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Abstract

A graph is called set-reconstructible if it is determined uniquely
(up to isomorphism) by the set of its vertex-deleted subgraphs. The
maximal subgraph of a graph H that is a tree rooted at a vertex
w of H is the limb at w. It is shown that two families % and
Z, of nearly acyclic graphs are set-reconstructible. The family %,
consists of all connected cyclic graphs G with no end vertex such
that there is a vertex lying on all the cycles in G and there is a cycle
passing through at least one vertex of every cycle in G. The family
%, consists of all connected cyclic graphs H with end vertices such
that there are exactly two vertices lying on all the cycles in H and
there is a cycle with no limbs at its vertices.

Key words: Isomorphism, Harary’s Conjecture, Set-reconstruction.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. We
use the terminology in Harary [6]. The degree of a vertex v of a graph G is
denoted by deg v (or deggv). A vertex v with deg v =m is referred to
as an m -verter. A 1-vertex is an end vertex and the unique neighbour of a
l-vertex is its base. The maximal subgraph that is a tree rooted at a vertex
u of a graph H is the limb at u. A vertex-deleted unlabeled subgraph
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G —v of a graph G is a cardof G. A graph H is a set-reconstruction of
G if H has the same set of cards as G. A graph is set-reconstructible if
it is isomorphic to all its set-reconstructions. Equivalently, a graph G is
set-reconstructible if it is determined uniquely (up to isomorphism) from
the set S(G) of its (non-isomorphic) cards. A family ¥ of graphs is set-
recognizable if, for each G € ¥, every set-reconstruction of G is also in ¢ ,
and weakly reconstructible if, for each graph G € ¢, all set-reconstructions
of G that are in ¢ are isomorphic to G. A family ¢ of graphs is set-
reconstructible if, for any graph G € &, G is set-reconstructible (that is,
if ¢ is both set-recognizable and weakly set-reconstructible). If a property
(parameter) @ of a graph G is uniquely determined by the set of cards
of G, then @ is a set-recognizable property (set-reconstructible parameter).
The well-known Ulam’s Conjecture asserts that every graph with at least
3 vertices is reconstructible [14]. For a survey on results concerning this
conjecture and its variants, the reader may consult [2, 3, 12]. In this paper,
we study the following strong form of Ulam’s Conjecture.

Harary’s Conjecture [5]. All graphs with at least four vertices are set-
reconstructible.

It is known [8, 9, 11] that many parameters and several classes of graphs
like graphs with less than 12 vertices, disconnected graphs, trees and sep-
arable graphs without end vertices are set-reconstructible. Arjomandi and
Corneil [1] have proved that unicyclic graphs are set-reconstructible. Out.-
erplanar graphs have been set-reconstructed by Giles [4]. Ramachandran
and Monikandan [13] have proved that all graphs are set-reconstructible
if and only if all 2-connected graphs are set-reconstructible. Manvel and
Weinstein [10] have reconstructed nearly acyclic graphs (graphs G with a
vertex u such that G—u is acyclic). Their proof invoked Kelly’s Principle,
Lemma 1 (7] for counting the number of subgraphs of a coloured graph G
isomorphic to a coloured graph K, where |V(K)| < |V(G)|. Therefore, it
cannot be extended directly to set-reconstruction as the principle does not
work for a set of cards. |

In this paper, we address the set-reconstructibility of connected graphs
of order at least twelve. It is shown that two disjoint families #; and
% of nearly acyclic graphs are set-reconstructible (Sections 3 and 4). The
family #; consists of all connected cyclic graphs G with no end vertex
such that there is a vertex lying on all the cycles in G and there is a cycle
passing through at least one vertex of every cycle in G. The family %,
consists of all connected cyclic graphs H with end vertices such that there
are exactly two vertices lying on all the cycles in H and there is a cycle
with no limbs at its vertices.



2 Notation and Terminology

By DS(G) and NDS(v), we mean, respectively, the degree sequence
of a graph G and the sequence of degrees of the neighbours (neighbourhood
degree sequence) of v in G. The pruned graph P(H) of a graph H is
obtained by successively deleting the end vertices of H. A tree (possibly
trivial) is a path-tree rooted at the vertex wu if all the branches at u are
paths and it is denoted by T,. A (u, v) -path-limb tree , denoted by P, .,
is a tree obtained from a graph that is a path P : u, 3,29, ...,2k, v of order
k+2 and k trees Ty, T3, ...,Tx (T; may be trivial) by identifying the ver-
tex z; and a vertex of T; for ¢ = 1,2,...,k. A caterpillar is a tree in which
a single path is incident to every edge. Let P :vg,vq,...,vr041 (r>1) be
a graph that is a path. Let Ty,,Ty,,...,Tw, be r path-trees rooted at
wy,Ws, ---, Wy Tespectively. A graph obtained from P, T, , Ty, .., 1w, bY
identifying the vertices v; and w;, ¢=1,2,...,7 is called an alien cater-
pillar (henceforth abbreviated by a.c) and it is denoted by Ga; the path
P is the spine of the a.c. A quast alien caterpillar (henceforth abbreviated
by q.a.c), denoted Ggqc, is a graph obtained from a G, by adding a new
vertex s and joining it to all the end vertices of G,. and possibly to the
vertices of P.

