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Abstract

In this paper, we generalise the notion of distance irregular la-
beling introduced by Slamin to vertex irregular d-distance vertex
labeling, for any distance d up to the diameter. We also define the
inclusive vertex irregular d-distance vertex labeling. We give the
lower bound of the inclusive vertex irregular 1-distance vertex label-
ing for general graphs and a better lower bound on caterpillars. The
inclusive labelings for paths P,,n =0 mod 3, stars S, double stars
S(m,n), cycles C, and wheels W,, are provided. From the inclusive
vertex irregular 1-distance vertex labeling on cycles, we derive the
vertex irregular 1-distance vertex labeling on prisms.

Keyword: Vertex irregular d-distance vertex labeling, inclusive ver-
tex irregular d-distance vertex labeling, distance irregularity strength,
inclusive distance irregularity strength.

1 Introduction

Let G = (V,E) be a simple, finite and undirected graph with vertex set
V and edge set E. The order of the graph is |V| = n and the size of the
graph is |E| = m. Let u,v be two vertices of G. The distance d(u,v) is the
minimum of the lengths of the u — v paths of G. For a connected graph G
of diameter k, a distance-d graph G4 for d = 1,...,k is a graph with the
same vertex set V(G) and the edge set consists of the pairs of vertices that
lie at distance d apart. A labeling is a mapping from the set of elements
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in a graph (vertices, edges, or both) to a set of numbers (usually positive
integers). There are many types of labelings that have been studied (see
[2] for the complete survey on labelings.).

Slamin [4] introduced the distance irregular labeling by combining the
distance labeling by Mirka et al. [3] and the irregular labeling by Chartrand
et al. [1]. In the paper, the motivation of this labeling was discussed. In
this labeling, the weight of a vertex z, wt(z), in G is defined as the sum of
the labels of all the vertices adjacent to z, i.e. vertices at distance 1 from
z. Formally, b

wi(z) = > Ay).

YyEN(z)

Definition 1.1. [{] Let k be a positive integer. A distance irregular ver-
tex labeling of the graph G with V wvertices is an assignment A : V —
{1,2,...,k} so that the weights at each vertez are distinct.

The distance irregularity strength of G, denoted by dis(G), is the mini-
mum value of the largest label k over all such irregular assignments.

In the paper, Slamin provided the distance irregularity strength for
complete graphs K,, and paths P, for all n, also cycles C,, and wheels
W,, where n > 5,n € {0,1,2,5} mod 8. In the same paper, Slamin also
proposed an open problem, which is to generalise the distance irregular
labeling of graphs where the weight sum of a vertex includes the label of
the vertex itself.

In this paper, we generalise the distance irregula:r labeling to (inclusive)
vertex irregular d-distance vertex labeling for all d up to the diameter. For
the non-inclusive labelings on graphs, the label of the vertex is not included
in its weight, while the inclusive one includes the vertex label in its weight.

Definition 1.2. A (non-inclusive) vertex irregular d-distance vertex label-
ing A is an irregular labeling of vertices of a graph G where the weight of a
vertex v € V(G) is the sum of all labels of distance up to d from v, i.e.

wt(v) = Z Aw).

{us1<d(u,v)<d}

For simplicity, the (non-inclusive) vertex irregular d-distance-vertex la-
beling will be called vertex irregular d-distance-vertex labeling. The mini-
mum value of the largest label used over all such irregular labelings is called
the d-distance irregularity strength of G, denoted by dis}(G).

We define the weight of a vertex in a vertex irregular d-distance vertex
labeling to be the sum of all labels up to distance d, because if we consider
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the weight of a vertex v to be the sum of all labels at distance d from v,
then, constructing the distance-d graph of G turns the d-distance labeling
problem into 1-distance labeling problem.

Definition 1.3. An inclusive vertex irregular d-distance vertex labeling X
s an wrregular labeling of vertices in a graph G where the weight of a vertex

v € V(Q) is the sum of the label of v and all labels up to distance d from v.
wt(v) = N (v) + > N (u).

{w:1<d(u,v)<d}

The minimum value of the largest label used over all such irregular la-
belings is called the inclusive d-distance irregularity strength of G, denoted
by dis)(G). The distance irregular labeling given in Definition 1.1 is now
called vertex irregular 1-distance vertex labeling and its distance irregularity
strength will be denoted as disi(G).

