n? — 5p — 10)z + 5n° — 14n),



respectively. Let

g(z) = z®—(n+4)z®+5nz—5n+4
mMz) = z'—(2n+2)z° + (n? 4+ Tn — 9)z?
—(5n% — 5n — 10)z + 5n° — 14n.

Then a(Gs) and a(G7) are the least positive roots of g(x) and
h(z) respectively. It is easy to see that h(z) = g(z)(z —n+2) —
72 4+ 6z — 8, namely

gz z—n+2)—h(z)=2"-6z+8=(z—2)(x—4)>0

when 0 < z < 2. Let a5 = a(Gs) and a7 = a(G7). Since a7 < 2,
it follows that g(as)(az — n + 2) — h(a7) > 0. This implies that
0 = h(ay) < g(ar)(a7 — n + 2). Noting that a7z —n +2 <0,
we have g(az) < 0. Since g(as) = 0, it follows that a; # as.
Recalling that a; < as, we conclude a(G7) < a(Gs).

Combining the above arguments, we have the proof. 0
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