Among the vertices lying on all the cycles in G € %1 U %, let s be
a one with the maximum degree. Among all the cycles passing through at
least one vertex of every cycle in G € %#; (among all the cycles with no
limbs in G € £,,), let C be a one with the maximum length. Then the
vertex s lies on C and we label the vertices of C by s,v1,...,vn, s in this
order, where m > 2 (Figure 1). For a graph G € %1 U % and any k in
{1,2,...,m}, let Pg(s,vx) be the collection (possibly empty) of all (s, v) -
path-limb trees, where Pg(s,vx) = {PL,, P2, , .., PIk }. Let a (b) be
the least (largest) integer such that Pg(s,v,) # ¢ (Pg(s,w) # ¢). Note
that 1 < a < b < m. In particular, for a graph G € %;, by the maximality
of C, it is clear that 1 < a < b < m, indeed, the vertices vy and v, are
2-vertices in G. Clearly, a=1b for G € %;.

Let lg(P%, ) be the sum of the number of edges of all the limbs at the
internal vertices of P;, . For a vertex v; with Pg(s,v;) # ¢, we define
le(s,v;) tobe Y la(Py, ). Throughout this paper, we use the notation

i=1

G, S(G), s, Pg(s,v;) and P{, in the sense of the above definitions.
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Figure 1. A graph G in %, and a graph H in .%,.

Manvel [9] proved the following two theorems.

Theorem 1. The DS(G) of any graph G with minimum degree at most
8 is set-reconstructible.

Theorem 2. Separable graphs without end vertices are set-reconstructible.

For any graph G with §(G) < 3, we can determine the N DS(v) in
G using the degree sequences of G and the card G —v. The next simple
lemma will be used while proving the family .%#; is set-reconstructible.

Lemma 3. Let G be a graph with §(G) < 3. If G has a vertez w whose
neighbours are all k -vertices for some k > 0 and G has no (k=1)-
vertices, then G is set-reconstructible.

Proof. From DS(G) and DS(G—w), the set-recognizability of G follows.
Now G can be obtained uniquely from G —w by adding a new vertex v
and joining it to all the degw vertices of degree k — 1. O

3 Set-Reconstruction of .%;

An extension of a card G —v of G is a graph obtained from the card
by adding a new vertex w and joining it to deg v vertices of the card.
The next lemma shows that the family £, is set-recognizable.

Lemma 4. A graph G isin Z; if and only if it satisfies the following
conditions.

(i) The minimum degree in G is at least two.
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(i) It has a card, say G —x that is an a.c.

(i) It has no card G —y containing three blocks of order at least three
with a common cut vertex, where deg y > 3.

Proof. Necessity: Since G is connected without end vertex and the card
G — s is an a.c, conditions (i) and (ii) follow. Suppose that G has a card
G — vy, where deg y > 3, containing three blocks, say A, B, C of order
at least three with a common cut vertex, which is clearly s. Since G is
2_connected, in the graph G, the vertex y must be adjacent to at least
one vertex other than the cut vertex in each of the three branches at s
containing the blocks A, B and C, respectively. Consequently, the graph
G cannot have a cycle passing through at least one vertex of every other
cycle in G, giving a contradiction and so condition (iii) follows.

Sufficiency: In G — z, let P : wp,wi,...,wrq1 (r > 1) be the spine and
let T, s Twss - Tw, bethe path-trees rooted at wy,ws, ..., wr, respectively.
To get an extension of the card G — z, we must add a new vertex z and
join it to all the end vertices (because of (i)) and possibly to some non-end
vertices. If = is joined only to the end vertices or z is joined both to the
end vertices and the vertices on the spine P, then clearly z lies on all the
cycles in G and the cycle z,wq, wy, ..., wr41,Z passing through a vertex
on every cycle in G. Thus, the graph G belongs to #;. Otherwise, the
vertex z is joined to all the end vertices and to a non-end vertex, say =z
other than the root vertex in T, for some i. Again, if 7 is the least or
largest integer such that |T,,| # 1, then the graph G must belong to
#; otherwise, the card G — w; has three blocks of order at least three
with a common cut vertex (namely z ), giving a contradiction to (iii) and
completing the proof. O

Theorem 5. The family %, is set-reconstructible.