Notice that when d equals the diameter of the graph G, then there is no
inclusive vertex irregular d-distance vertex labeling of G. This is because
the weight of each vertex is the sum of all labels of vertices in the graph,
hence, it is impossible to have distinct weight for the vertices. Consequently,
there is no inclusive vertex irregular 1-distance vertex labeling of complete
graphs K, for any n (diameter of K, is 1).

Furthermore, graphs that admit the vertex irregular d-distance vertex
labeling do not necessary admit the inclusive vertex irregular d-distance
vertex labeling and vice versa. For example, complete graphs K,, admit
the vertex irregular 1-distance vertex labeling but not the inclusive one.
Moreover, there exists an inclusive vertex irregular 1-distance vertex label-
ing on stars §,,, but there is no vertex irregular 1-distance vertex labeling
on stars.

Figure 1 shows an example of distance irregular vertex labeling and in-
clusive distance irregular vertex labeling of a cycle on 12 vertices. The
1-distance irregularity strength and the inclusive 1-distance irregularity
strength of C'1o are 7 and 5, respectively. Throughout this paper, in all
examples, the number on a vertex is the label of the vertex and the number
outside the vertex circle shows the weight of the corresponding vertex.

2 Inclusive vertex irregular 1-distance vertex
labeling

In inclusive vertex irregular 1-distance vertex labeling, the label of a vertex
is included in its weight.

235



Figure 1: Vertex irregular and inclusive vertex irregular 1-distance vertex
labeling on Ci2 with dis}(Ci2) = 7 and dis9(Cy2) = 5.

Lemma 2.1. Let G be a connected graph on n vertices with minimum

degree § and mazimum degree A, then dis)(G) > [%‘_ﬁ}

Proof. The smallest possible weight is § + 1 (when we label a vertex of
degree § and all its neighbour with label 1). Since there are n vertices, the

largest weight is at least n+J. Hence the largest label is at least [gi_ﬁ—'j. a

This lower bound is shown to be sharp for the inclusive vertex irregular
1-distance vertex labeling on path P,, n =0 mod 3 as in Theorem 2.2.

Theorem 2.2. Let P, be a path onn vertices, n =0 mod 3, then dis‘l) (F;,) =
(21 =2+1.

Proof. Define X as follow.
_§+1 ifit=n-1,n
Nw)=4¢ [31+1 ifi=24+2+43k0<k< -1
[5] otherwise
With this labeling, the weight of the vertices are
12 ifi=n
wt(v;)) =¢ i+1 ifi=1,...,%
i+2 ifi>% 41

wt(vi)=i+1fori:1,...,—23—" a
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The inclusive 1-distance irregularity strength of path P,, where n = 1,2
mod 3 remain open. Paths can be considered as tree of maximum degree 2.
Other types of trees with larger maximum degree that will be considered
in this paper are stars, double stars and caterpillars.

Theorem 2.3. Let S, be a star on n+1 vertices, . e. a star withn leaves,
then dis{(S,) =

Proof. The vertex weight of each leaf is the sum of its label and the label
of the central vertex. Therefore, in order to obtain distinct weights for the
leaves, all the leaves must have distinct labels. Label the leaves from 1 up
to n and label the central vertex with 1 (note that the central vertex can
actually be labeled with any positive integer at most n). The weight of all

vertices are {2,...,n+1}U{ﬁ-nziQ+1}. ‘ 0
A double star S(m,n),0 < m < n, is the graph consisting of the union
of two stars S5, and S,, together with a line joining their centers.

Theorem 2.4. Let S(m,n),m < n be a double star, then

n ifm<n

dzsl(S(m,'n))— { n+l ifm=n.

Proof. Denote the central vertices with n and m leaves by v; and vg, re-
spectively. Let vy; be the leaves of v; and vy; be the leaves of vy, Define
the inclusive irregular 1-distance vertex labeling A’ as follow:

M) =1
MNvg) =n
Al =1  E T

N(vy;) =j+1, j=1,...,m

The weights set of the leaves of vy is {2,3,...,n+1} and of vy is {n+2,n+
2,...,n+m+ 1}. Furthermore, wt(v;) = M +n+ 1 and wi(vy) =
im—“lziﬂﬂl+n> (n+m+1).

