On the Ramsey Numbers (S, K¢ — 3K2)

RoOLAND LORTZ and INGRID MENGERSEN

Technische Universitat Braunschweig
Institut Computational Mathematics
AG Algebra und Diskrete Mathematik
38092 Braunschweig, Germany
r.lortz@tu-braunschweig.de

Moorhiittenweg 2d
38104 Braunschweig, Germany

ingrid.mengersen@t-online.de

Abstract

For every connected graph F' with n vertices and every graph G with
chromatic surplus s(G) < n the Ramsey number r(F,G) satisfies
r(F,G) > (n—1)(x(G)—1)+s(G), where x(G) denotes the chromatic
number of G. If this lower bound is attained, then F is called G-good.
For all connected graphs G with at most six vertices and x(G) > 4,
every tree T, of order n > 5 is G-good. In case of x(G) = 3 and
G # Kg — 3K, every non-star tree T, is G-good except for some
small n, whereas r(Sn,G) for the star S, = Ki,n-1 in a few cases
differs by at most 2 from the lower bound. In this note we prove that
the values of 7(Sn, K6 — 3K2) are considerably larger for sufficiently
large n. Furthermore, exact values of 7(Sn, Ks — 3K 2) are obtained
for small n.
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1 Introduction

Let G be a graph with chromatic number x(G). The chromatic surplus s(G)
is defined to be the smallest number of vertices in a color class under any
x(G)-coloring of the vertices of G. It is well-known (cf. [3]) that for any
“connected graph F with n vertices and any graph G with s(G) < n the
Ramsey number r(F, G) satisfies

r(F,G) 2 (n—1)(x(G) — 1) + s(G). (1)

When equality occurs in (1), F is said to be G-good. The concept of
G-goodness generalizes a classical result of Chvatal [2] who proved that
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T(Th, Km) = (n — 1)(m — 1) + 1 for any tree T, with n vertices. Results
concerning the G-goodness of trees have been obtained for various classes
of graphs G and also for small graphs G. The Ramsey number 7 &7) for
connected graphs G with at most 5 vertices was studied in [3], r(T},, G) for
connected graphs with six vertices was investigated in [5] and [6]. These
results show that every tree T, with n > 5 is G-good if G is a connected
graph with at most six vertices and x(G) > 4. In case of X(G) = 3 and
G # K¢ — 3K, every non-star tree T, is G-good except for some small
n, whereas r(S,,G) for the star S, = K 1,n—1 in a few cases differs by at
most 2 from the lower bound (1). For graphs G with x(G) = 2 and at most
six vertices the values of r(T},, G) are not completely determined, but it is
known that for some G, especially for non-star complete bipartite graphs,
they differ considerably from the lower bound (1) (see [1, 7, 8]). Here we will
prove that also the values of r(Sy, K —3K2) are much larger. We present a
lower bound for r(S,,, K¢ —3K3) depending on (S,,, Cy) which implies that
T(Sn, Ks—3K3) > 2n+ [\/n - 1J —1lifn =g¢?*+1orn = ¢%+2 where q is any
prime power and that r(S,, Ks—3K3) > 2n—2+|vn — 1 — 6(n — p)ri/a|
for all sufficiently large n. For n < 10, our lower bound matches the exact
value of r(S,, K¢ — 3K3) or differs from it by at most 1.

Some specialized notation will be used. A coloring of a graph always means
a 2-coloring of its edges with colors red and green. An (F1, F)-coloring is a
coloring containing neither a red copy of F} nor a green copy of F,. We use V'
to denote the vertex set of K,, and define d, (v) to be the number of red edges
incident to v € V in a coloring of K,,. Moreover, Ay = maxyey d-(v). The
set of vertices joined red to v is denoted by N, (v). Similarly we define d,(v),
Ag and Ny(v). For U C V(K,,), the subgraph induced by U is denoted
by [U]. Furthermore, [U], and [U], denote the red and the green subgraph
induced by U. We write G' C Gif G’ is a subgraph of G. For disjoint subsets
U, Uy C V(Ky), q- (U, Us) denotes the number of red edges between U;
and Uy, and q,(U;, Us) is defined similarly.

2 Results

The following theorem establishes a general lower bound for 7(S,,, Ks—3K. 2)
depending on r(S,,Cy).

