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Abstract

Constructions of the smallest known trivalent graph for girths 17,
18 and 20 are given. All three graphs are voltage graphs. Their orders
are 2176, 2560, and 5376, respectively, improving the previous values
of 2408, 2640, and 6048.

AMS Subject Classifications: 05C25, 05C35

Introduction |

1e cage problem asks for the construction of regular graphs with specified
gree and girth. In [2], Biggs provided a short history of the construction
pect of the problem for trivalent (cubic) graphs. More recent data is
ailable from Royle’s web site [11]. From these sources, we learn that
fore the graphs described in this paper were discovered, the best known
nstructions for girths 17, 18, and 20 had orders 2408, 2640, and 6048.

Since the constructions presented here use them, we begin with a brief
view of voltage graphs [9]. Given a graph G, we denote the set of arcs of G
» D(G). In this set, each edge is represented twice, once in each direction.

A voltage graph is constructed from a base graph G, a voltage group I,
\d a voltage assignment o, where '

a:D(G)-T

CMCC 113 (2020), pp.3-10



such that
a(uv) = afvu) L.
The voltage graph, denoted G is the graph with vertex set
V(G*)=V(G)xT
wherein (u, g) is adjacent to (v, h) whenever
g-a(uv) =h 4

We will have occasion to refer to the trivalent multigraph of order 2,
which we denote by Ga. It consists of two vertices joined by three edges. A
graph which is a subdivision of G5 is called a §-graph. So a f-graph consists
of two vertices, joined by three independent paths. The total length of such
a graph is taken to be the sum of the lengths of the three paths.

Voltage graphs have previously been used to obtain constructions for
the closely related degree/diameter problem [1, 3, 4]. They were also used
in [6] to construct the smallest known (3,16)-graph. The latter graph is
a lift of the Petersen graph by an abelian group. As indicated in [6], this
is the largest possible girth for a lift of the Petersen graph by an abelian
group. The reason for this is that the Petersen graph contains a f-subgraph
of total length 8, and in any #-graph it is possible to construct a closed
walk that traverses each edge twice, once in each direction. In view of this,
the fact that the smallest (3,16)-graph known is a voltage graph produced
by an abelian group seemed somewhat surprising. But it did motive us
to look at groups that are ”almost” abelian. So we consider groups whose
commutator subgroups are abelian. All three of the constrictions presented
in this paper use nonabelian groups with abelian commutator subgroups.
The relation between girth limits on voltage graphs and the derived length
of the voltage group is studied in [7], where it is shown that the maximum
girth of a lift of G5 using a group whose commutator subgroup is abelian is
22. The girth 20 graph constructed below is in fact a lift of G2 by such a
group.

A second apparently important property of voltage groups that are use-
ful for the cage problem was suggested by the results in [5] where lifts by
nonabelian pg-groups were studied. There we constructed a graph that was
(briefly) the smallest known (3, 17)-graph using the nonabelian group of or-
der 301 = 7 x 43. Such pg-groups were also used to find some of the smallest
known girth 5 graphs for degrees in the range 10 to 20.

A third useful property seems to be the presence of relatively large Sylow
2-subgroups with small exponent. To summarize, we investigated groups
with the following three properties.



1. Abelian commutator subgroups.
2. An odd order nonabelian pg-subgroup (for p, g prime).

3. Relatively large nonabelian Sylow 2-subgroups with small exponents.

It should be noted that attempts to attack the cage problem using Cay-
ley graphs has also been met with success [2]. In this case, the groups that
seemed most useful were groups that were simple or contained large sim-
ple subgroups. However, this may not be the case for voltage graphs, as
our experience with the (3, 20)-graph described below suggests. Since the
construction in this case was the most difficult, we describe it first, and in
greatest detail. The other two constructions are briefly presented at end of
the paper. All three graphs, along with a variety of supporting data, can be
found at http://ginger.indstate.edu/ge/CAGES.

2 A Graph of Degree 3, Girth 20 and Order 5376

At the time of the Biggs survey [2], the smallest known trivalent graph of
girth 20 had been constructed by J. Bray, C. Parker and P. Rowley [10].
Their graph had 8096 vertices. In subsequent unpublished improvements,
Parker and Rowley found a graph of order 6072 vertices, and this writer
found one on 6048 vertices. In this note, the bound is improved to 5376
using voltage graphs.

We began by looking for values of n of the form 2% x p x (2p + 1) that
could be used with small base graphs. We started by looking at the smallest
possible base graph: the 8-multigraph with two vertices. Since the goal was
to improve the old bound of 6048, groups whose orders were less that 3000
we considered. With these criterion in mind, the obvious candidate for n
was 2688 = 27 x 3 x T.

For groups of small order (up to 2000) one can consult the GAP [8]
catalog of small groups and obtain representations of all groups of a given
order. If the orders of the group and the base graph are small enough, one
can do complete searches for the graph. Indeed, this was done for our two
smaller examples. For larger groups one needs to have some idea of the
structure of the group beforehand. Initially, we tried to find an extension of
PSL(3,2) (of order 168 = 23 x 3 x 7) to use as the voltage group (in violation
of our first criterion above). However, this effort was not successful. When
our attachment to PSL(3,2) was overcome, the group we now describe was
found rather quickly.