Case 1. m<n
The largest label is n and wt(vg) < M + n, thus all the weights are
distinet and dis{(S,, ) = n in this case.

Case 2. m=n
The largest label is A\’ (’Uzm) m+1=n+1 and

(n+1)(n+2) s n(n+ 1)

t =
wt(vs) . :

+n+1=wit(vy).
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Since all the weights are different, hence the theorem. C

A caterpillar S(ny,na,...,ng) is generalisation of double star S(m, n).
It is a tree with the property that the removal of its endpoints leaves g
path. Theorem 2.3 and 2.4 have shown that the general lower bound given
in Lemma 2.1 is not sharp for this type of graphs. Lemma 2.5 gives a better
lower bound for the inclusive vertex irregular 1-distance vertex labeling on
caterpillar. 4

Lemma 2.5. Let S(nqy,ng,...,ng) be a caterpillar, ng < ny < ... < g,
; "o
then d?.S?(S(’n,l, 9, ... ,nk)) 2 ma.‘x{nk, I‘n] j:nz_—_f:2 :tnk:tl-l}'

Proof. From Theorem 2.3, all the leaves of a star must have different labels,
thus, the largest label of a caterpillar is at least n,. Furthermore, the
caterpillar has n; + na + ... 4 nk leaves and in this labeling, all of them
must have distinct weights. Note that the weight of a leaf is the sum of
the label of the leaf and its center vertex. The smallest weight of a leaf
is 2 (when the label of the leaf and the center are both 1) and the largest

weight of a leaf is at least ny 4+ ny + ... + n, + 1. Hence, the largest labe]
is at least [idmadectnedl) O

Figure 2 shows the examples of inclusive vertex irregular 1-distance
vertex labeling on caterpillars where the lower bound is sharp. The numbers
outside the circle are the weight of the corresponding vertices. The inclusive

12 10 2 10

1l

Figure 2: Inclusive distance-irregular vertex labeling on caterpillars with
dis(5(2,2,8)) = 8 and dis9(5(4,4,4,4)) = 9.

vertex irregular 1-distance vertex labeling becomes more complicated for
tree in general. It remains an open problem to determine the inclusive
distance irregularity strength of trees.

Theorem 2.6 provides the inclusive vertex irregular 1-distance vertex
labeling for cycles C,, for all n > 13.
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Figure 3 shows the labeling of Cy4 and Cy7 using Algorithm 1.
Table 1 summarises the weights of each vertex when applying Algo-

rithm 1 to label C,, where n =0 mod 3 and ¥ =0 mod 3. In step
3, it shows that all weights are distinct, starting from 3 to n + 2.

For n =0 mod 3 and § = 2 mod 3, the table of weights is slightly
different to Table 1. For the weight of v,_g, it is n in step 1 and 2,
but changes to n+ 1 in step 3. The rest are the same as Table 1.
Subcase 2. [3] =1 mod 3.

In this case, modifying Algorithm 1 can be used to label €, only

when n = 0 mod 3, however, when n = 2 mod 3 we define a new
algorithm.

—~ n=0 mod 3.
We can use the similar algorithm as Algorithm 1 to label cycle
when n =0 mod 3. The changes in the algorithm are

* The initial label of v,_; is 2 (the initial weight of v,, is
n 4 9)
4 :

* In step 3, the modification of vertices label starts from ¢ =
n 41+ 3k.

In this case, the weight of vertex v,,_; increases by 1 after Step 2.

8 3 4 5 6 7 9 9 3 4 5 6 7 8 10

O-O-O0-0- -G U--0-6-0-0-0-Q

I l (ORS!
O-C-O-O-D-O-® cfla@’

13 17 16 14 12 11 10 15 20 19 17 16 14 13 12

Figure 3: dis{(Ci4) = 6 and dis?(Cio) =7
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Figure 4: Inclusive vertex irregular 1-distance vertex labeling on Cy2 with
dis}(C12) = 5.

Figure 4 shows an example of inclusive vertex irregular 1-distance
vertex labeling on Cjo with the largest label is 5.