Theorem 1 Let n > 2. Then

—1 if n s odd,

n
7(Sn, K¢ — 3K3) > 7(Sn, C4) + { n if n is even.
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Proof. Let m = 7(Sp,C4) — 1. Take an (Sp, C4)-coloring of Kp,. For n
odd, add a red Kn_1, and, for n even, a K, with n/2 independent green
edges and all other edges colored red. Join the vertices of the K, and the
vertices of the K,_; or Kn, respectively, by green edges. Obviously, no
red S, occurs. Now consider any subgraph H of order six. If at least four
vertices of H belong to the K, then a green K¢ — 3K, C H is impossible
since deleting any two vertices of a K¢ — 3K leaves 2 graph of order four
containing a Cy. Otherwise, at least three vertices of H belong to the K,_1
or K. Then adjacent red edges occur in H and again a green K¢—3Ks C H
is impossible. Thus, the lower bound is established. B

Exact results on the values of r(Sn,Cy) are known only in special cases.
Parsons [7) proved that r(S,,Cs) = n4|vn — I|lifn=¢*+lorn= g% +2
where ¢ is any prime power. Burr, Erdds, Faudree, Rousseau and Schelp (1]
showed that 7(S,,C4) > n—1+|v/n -1 —6(n — 1)!1/40] for all sufficiently
large n. From these results and Theorem 1 we obtain the following lower
bounds on 7(S,, K¢ — 3K32) .

Corollary 1

(i) Let n = ¢* + 2 where q is any power of 2 or n=q?+ 1 where q is
any odd prime power. Then

r(Sny Ko — 3K3) > 2n+ |[Vn—1].

(i1) Let n = g* +1 where q is any power of 2 or n=q*+ 2 where q is
any odd prime power. Then

7(Sn, K6 —3K2) >2n—1+ [\/n — IJ .
(iii) If n is sufficiently large, then

r(Sn, K6 — 3K2) > 2n — 2+ [/——n T —6(n— 1)11/4°J--

Using recent results on 7(Sp,Cy) of Wu Yali, Sun Yongqi, Zhang Rui and
Radziszowski [8], further lower bounds on 7(S»,Ks — 3K2) can be ob-
tained from Theorem 1. The next theorem shows that the lower bound
for 7(Sn, Ks — 3K>) given in Theorem 1 matches the exact value of the
Ramsey number if n < 6 or n = 8 and differs by at most 1 from it if n =7
or 9 < n < 10. The value of r(Ss, K¢ — 3K2) has already been obtained by
Gu Hua, Song Hongxue and Liu Xiangyang [4] using a different method.
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Theorem 2

n [2 3 4 5 6 7 8 9 10
r(Sn, Ke —3K2) | 6 6 10 11 14 15/16 19 20/21 23/24 °

The proof of Theorem 2 is based on the following lemmas.

B

Lemma 1 The red subgraph of an (S4, K¢ — 3K3)-coloring of Kg is iso-
morphic to K1 U2Cy or to C4UCs.

Proof. Sy Z [V]; implies A, < 2. Thus, every component of [V], has to
be a path or a cycle. If the union of all paths in [V], contains at least three
vertices, then it is a subgraph of a cycle. Moreover, 2K; C K,. Hence,
[V]r C H where H € {Cy, C3UCq, C4UCs, 3C3, Ko UC7, Ky U Cy U
Cs, K1UCs, K4UC3U Cs, KU 264}. Except for [V],- = H =Kl 2C,
or [V], = H=C4UCs we find a forbidden Kg — 3K in [Fgs [ |

Lemma 2 r(S4, K¢ — 3K3) < 10.

Proof. Assume that an (S, K¢ — 3K3)-coloring of K exists. Delete one
vertex v € V. By Lemma 1, the red subgraph of [V {v}] has to be isomor-
phic to K3 U2Cy or to Cy U Cs. Moreover, A, < 2 forces only green edges
from v to the vertices of V' \ {v} belonging to a red cycle. Thus, in both
cases we find a green K¢ — 3K, a contradiction. H

Lemma 3 r(Se, K¢ — 3K3) < 14.

Proof. Assume that we have an (Sg, K5s—3K 2)-coloring of K4. This implies
Ar <4 and Wy = K5 — 2K, C [V], because r(Ss, Wy) = 13 (see [3]). We

distinguish three cases.

Case 1. K5 C [V],. For any K5 C [V], with vertex set U and any two ver-
tices w,w’ € V\U joined green with g, (w,U) = ¢, (v, U) = 2 the following
property pr(w,w’, U) must be fulfilled: |N,(w) NN, (w') N U| €{ 0,2}. Oth-
erwise w and w’ would have exactly one common red neighbor v € U and
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this would yield Ko — 3Kz & (U \ {u}) U {w,w'})y, a contradiction. We
distinguish two subcases.