Proof. Since a graph G in #; has 2-vertices, its degree sequence DS(G)
is set-reconstructible by Theorem 1. Therefore the family #; is set-
recognizable by Lemma 4.

In view of Lemma 3, we can assume that G contains no induced path
of order five or more. We proceed by two cases as below.
Case 1. The set Pg(s,v;) # ¢ for exactly one vertex v;.

A graph G in % satisfies Case 1 if and only if it has exactly two ver-
tices of degree greater than two.
Weak reconstruction: Now, DS(G) = [2,2,...,2,A,A], where A > 2. If
a A-vertex-deleted card, say G — v, is not a path, then G can be ob-
tained uniquely from G — v by adding a new vertex and joining it to all
the end vertices and to the (A — 1)-vertex (if any). So, we assume that
both the A -vertex-deleted cards are paths (this happens when A =3 and
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the two 3-vertices are adjacent in G ). Now, since G has order at least
twelve, each of these paths has order eleven, which implies there must be a
2-vertex-deleted card G — z containing precisely two end vertices. Hence
G is set-reconstructible by Lemma 3.

Case 2. The set Pg(s,v;) # ¢ for at least two vertices v;.

A graph G € #; satisfies Case 2 if and only if it does not satisfy Case 1.
Weak reconstruction: The vertex lying on all the cycles (namely s) is the
only A-vertexin G. In view of Lemma 3, we can assume that the order of
each element (path) in every nonempty Pg(s,v;) is at most four. Depends
upon the existence of (A — 1)-vertices, we have two more subcases.

Case 2.1. The graph G has no (A —1)-vertex.

If G has a 2-vertex, say w, adjacent to a A -vertex and a 2-vertex (this
situation happens only if G contains a path P;'vj_ of order four for some ¢
and 7 ), then such a card G —w can be identified in the set of cards S(G)
and it can be uniquely augmented to G by adding a new vertex w to
G —w and joining it to the unique (A —1)-vertex and the unique end ver-
tex. Therefore, we assume that the order of each path in every nonempty
Pg(s,v;) is at most three. Consequently, we have Pg(s,v3) # ¢ and
Pg(s,vm-1) # ¢. Clearly, every path P;,. of order three in G will be-
come a leaf of a limb isomorphic to K, (n > 1) in the card (4, G — s)
and no path P, of order two will not become so in the card (A, G — s).
Thus, from the card (A, G — s), we can set-recognize whether there is a
P;'Uj of order two or three. Since v; and v,, are 2-vertices, it follows that

not every path Pj, in G has order two. On the other hand, if all the

paths P.:v,- have order three in G, then the neighbours of the A -vertex
s are all 2-vertices and hence G is set-reconstructible by Lemma 3. So,
we can assume that some PJ, has order two and some other path Pl
has order three. Then the order of C in G can be easily determined from
S(G) as the maximum among the orders of all the cycles in all the cards.

Suppose that only the two sets Ps(s,v2) and Pg(s, Um—1) are nonempty
(this case can be set-recognized as there are only three entries strictly
greater than two in DS(G) ). Then, by our assumption on Case 2.1, we
have deg vy > 4 and deg v,,_; > 4 (because, if one of them were three,
then the other would be A — 1, contradicting). Let dynz;, and Ogas DE
the minimum and the maximum of deg v2 and deg Um—1, respectively.
Now, the graph G can be obtained uniquely from a 2-vertex-deleted card
G —u such that DS(G —wu) =2, 2, .., 2, dmin — 1, dimaz, A — 1], by
adding a new vertex and joining it to the (A — 1)-vertex and the unique
dnin -Vertex.

We now assume that Pg(s,v;) # ¢ for 2 # j # m—1. The card G —v;,
where ¢ = 2 or m — 1, can be identified in S(G) as the only r-vertex-
deleted card, where r > 2, with a cut vertex such that all but one block