- n=2 mod3
For this case, we define a new algorithm as follows.

Algorithm 2

1. Label all vertices v; with [%—1—],3 =1,...,n—4, label v,_3,vn_2
with [%] and label v, _1,vn with [3]+ 1. (The weights of
V9,3, ..., Up_5 are 4,5 ... n—3respectively. Other weights
are wt(vl) = wt(vrz ]+1) = [F143, wt(vn) = wi(vzray 1) =
2[ 2143, wt(vn_1) = n+3, wt(vn_g) =n+2, wt(vn_g) =,
and wt(vp—q) =n — 1.)

2. Add 1 to the label of vertices v; of z = [2] + 2 + 3k, where
k are non negative integers, 0 < k < 2215 iss (This modifica-
tion increases the vertex weight of every Vertex vt = [2]+
1,...,n—4 by 1. With this new label, the weight of [%] +3
is no longer repeated, but wt(v,) = wt(vzrzy) = 2[F] +3.)

3. Add 1 to the label of vertices v; of i = 2[3] 4+ 1+ 3k, k
are non negative integers, 0 < k < 232 (This modifi-
cation increases the vertex weight of every vertex v;,1 =
2[3]s:eeyn—4by 1.)

With this algorithm, we obtain the weight set is {4,5,...,n+3}.
Figure 5 shows the labeling of Cyp using Algorithm 2.
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e Case 2. n=1 mod 3
We label the cycle €, by modifying the label of C,,_5. Since n =1
mod 3, m = (n —2) =2 mod 3. Let v; denote the vertices of cycle
C, and w; denote the vertices of cycle Cppep—_2.

Subcase 1: If [3] =0,2 meod 3.
Nw) ifi=1,...,n—4
F1+1 ifi=m—-2n-1n

Figure 5: disd(Cy) = 8.

The weights of the extra two vertices are n — 1 (wt(v,_4)) and n + 2
(wt(vn—1)). Figure 6 shows the labeling of Cjo obtained from the
labeling Cy7 in Figure 3. .

Theorem 2.6. Let C,, be a cycle on n vertices, n > 13, then dis§(Cy,) =

3]+ 1.

Proof. Let v;,i = 1,...,n be the vertices of C,,. Based on Lemma 2.1,

dis9(Cyr) > [2] + 1. We are going to construct a labeling ) that achieves

that lower bound. We divide this proof into two main cases, when n = 0,2
mod 3 and when n =1 meod 3.

e Case 1. n=0,2 mod 3
When n = 0,2 mod 3, the way to label C,, depends on whether
[3] = 0,2 mod 3 (see Subcase 1) or [2] = 1 mod 3 (see Subcase
2%
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Subcase 1: [§] =0,2 mod 3. L
For | 13‘-] = 0,2 mod 3, use the following algorithm to label the ver-
tices.

Algorithm 1

1. Label all vertices v; with [£],7=1,...,n—2 and label v,_1, vy
with [§] 4 1. (The weights of v, v3,...,vn_3 are 3,4,...,n—2
respectively and the other weights are wt(vi) = wt(vjzay42) =

n 3
[-3'--] + 3, wt(’un) = wt(vgl‘%'|+g) = 2[%’] = 3, wt(vn_l) =n+ o
and wt(vp—2) = n.)

2. Add 1 to the label of vertices v; of i = [§] + 3k, where k are
positive integers, 1 < k < 2—%—‘3. (This modification increases
the vertex weight of every vertex v;,i = [3]+2,...,n—2Dby 1.
With this new label, the weight of [§]+ 3 is no longer repeated,
but wt(vy,) = wt(vgf%]-i-l) =2[5]+3)

3. Add 1 to the label of vertices v; of 1 = 2[ %] 4 2+ 3k, &k are non
negative integers, 0 < k < § — 1. (This modification increases
the vertex weight of every vertex v;,1 = 2[3] +1,...,n—3 by

1.)