Case 1.1. 2Ks C [V]y. Let U and Uz be the vertex sets of two vertex-
disjoint green copies of K5 and let W = V \ (U; UUy). Then K¢ —3K2 €
[V]g forces gr(w,Uy) > 2 and gr(w,U2) = 2 for every w € W. Using
A, < 4, we obtain that gr(w,U1) = gr(w,Uz) = 2 for every w € W,
(W, U1) = ¢+ (W, Uy) = 8 and (W], = K4. Moreover, Keg— 3Ky € [Vl
forces gr(u,Uy) > 2 for every u € Uz and gr(u, Uz) > 2 for every v € Ur.
Thus, A, < 4 implies gr(u, W) < 2 for every u € U; U Uy. If there are
vertices u1 € Uy and up € Uz such that gr-(uy, W) = gr(ug, W) = 0, then
K¢ — 3K, C (WU {uy,us}]g, & contradiction. Thus we may assume that
gr(u, W) > 1 for every u € U;. Since gr(u, W) < 2 for every u € U, and
q-(W,Uy) = 8 there must be two vertices u and ug in Uy with gr(u1, W) =
gr(u2, W) =1, and gr-(u, W) = 2 for every u € Uy \ {u1,uz}. Hence, the
bipartite graph [WUU 1] is isomorphic to Cg U P;, to C4UPs or to Fy. In
all three cases we find two vertices wy, w2 € W with exactly one common
red neighbor u € U, contradicting pr{w1, ws, Uyp).

Case 1.2. K5 C [V], and 2K5 & [V]y. Let U = {uy,...,us} be the vertex
set of a green K5 and let W =V \U. Since K¢ — 3K € [Vlg: gr(w,U) > 2
for every w € W. Thus, A, < 4 forces only vertices of degree less or
equal 2 in [W),. As K5 Z [W]g, we obtain (W], = C4U Cs by Lemma 1.
Moreover, q-(w,U) = 2 for every w € W. Let Wi = {w;,wq, w3, ws} and
Wa = {ws, we, w7, ws, we} be the vertex sets of the red C4 and the red Cs
in [W], where w;w;y for i =1, 2.3,5,6,7,8, waw; and wows are red. We
may assume that wiu; and wyug are red and use that pr(w,w’,U) holds
for any two vertices w,w’ € Wy joined green.

First let | Ny (w1) N Np(w) NU| = 0 for every w € Wo,. Thus, N.(w) NU C
{u3,u4,us} for every w € Wo. We may assume that wsuz and wsug are red.
From pr(ws,w, U) for w € {wr, ws} we derive Np(w)NU = {uz,uq} forw €
{w7,ws}. Now apply pr(we, wg, U) and pr(wr, wo, U). Hence, also Np(w) N
U = {uz,us4} for w € {wg,wy}. It follows that d-(ua3) > 5, contradicting
A, < 4.

The remaining case is that | Ny (w1) N Np(w) N U| = 2 for some w € Wa, say
w = ws. Then {w1, ws, us, ug, us } induces a green Ks. Consequently, K¢ —
3Ky € [V]g implies gr(w, {us, ua,us}) = 2 for every w € {w3, w7, ws} and
gr(w, {us,us,us}) > 1 for w € {we,wg }. Because of pr{wy,w,U) for w €
{we, wq}, we obtain gr(w, {us, ug,us}) = 2 also for w € {ws, we }. Moreover,
we may assume that wzuz and wauq are red. Note that pr(ws,w,U) holds
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for every w € {we, w7, ws, wg}. Thus, Ne(w) N U = {us,uq} for eve
w € {ws, w7, ws,wy}. This implies d-(u3) > 5 contradicting A, < 4.