re Ko. Hence deg v2 and deg vm_1 are known (Note that there may be
mly one such card in S (G); in that case G—vy =2 G—vp_y and deg vy =
leg Vm—1 ). Set dmin and dmes as before. If dpnin > 4, then in each card
7 _ « obtained by deleting a 2-vertex u, u ¢ V(C), the vertices v and
1.1 areidentifiable as a set since the card G—u belongs to the family #;.
fence, in this case, consider one such card G —u with the unique (A-1)-
rertex such that {degG—wv2, degG—u¥m—1} = {dmin —1, dmez}. Then the
mique (A — 1)-vertex and the vertex, among vz and v,—1, of degree
1 .in—1 are the neighbours of v in G. Similarly, if Aoz — Qmin = 2, then
he card G—w, obtained by deleting a 2-vertex w adjacent with s and the
rertex, among vy and v,,_3, of degree dp,z, can be identified in S(G) as
he only 2-vertex-deleted card with the unique (A —1)-vertex such that it
selongs to the family £, the length of the longest cycle in G —w is same
s that of C and {dego_wv2, d€9G—w¥m—1} = {@min, dmaez — 1}. Now
‘he unique (A —1)-vertex and the vertex, among vz and v,,—1, of degree
1.0 —1 in G —w are the neighbours of w in G. The only remaining
.ase to reconstruct in Case 2.1 is that the degree of one of vz and vpm-1,
say v is three and the degree of vm—1 is three or four. If there exists an
- _vertex-deleted card G — w containing exactly 7 — 1 end vertices and a
‘A — 1) -vertex, where 7 > 2, then these r vertices are the neighbours of
v in G. So, we can assume, in particular, that both v3 and v,,_» are not
2-vertices (otherwise, vz Of v,,_2 is a 2-vertex. Then, in view of Lemma
3, one of the paths in Pg(s,v;) must be Py, where j =2 or m—1, which
implies G —v3 or G —vp,_2 is isomorphic to the card G — w as defined
just above). Hence G is set-reconstructible.

Case 2.1.1. The degree of v,,—1 in G is four.

Since deg v, is three, we have |Pg(s,v2)| = 2; svivz is a path in
Pg(s,vs). The other path in Pg(s,v2) has order three if and only if there
oxists a 2-vertex-deleted card G — u belonging to %#; such that it con-
tains only one (A — 1)-vertex (namely, s) and an induced path P’ of
order four starting from s. Every extension of G —u by adding a new
vertex joining it to s and one of the two adjacent vertices in P’ is ei-
ther isomorphic to G or else contains a cycle of length |C| + 1, giv-
ing a contradiction. We have therefore Pg(s,vp) = {P3,FP2}. We can
now assume that Pg(s,vm_1) = {Ps, P, P2} (otherwise in G — vy, the
vertex v,_i can be distinguished from v, and thus G can be recon-
structed from the identifiable card G —v,, in S(G)). Similarly, we can
assume that Pg(s,v3) = {P3, Py} (otherwise in G — vy, the vertex ws
can be distinguished from v,,—1 and thus G can be reconstructed from
the identifiable card G — vy in S(G)). Consider a 2-vertex deleted card
G — w belonging to %, such that it contains only one (A — 1)-vertex
(namely, s), Po—w(s,vm—1) = {P3, P3, P2}, Po_w(s,v2) = {P3, P;} and
Peo_w(s,v3) = {P;}. Clearly, the vertices s and v3 are the neighbours of
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w in G. Hence G is set-reconstructible.
Case 2.1.2. The degree of v,,_; in G is three.

It is known that one of the two paths in Pg(s,v;) is P3, where j = 2
or m—1. If the other path in Pg(s,v;) is also Ps, then G can be recon-
structed by proceeding as in the beginning of Case 2.1.1. We have there-
fore Pg(s,v2) = Pg(s,vm—1) = {Ps, P,}. We can assume that Pg(s,vg) =
{P>} (otherwise in G —w;, the vertex vs can be distinguished from v,,_
and so G can be reconstructed from the card G — v, ). Similarly, we will
have the assumption Pg(s,vm—2) = {P2}. If Pa(s,vq) # {P,}, then in
the card G — v3, the vertex vy can be identified uniquely, the vertex vs
can be distinguished from v,,_; and so the vertex v, can be identified
uniquely. Hence G can be reconstructed from the identifiable card G — w3
in S(G). We have therefore Pg(s,v4) = Pg(s, Vm-3) = {P2}. Proceed-
ing like this, we shall get Pg(s,v;) = {P2} for all j = 3,4,...,m — 2,
which implies s is adjacent to all other vertices in G and hence G is
set-reconstructible.

Case 2.2. The graph G hasa (A — 1) -vertex.

Now |Pg(s,vk)| = 2 for exactly one vertex v, the set |Pg(s, w)| > 2
for exactly one vertex v, ! # k and Pg(s, vj) = ¢ for all j #k,I. Then
deg v = 3 and deg v; = A—1, which implies DS(G) = 2,2,...,2,8 A—
1, A]. Without loss of generality, we assume that k < I. Two cases arise
depending on the value of A.

Case 2.2.1. The value of A is at least 5.