Corollary 2.7. Let Wi, be a wheel on n + 1 vertices, then disi(Wyn) =
dis§(Cr). _

Proof. Suppose we have an inclusive vertex irregular 1-distance labeling on
a wheel W,, with dis§(W,,) = s, then taking away the central vertex will give
an inclusive vertex irregular 1-distance labeling on C, with dis‘l)(Cn) % 8
so, dis)(W,,) > dis}(C,). On the other hand, suppose we have a distance
irregular labeling on a cycle C,, with dis)(Cp) = t. Add a central vertex
to the cycle and connect the central vertex to every other vertex to form
a wheel. Label the central vertex with 1, then the weight of each non-
central vertex increases by 1 and the weight of the central vertex is the
sum of all labels on the cycle, but the largest label remain the same. Thus,
disQ(W,,) = dis{(C). O

3 Non-inclusive vertex irregular 1-distance
vertex labeling

In this section, we give the non-inclusive vertex irregular 1-distance vertex
labeling on prisms C, x P, for n = 0,1,3,4,5 mod 6. This labeling is

obtained by utilising the inclusive vertex irregular 1-distance vertex labeling
on cycles in Section 2.
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Lemma 3.1. Let n =2 mod 4, C, be a cycle on n vertices and Cr x P
be a prism on n vertices. Let X' be the inclusive vertex irregular 1-distance
vertex labeling on C,. If the wty (C,) = {3,4,...,n + 2}, then N induces

9 3 4 5 6 7 8 10 11

?oooeeega
. /@12
0503030:0;0;0:010)

15 21 20 19 18 17 16 14 13

Figure 6: Labeling of Cjg obtained from the labeling of Cy7; with
disQ(Cro) =7

Subcase 2: If [2] =1 mod 3.

1 Hi=1
)\,('Ui) = )\’(wi_l) if¢ = 2,. Loy — 1
241 ifi=n

From previous case, we know that the weight set of C,,, is {4, 5, ..., m+
3 = n+ 1}. The weights for the extra 2 vertices are 3 (wt(v,))
and n+ 2 = m + 4 (wt(v,—1)). Therefore, the weight set of C,, is
{3,4,5,...,m+3,m+4=n+2}.

Figure 7 shows the labeling of Cy; obtained from the labeling Cyg in
Figure 5.

a
10 3 4 5 6

Figure 7: Inclusive vertex irregular 1-distance vertex labeling of Cyy ob-
tained from the labeling of Cyy with dis9(Cys) = 8.



a'vlerte:z: zwegularﬂidzstance vertex-labeling A on a prism Cz x P2 with.
dis}(Cz x Pp) = o5=. .

Proof. Using the label of ) on cycle C,, and place those label on prism
Ca x P, as shown in Figure 8. It is easy to see that the weights sets of the

two graphs are the same. 0
v
/ _—
" e Vo vn v%_,_g
N e
U/n-—l v3 Un v2
Un-2 Uy { \
vg-1 i .
/ Up—1 v3
Vs
v
N # — 4
vg Vg / \
~ vr —
. V244
-\_-/ 2

Figure 8: Labeling " on a cycle Cy, induces labeling A on a prism Cz x P

Theorem 3.2. Let C,, x Py be a prism on 2n vertices, n = 0,1,3,4,5
mod 6, then disl(C, x Pp) = [252] = 2 + 1.

Proof. When n is odd, we use the inclusive vertex irregular 1-distance ver-
tex labeling of cycles on 2n vertices (X' (C2n)) obtained in Theorem 2.6 and
apply Lemma 3.1.

When n is even, we can decompose Cp, X P to two independent copies of
C,, in term of vertex weights (see Figure 9 for the illustration). The weight
of a vertex either only depends on labels from first cycle or only from the
second cycle.

Thus, we can use the label of C,, from Theorem 2.6. Let vq,...,v, and
w1, ..., wp be the vertices of the first and second copy of the cycles, Cl and
C2, respectively. Let )\ be an inclusive vertex irregular 1-distance vertex
labeling of cycles on Cy,. For v;, we use the label obtained in Theorem 2.6
and N (w;) = N (v;) + [2]. The weights set of the G 35 {8, . v, 2%
The addition of % at each vertex label increases each vertex weight of C2
by n. So the smallest weight in C2 is n + 3 and the weight set of C2 =
{n+3,...,2n+2}. The largest label is X (wn) = Nw)+2=%+1 0
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