Case 2. K5 —e C [V]; and K5 Z [V],. Let U = {u1,u2, us, ug, us} be tt
vertex set of a K5 —e C [V]g. We may assume that ujus is red. If a verte
w € W =V \ U exists such that g,(w, U) < 1, then we either find a gree
K —3K; or a green K5, both a contradiction. Thus, gr(w,U) > 2 for ever
w € W. Note that A, < 4 and K5 ¢ [VL. Hence, W], = C4UCs b
Lemma 1. Again let W, = {wy, wo, w3, wy} and Wy = {ws, we, wr, wg, wg
be the vertex sets of the red Cy and the red Cs in (W], where wjw;,
for i = 1,2,3,5,6,7,8, wsw, and wows are red. From A, < 4 we obtaj
that u; must have a green neighbor in Wy, say ws. Now consider the tw
green copies of K5 — e induced by Wy = {w1, ws, ws, wg, ws} and W, -
{wg,w4,w5,w7,wg}. Mind that Wa N Wy = {’ws}. If q,.(ul,Wg) <1lcg
gr(u1, Wy) < 1, then a green Kg — 3K5 or a green Ky would occur i
[W3 U {u1}] or (WU {u1}]. Otherwise d,(u;) > 5, contradicting A, < 4.

Case 3. K5—2K3 C [V],and Ks—e ¢ [V]g.Let U = {u1,u2,u3, uq,us} b
the vertex set of a K5 —2K, C [V]g. We may assume that uius and uguy ar
red. If a vertex w € W = V' \ U exists such that q-(w,U) < 1 we either fini
a green Kg— 3K, or a green K5 — e, a contradiction. Thus, ¢.(w,U) > 2 fo
every w € W. Note that A, < 4. Hence, W], = K1U2C4 or W], = C4uC
by Lemma 1. But then K5 —e C [W], C [V]g, a contradiction. I

Lemma 4 Let n > 2. Then

T(Sn+2, K¢ — 3K2) < T(Sn, Kg — 3K2) + 5.

Proof. Let m = r(S,, Ks — 3K;) + 5. By (1), r(Sn, K6 — 3K3) > 2n, anc
this implies m > 2n + 5. Assume that an (Spi2, Kg — 3K3)-coloring of K,
exists. Since r(S,, W) = 2n + 1 if n is even and r(Sn, W) =2n—1if n
is odd (see [3]) we obtain 7(S,4, Wy) < 2n+5 < m. Thus, Snyz € [V,
forces Wy C [V],. Let U = {u1,u2,u3, us, us} be the vertex set of a green
Wy = K5 — 2K and W = V\ U. Note that |W| = 7(Sn, K¢ —3K3). Hence.
Sp C [W], and a vertex w* € W exists with degree at least n — 1 in (W],.
From Sp42 € [V], it follows that q,(w*,U) <1, i.e. qq(w*,U) > 4.

If [U]y = Ks, then K¢ — 3K, C [{w*} U Ulg, a contradiction, and we may

assume that K5 Z [V],. Now let [U], = K5 — e assuming that the edge
urus is red. If w* is joined green to u; and wug, then a green Kg — 3K is
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contained in [{w*}UU]. Otherwise w* is joined red to u; or to us, say to ui,
but this implies that [{w*}U{u2, u3, ua,us}] is a green K. Again we have
obtained a contradiction and we may assume that K5 —e & [V]g. It remains
that [U]y = K5 — 2K>. Here we may assume that the edges ujug and uaus
are red. If w* is joined red to us, then a green K¢ — 3Kz is contained in
[{w*} UU]. Otherwise w* is joined green to ug and to at least three vertices
in {u1,usz,uq,us}, say to uy, U2 and uy. But this gives a forbidden green
Ks—ein [{w*}U {uy,u2,u3,u4}], and we are done. B

Now we will use the results obtained in Theorem 1 and Lemmas 2, 3 and 4
to prove Theorem 2.

Proof of Theorem 2. At first we will show that the given values are lower
bounds for 7(Sn, Kg — 3K2). The exact results of 7(Sy, C4) for n <10 can
be found in 1], namely

n |2 3 45 6 7 8 9 10
FGC |4 4 6 7 8 9 11 12 137

Applying Theorem 1, we obtain the desired lower bounds. It remains to
establish the given values as upper bounds for r(Sn, K6 — 3K2). Obviously,
r(Sn, K6 —3K2) <6 for 2 < n < 3. The other cases are settled by Lemmas

2, 3 and 4. B

From Lemma 4 and the exact results for 5 < n < 6 in Theorem 2 we obtain
a general upper bound for r(Sp, Ko — 3K3).

Theorem 3 Let n > 5. Then

r(Sn, K¢ — 3K2) < l5n2— 2} ;

Proof. For 5 < n < 6 the upper bound matches the exact values in The-
orem 2. For n > 7, induction on n using Lemma 4, separately for n even
and n odd, yields the desired upper bound. B
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