Let P be the (vk,v;)-path not containing s in G. In view of Lemma
3, we can assume that 2 < v(P) < 4. The card G — vk is identifiable
in S(G) as the only 3-vertex-deleted card and hence the N DS(vy) is set-
reconstructible. We shall use this to set-reconstruct the value of v(P).
It is two if and only if NDS(v;) = 2,2,A —1] or [2,A—1,4] It is
three if and only if there exists a 2-vertex-deleted card G — v; such that
NDS(vj) = [3, A—1]. If ¥(P) =2, then G can be obtained uniquely from
the card G—v; by adding a new vertex w and joining it either to “the two
end vertices and the unique (A — 2)-vertex” (if NDSg (vi) =[2,2,A-1]
holds ) or to “the unique end vertex, the unique (A — 2)-vertex, and the
unique (A —1)-vertex” (otherwise). If »(P) = 3, then again we shall use
the card G —vg. Clearly, NDSg(vk) = [2,2,2] or 2,2, A] and if the first
holds, then G is set-reconstructible by Lemma 3. If the latter holds, then
all graphs, obtained from G —v;, by adding a new vertex w and joining it
to the two end vertices and to a (A — 1) -vertex, are isomorphic and they
are G. Otherwise v(P) = 4. In this case, consider a 2-vertex-deleted card
G —w with NDSg(w) = [2,A—2] and a unique end vertex adjacent to a
3-vertex. Now every extension of G — w, by adding a new vertex w and
joining it to the unique end vertex and to the unique (A — 2) -vertex not
adjacent to the end vertex, is isomorphic to G.



Case 2.2.2. The value of A is four.

Now |Pa(s,vk)l = |Ps(s,w)| = 2 for some k, I with k& < ! and
Pao(s,v;) = ¢ for all 7 # k,l. The degree sequence of G is clearly
2, 2,...,2,3,3,4]. Let P be the (vg,v;)-path not containing s in G.
In view of Lemma 3, we have the order of P and the order of each path
in Po(s,vx) U Pa(s,v) are at most four, which imply that v{G) must
be at most 13. Hence »(G) = 12 or 13. Now at least one of the three
vertices v, v and s must be adjacent only to 2-vertices and hence G is
set-reconstructible by Lemma 3. O

4 Set-Reconstruction of %,

As before, by s and t, we mean the two common vertices lying on all
the cycles in G € Z,. Since there is no limb rooted at these two vertices,
it follows that deg s = deg t. These two vertices are identifiable as a set
in any 1-vertex-deleted card of G, as the only vertices of degree at least
three without limbs and so we use the same label to refer such vertices
in any 1-vertex-deleted card. For the sake of clarity in proofs, we shall
‘partition the family Z, into two subfamilies &2 and Foo as follows:
Let ‘07721'——{G€322 : degc;s:degat:3} and 922={G€92:
degs s = degg t > 4}. We shall reconstruct each of them separately.

Lemma 6. A graph G is in P2 if and only if it satisfies one of the
following:

(i) The mazimum degree A(G) s 3 and G has only one I-vertez-
deleted card which is a union of three cycles passing through two
commeon vertices.

(i) Every l-vertez-deleted card G —x is in Py and it contains only
one end vertex and only one cycle without limbs, and G satisfies one
of the following four conditions:

(o ) It has a 4-vertex.

(B ) There is a disconnected 2-vertex-deleted card.

(~ ) There is a unicyclic 9-vertez-deleted card with a limb at ezactly
one verter and the limb is not a path (with the root occurs as an
end vertez).

(8 ) There 4s o disconnected 3-vertez-deleted card such that one of
its components is unicyclic with a limb at exactly one vertex and
the limb is either P3 or not a path.

(iii) Ewvery l-vertex-deleted card G—y 1isin Fa1 such that lo—ilPan) 2 2
where w and v are the vertices lying on all the cycles in the card.

Proof. Necessity: For a graph G in o1, we have lg(Py) =1,2 or = 3.
If ig(Ps) > 3, then every l-vertex-deleted card G —z is in F with
I(Py,) > 2, where u and v are the vertices lying on all the three cycles in
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G — z, (iii) follows. If ig(Ps) = 1, then the unique 1-vertex-deleted card
G — z is a union of three cycles passing through two common vertices and
so A(G) = 3, (i) follows. So, assume that lc(Pst) = 2. Now, there are
at most two 1-vertex-deleted cards G — z, each belongs to %31, indeed,
it contains exactly one end vertex and one cycle with no limbs. The graph
G is now one of the five types shown in Figure 2. A graph G € .%,; with
le(Pst) = 2 has a 4-vertex if and only if it is of type 2. A graph G € %,
with lg(Pst) = 2 has a disconnected 2-vertex-deleted card if and only if it
is of type 1. A graph G € %, with lg(Pst) =*2 has a unicyclic 2-vertex-
deleted card such that only one vertex has a limb different from paths if
and only if it is of type 3. A graph G € &, with lg(Ps) =2 is of type 4
(or type 5) if and only if there exists a disconnected 3-vertex-deleted card
with a unicyclic component in which only one vertex has a limb different
from paths (or Ps), (ii) follows.