Let @ denote the quaternion group of order 8. The choice of the quater-
nion was not random. This group has been a useful building block in similar
constructions for the degree diameter problem (see [3]). Recall that @ has
elements {1,—1,i,7,k, —,—7, —k} such that 2 = j2 = k% = 1, ij = k,
jk =%, ki = j. In particular, @ is generated by i and ;.

Now let K be the direct product Zs x Zo x Q. We wish to form a
semidirect product of K by the cyclic group Z4. Consider the automorphism

¢: K —- K
defined as follows.

¢’(17 0, 0) = (0, 1,0)
#(0,1,0) (1,0,0)
¢(0,0,%) = (0, Oaj)
qb(oa 0,7) = (0’ 1,17)

It is straightforward to check that ¢ € Aut(K). If we define ¢ : Z4 —
Aut(K') by mapping a generator of Z4 to ¢ we obtain a semidirect product
H = K xy Z4. The order of H is 128. We note that there are 576 choices for
¢ that produce this group, and that there are 25 (pairwise nonisomorphic)
groups that can be described as semidirect products of K by Z,.

Finally, let T be the nonabelian group of order 21. Then our voltage
group is H x T. The elements of the group can be written in the form
(w,z,y,2,u,v) where w € Zp, z € Z2, y € @, and z € Z4. Elements of K
can be written in the form t{t§ where t; and ¢, are generators of T of orders
3 and 7, respectively, such that tltgti-l = #a.

The base graph used in this construction is Gg, defined above. Let a,
ay, and a3 be the arcs from one of the vertices to the other. It remains to
define the voltage assignment a.

Without loss of generality, we can assign the identity to one of the arcs.
So define a as follows.

ala;) = (0,0,0,0,0,0) = 1
a(a) = (0,0,0,1,1,0) = ¢
a(az) = (0,0,4,2,2,1) = h

Actually, there are 133,062 distinct pairs of elements from this group
that could be assigned to az and a3 to produce the same graph. In other

words, if two elements are chosen at random, the probability that they work
is roughly 0.03685.



Finally, we show that the lift has girth 20. Observe that cycles in the lift
correspond to alternating sequences of elements taken from the sets {1, g, h}
and {1,g7%,h!} such that no element in the sequence is followed by its
inverse. Since the graph is evidently bipartite, we need to show that there
are no cycles of lengths 2m for 2 < m < 9. This can be checked easily with
any of the popular symbolic mathematics programs. We present a solution
using GAP (8].

The first step is to construct the voltage group. This can be done with
the GAP code given below, in which we have chosen transparency over
efficiency

Quat := Smal]_.Group(S, 4);

A2 := CyclicGroup(2);

Klein := DirectProduct(Z2, Z2);

K := DirectProduct(Klein, Quat);

A := AutomorphismGroup(K) ;

H := CyclicGroup(4);

gen .= [K.1, K.2, K.3, K.4, K.5];

img = [K.2, K.1, K.4, K.2%K.3, K.5];

phi  := GroupHomomorphismByImages(K, K, gen, img);
psi  := CroupHomomorphismByImages(H, A, [H.1], [phil]);
S := SemidirectProduct(H,psi,K);

T := SmallGroup(21, 1);

G := DirectProduct(S, T);

Next, we create the elements to be used for voltage assignments.

g := G.1%G.8;
h := G.2%G.5%G.8%G.8%G.9;
i := Identity(G),;

The idea behind the rest of the code is to create a list of all group elements
that are at distance d from the origin, for d from 1 to 10. The 1ist variable
consists of pairs, while a pair consists of a group element and the generator
used to reach that element. It is initialized to reflect the situation at distance
one.

The variable volt is a list of voltage assignments that can be used to
get to the next distance, and its content alternates between [1,g,h] and
(1,471, h"l].



Ss long as the graph contains no cycles of length 2d,

the size of the list will double after each iteration. When this fails to
happen, we have found the girth of the graph.

The variable elem is a list of elements reached at the current distance,
duplicating some of the information in 1ist, and is used as a convenience.

volt := [i,Inverse(g),Inverse(h)];
list := [[i,il, [g,gl, [h,h]]; i

for d in [2..10] do
newlist := [];
elem := [];
for s in list do
for x in volt do
if x <> Inverse(s[2]) then
y = s[1]*x;
Add (newlist, [y,x]);
if not y in elem then
Add(elem,y);
fis
fi;
od;
od;
list := newlist;
Apply(volt, Inverse); .
Print(d," ",Size(elem),"\n");
od;

The group described above can also be described as an extension of
Zo X Zy X Zy x Z7 by Zy x Zy x Z3. However, this was observed after the
fact and did not help in the construction.

3 A Graph of Degree 3, Girth 18 and Order 2560

The (3,18)-graph has 2560 vertices. It is a lift of the multigraph in Figure 1.
The voltage group has order 320, and is SmallGroup(320,696) in the GAP
[8] catalog of small groups.



Figure 1: Base Graph for Girth 18

4 A Graph of Degree 3, Girth 17 and Order 2176

The (3,17)-graph of order 2176 is a lift of the multigraph shown below in
Figure 2. The lifting group is a group of order 272 (SmallGroup(272,28)
in the GAP [8] catalog).

Figure 2: Base Graph for Girth 17
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