D D oD

type 1 type 2 type 3

86---9; S
type 4

Figure 2. Five types of graphs arising under (ii)

€3

Figure 3. An extension H

type 5

Sufficiency: If (i) holds, then every extension of the 1-vertex-deleted card
G — z either belongs to 51 or must contain a 4-vertex, but which is
excluded in (ii). If (ii) holds, then every extension H of an 1l-vertex-
deleted card G — z either belongs to %3, or is isomorphic to the graph
shown in Figure 3. If the later holds, then the extension satisfies none of
the conditions («),(8),(y) and (8), which is a contradiction. Finally, if
(iii) holds, then every extension of a 1-vertex-deleted card must belong to

Fa1. O
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Lemma 7. A graph G is in oo if and only if it satisfies one of the
following:

(i) It has only one 1-vertez-deleted card, which is a union of at least two
cycles, all of them passing through two common vertices, and it has
only two A -vertez-deleted cards, which are connected.

(i1) Every 1-vertez-deleted card is in Fag such that it has exactly one
end vertez and at least three distinct cycles with no limbs.

(iii) Every 1-vertez-deleted card G—x isin Foy such that lg_z(Pujw,) =
2, where wy,wy are the vertices lying on all the cycles in G — x.
There is no disconnected 3-vertez-deleted card G —y wn Foo with a
component K such that lg(PL,) = 1 for all the elements Pt in
Pg(u,v) except one P2, for which Ix(P3) =0, where u,v are the
vertices lying on all the cycles in K.

Proof. Necessity: We proceed by three cases depending on the value of
la(Pst) (> 0).
Case 1: lg(Py) = 1.

The graph G has only one 1-vertex-deleted card G—z, which is a union
of cycles (at least two), all of them passing through both s and ¢. Since
degas = deggt > 3, it follows that no other vertex can have degree more
than deg s. Since s and ¢ have no limbs, the cards G—s and G—1 are
connected, (i) follows.

Case 2. lg(Pa) =2.

Now G has at most two end vertices. Since |Pg(s,t)| > 4 and at least
one cycle in G has no limbs, it follows that each 1-vertex-deleted card is
a graph in Z52 such that it has exactly one end vertex and at least three
distinct cycles without limbs, (ii) follows.

Case 8 lg(Pg) > 3.

Every 1-vertex-deleted card G—x is a graphin Fop with lg—z(Puyws) =
2. where wi,ws are the vertices lying on all the cycles in G — z. In this
case, we shall show that the card G —y does not exist. Suppose, to the
contrary, that the card G — y exists. Then, since exactly one P2, has
zero limb size, every extension of G —z has at most one (u, v) -path with-
out limbs and so the extension cannot have a cycle without limbs, which
implies, in particular, the graph G does not belong to Fa2, giving a con-
tradiction and completing the necessary part.

Sufficiency: If (i) holds, then every extension of an 1-vertex-deleted card
G— 1 is either belongs to Fop or a A -vertex-deleted card of the extension
is disconnected (the later case happens when the newly added vertex, say
w to G —z, is joined to one of the common vertices lying on all the cycles
in G—=z ). Similarly, if (ii) holds, then every extension of a 1-vertex-deleted
card G—x contains a cycle without limbs and so it belongs to Fao. Hence,
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we assume that (iii) holds. Now consider an extension H of a I-vertex-
deleted card G — z. Then wy,w, are the two common vertices lying on
all the cycles in H. Clearly, at least one path in Py (w1,ws2) has no limbs,
If at least two paths in Py (wy,w32) have no limbs, then H belongs to
Zaa. So, we assume that exactly one path in Py (w;,ws) has no limbs.
If a path in Py(w;,w;) has a limb, say L of size at least two, then the
l-vertex-deleted card of H, obtained by deleting an end vertex in L, has
no cycles without limbs and so it does not belong to %9, contradicting
(iii). Therefore all but one path in Py (wy,w3) have a limb of size one and
the exceptional path has no limbs, which imply any 3-vertex-deleted card
of H, corresponding to the base of an end vertex, will satisfy the properties
of G —y, again contradicting (iii) and completing the proof. O

We denote the limb at « in G by Lg (u) and the number of edges in
La(u) by le(u).

Theorem 8. The family Zyy is set-reconstructible.

Proof. Recognition: Follows by Theorem 1 and Lemma 6.

Weak reconstruction: Clearly G has only one (s,t) -path with limbs; let it
be Pgy. Let f,h be the vertices (not necessarily distinct) having limbs in
G such that their distance from s,¢ are as small as possible, respectively.
Let n(G) be the number of vertices having limbs in G. Clearly n(G) is
equal to the number of disconnected cards with a unicyclic component. Let
{r1,72} be the set of lengths of the (s,t)-path in,both directions of the
unique cycle without limbs in G. For a graph G in %, with la(s,t) # 1,
the set of values {ry,7,} can be determined from any 1-vertex-deleted card.
Case 1. n(G)=1.

Now f=h and lg(f) = lp(f) +1 for any F € 51(G), where S;(G)
is the set of all 1-vertex-deleted cards of G. We proceed by two cases de-
pending on Iz(f).

Case 1.1. Ig(f) > 2.

Since G is simple, the cycle without limbs contains a 2-vertex. Every
connected 2-vertex-deleted card of the graph G considered under Case 11
has a limb different from paths if and only if Lg(f) is not a path. This
shows that whether L (f) is a path or not can be set-recognized. Also, if
the later holds, then Lg(f) can be identified as the only limb of size I5(f)
different from paths in a 2-vertex-deleted card containing the unique cycle
with a limb of size ;(f) different from paths. If the former holds, then
Le(f) 2 Pig(s)+1- Now G can be obtained uniquely from an 1-vertex-
deleted card by just replacing the unique limb with La(f).

Case 1.2. lg(f) = 1.
If the unique disconnected card G — f has two end vertices, then G



can be obtained uniquely from G — f by adding a new vertex and joining
it to the isolated vertex and to the two end vertices. If the unique dis-
connected card G — f has only one end vertex, then the extension H of
G — f, by adding a new vertex and joining it to the isolated vertex, the
end vertex and a 2-vertex in the unique cycle, is either isomorphic to G or
does not have the 1-vertex-deleted card. Consequently, the vertex f has
no 2-vertex neighbour in G. Now the extension H of G — f, by adding
a new vertex and joining it to the isolated vertex and to two 2-vertices in
the unique cycle, is either isomorphic to G or does not have the unique
1-vertex-deleted card.

In the remaining two cases below, we shall first find {Lg(f), La(h)}
and then we prove that G is set-reconstructible.

Case 2. n(G) > 3.

Let o = {{dp(s,w),dr(t,q)} : F € S1(G) and w,q are vertices hav-
ing limbs in F such that their distance from s,t along the (s,t)-path
with limbs are as small as possible, respectively }. Clearly &/ has at most
three elements. If |&Z| = 3, then clearly La(f) = Lg(h) = P let
o = {{e;,di} : & < d; and i = 1,2,3 }. Then {dg(s, f), daft, hl} =
{c;,d-}, Where cp + d is minimum. If || = 2 and & = {{e;,di} :
¢; < d; and i = 1,2 }. Now consider the card G — # in S;(G) such that
{do—o(s,w), da—z/(t,q)} = {¢y,d.}, where ¢, + d, is minimum. Then
{Lc(f), Le(h)} = {LG—-z’(w)vLG—-I’(‘I)}' If || =1 and & = {{cy, dr}:
¢ < dr}, then {La(f), Le(h)} = {Lo—w'(w), Lo-2(q)}, Where G—a’ is
a card in S (G) such that lg_z(w) + lg—e/(g) is maximum.

Now we reconstruct G by three cases depending upon the values of
le(f) and lg(k). Without loss of generality, let us assume that Ig(f) <
lc(h). If both Ig(f) and ig(h) are at least two, then all graphs obtained,
from a 1-vertex-deleted card F' such that the size of the limb at one vertex,
say z is lg(f)—1, by replacing the limb at z with Lg(f) are isomorphic
and they are G. If lg(f) is one and lg(h) is at least three, then G can
be obtained uniquely, from a 1-vertex-deleted card F' with limbs at two
vertices, by replacing the limb of size at least two with Lg(h).

Finally, consider the case that lg(f) isoneand lg(h) istwo. If ¢, = dr,
 then G can be obtained uniquely from a card F € Si(G) such that
dp(t,q) = ¢, lp(q) = 2 and dp(s,w) = ¢i(> ¢), by adding a new
_vertex and joining it to the 2-vertex, say u such that dg(s, u) = ¢, and
lp(u) = 0. Otherwise, that is, if ¢, # dr, then dr(s,w) = ¢, with
lp(w) = 2, where F € $;(G). Now G can be obtained uniquely, from

acard F € $1(G) with Ip(w) = lp(g) = 1, by adding a new vertex and
joining it to the unique end vertex of the limb at w with dp(s,w) = c. The
only remaining case is that both lg(f) and lc(h) areone. If ¢, = d,, then
G can be obtained uniquely from a card F € $1(G) such that dp(t,q) = cr
with lp(q) = 1 and dp(s,w) = c1(> ¢;), by adding a new vertex and
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joining it to the 2-vertex, say u, with dp(s,u) = ¢ and lp(u) = 0. Oth-
erwise, that is, if ¢, # d,, then we consider a card F € S;(G) such that
{dp(s,w1), dr(t,q1)} = {c, d1}, where d; > d. and w;, q1 are ver-
tices with limbs in F such that their distance from s and ¢ along the
(s,t)-path with limbs are as small as possible, respectively. Without loss
of generality, dr(¢,¢;) = di. Now all graphs obtained from F, by adding
a new vertex and joining it to a 2-vertex, say g such that dgp(t,q) = d,
are isomorphic and they are G. X
Case 3. n(G)=2.

Let & = {lg—z(w): G-z € 51(G) and w is a vertex with limbs in
G —z}. If | £| =4, then, by observation, the four numbers must be two
pairs of consecutive numbers in .Z and the maximum number in each such
pair must be lg(f) and lg(h), respectively. If |.¥| =3, then {z(f) and
lg(h) must be the first two maximum numbers in Z. If % = 2, then
l(f) = lg(h) = max 2.

Suppose that there exists a unicyclic 2-vertex-deleted card E containing
three vertices with limbs; denote the limbs by Li, Lo, L3. Without loss of
generality, let us take that L; be the path of length either 1 —2 or ro—2.
Then {Lg(f), Lg(h)} = {L2, L3}. Suppose that there exists a unicyclic
2-vertex-deleted card E containing two vertices with limbs, say w and
¢ such that {Ip(w), l(0)} = {la(f), lo(R)}. Then {La(f), Le(h)} =
{Ls(w), Ln9)}.

As in Case 2, we proceed now by three cases depending upon the val-
ues of lg(f) and [g(h). The two cases that ‘both lg(f) and lg(h) are
at least two’ and ’lg(f) is one and Ig(h) is at least three’ are just sim-
ilar to Case 2. We now consider the case that lg(f) is one and Ig(h)
is two. From a 1-vertex-deleted card F with limbs at only one vertex,
say z, find the distance of z from each of the two 3-vertices; let them
be dj,dz. Now G can be obtained uniquely (up to isomorphism) from a
1-vertex-deleted card E with limbs at two vertices, by replacing the limb
at a vertex whose distances from the two 3-vertices are di,ds with Lg(h)
(if both the vertices with limbs satisfy the distance conditions, then there is
an automorphism of E interchanging the end vertices and so the resulting
graphs are isomorphic).

The only remaining case is that both lg(f) and lg(h) are one. If G
has a 2-vertex-deleted card E with a limb at only one vertex, then the
extension H of E, by adding a new vertex and joining it to a 2-vertex in
the unique cycle and to a vertex of degree one or two in the unique limb,
satisfies one of the following conditions:

2

(i) The extension is isomorphic to G.

(ii) The set of lengths of the (s,t)-path in both directions of the unique
cycle without limbs in the extension is not equal to {ry,72}, contra-
dicting.
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One of the limb in the extension has order at least two, again contra-

dicting.
e G is set-reconstructible. If G has no such card E exists, then
ider a disconnected 3 vertex-deleted card F. The extension H of F,
dding a new vertex and joining it to the jsolated vertex, a 2-vertex
1e unique cycle and a vertex of degree one or two in the unique limb,
sfies one of the above three conditions (i), (i) and (iii)- Hence G is
ceconstructible, which completes the proof. O

sorem 9. The family Foo 18 set-reconstructible.

of. Recognation: Follows by Theorem 1 and Lemma 7.

ok Reconstruction: As before, the vertices s and t are identifiable as
et in any 1-vertex-deleted card of G as the only vertices of degree at
st four without limbs. Therefore lo(Pyt) = lp(Ps) +1 for any 1-vertex-

eted card E. Since G is a simple graph containing a cycle without

bs, it must contain a 2-vertex. In fact, we need a 2-vertex adjacent with

»r ¢ in G. Consider a connected 9_vertex-deleted card I such that
Py) = lg (Ps) and at least one of the vertices s, ¢ lost its degree by
e in the card. Now, all graphs, obtained from E by adding a new vertex
and joining it either to both s and t (if both s and t lost their degree
one) or to the unique wounded vertex among s, t and to the end vertex

the unique limb at the unwounded vertex among s, t (otherwise), are
ymorphic and they are G.

oncluding Remarks
The pruned graph P (H) of a graph H is obtained by successively delet-

g the end vertices of H. The following problems suggest ways in which
e results in this paper can be improved. The three families £1, Fo
1d Fs, where &3 = (G ¢ 2 : §(G) = 1 and P(G) € #}, form a
artition of graphs with a vertex s such that G — s is a tree. Since the
st two families are proved to be set-reconstructible and graphs with a
srtex s such that G —s is a tree are set-recognizable, the family %3 is
st-recoghizable. If all graphs G with a vertex s such that G —s is atree
re set-reconstructible, then it may not be difficult to prove that all graphs
I with a vertex s such that H — s is acyclic (that is, all nearly acyclic
raphs) are set-reconstructible because H is a union of graphs G with a

tnique common vertex s.
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