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1 Introduction

The purpose of this paper is to discuss the relationships between Laplacian
matrices and three important properties of graphs: planarity for individual
graphs, 2-isomorphism (isomorphism of cycle matroids) for pairs of graphs,
and duality for pairs of planar graphs. These ideas have long histories,
and have been studied carefully and thoroughly for the better part of a
century. The Laplacian matrix is motivated by Kirchoff’s laws, which were
formulated in the mid 1800s, before matrices were introduced. Planarity
was studied by Kuratowski and Whitney in the 1920s and 1930s; Whitney
also introduced the 2-isomorphism and duality relations at that time. The
existence of a connection between Laplacian matrices and graph matroids
is implicit in the matrix-tree theorem, which was formulated before World
War II. (See [6] for some notes on the history of the matrix-tree theorem.)
However it was not until the early 1990s that Watkins [11, 12] showed that
the cycle matroid of a graph is determined by the Laplacian matrix, except
for the fact that the Laplacian ignores loops.

Theorem 1 (Watkins [11, 12]) If G1 and G2 are graphs with the same
number of loops, then G1 and G2 are 2-isomorphic if and only if their
reduced Laplacian matrices are congruent over Z.
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To keep the introduction readable, we delay technical definitions (2-iso-
morphism, congruence, reduced Laplacian, etc.) until later in the paper.

In 1997, Bacher, de la Harpe and Nagnibeda [1] proved that the cycle
matroid of a graph is related to the lattices of cuts and flows. (See also
the account of Godsil and Royle [4, Chapter 14].) Here are several of their
results. The statements are augmented with obvious requirements involving
bridges and loops.

Theorem 2 (Bacher, de la Harpe and Nagnibeda [1]) Let G1 and G2 be
graphs.

1. If G1 and G2 are 2-isomorphic, then they have the same number of
loops and their cut lattices are isomorphic.

2. If G1 and G2 are 2-isomorphic, then they have the same number of
bridges and their flow lattices are isomorphic.

3. If G1 and G2 are dual planar graphs, then G1 has the same number
of loops as G2 has bridges, and the cut lattice of G1 is isomorphic to
the flow lattice of G2.

Bacher, de la Harpe and Nagnibeda observed that the reduced Lapla-
cians of a graph are Gram matrices for the cut lattice; see [1, p. 183],
although the term “Laplacian” does not appear there. This implies that
two graphs have isomorphic cut lattices if and only if they have congruent
reduced Laplacians, and this in turn implies that part 1 of Theorem 2 is
equivalent to one direction of Theorem 1, and the converse of part 1 of
Theorem 2 is equivalent to the other direction of Theorem 1.

Not realizing that Watkins had already proven a result equivalent to the
converse of part 1, Bacher, de la Harpe and Nagnibeda left the converses
of the three parts of Theorem 2 as open problems in [1]. In 2010, Su and
Wagner [10] verified the converses of all three parts, and also extended the
theory to the cut and flow lattices of regular matroids.

The present paper grew out of our work on the problem of extend-
ing Theorem 1 to describe the relationship between Laplacian matrices of
dual graphs. By the time we appreciated the connection with the work of
Bacher, de la Harpe and Nagnibeda [1] and Su and Wagner [10], we had
developed a set of ideas that includes our own proof of a result equivalent
to part 3 of Theorem 2, and the converse. Our arguments are focused on
matrices associated with graphs, rather than lattices associated with regu-
lar matroids. Of course a lattice may be identified with the collection of its
Gram matrices, so the two approaches are not incompatible in theory; but
the arguments are quite different.

The notion we develop is that in addition to having an unreduced Lapla-
cian matrix that is uniquely defined up to simultaneous permutation of the
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rows and columns, a graph G has “unreduced dual Laplacian matrices,”
which are not uniquely defined but are congruent to each other over Z.
(The definition appears in Section 4.) There are also reduced dual Lapla-
cians, just as there are reduced Laplacians. Some properties of these ma-
trices are analogues of properties of Laplacians; for instance the reduced
dual Laplacian matrices of G are Gram matrices for the flow lattice of G.

Dual Laplacian matrices also have some properties that are rather differ-
ent from properties of Laplacians. Two of these properties involve planarity
and abstract duality.

Theorem 3 Suppose G is a graph with m edges and b bridges.

1. The trace of an unreduced dual Laplacian matrix of G is an even
integer, greater than or equal to 2(m− b).

2. G is planar if and only if G has an unreduced dual Laplacian matrix
whose trace is equal to 2(m− b).

Theorem 3 can be restated using the lattice terminology of Conway [3]:
G is planar if and only if its flow lattice has a superbase with a Gram matrix
of the smallest possible trace.

Theorem 4 Let G be a planar graph. Then the following statements about
a graph G∗ are equivalent.

1. G and G∗ are abstract duals.

2. The number of loops in G∗ is the same as the number of bridges in
G, and a reduced Laplacian matrix of G∗ is a reduced dual Laplacian
matrix of G.

Here is an outline of the paper. In Section 2 we summarize the connec-
tions tying congruence of Laplacian matrices to row equivalence of incidence
matrices, and 2-isomorphism of graphs. A small example is presented in
Section 3. Reduced and unreduced dual Laplacian matrices are defined
in Section 4, and the analogies between them and ordinary Laplacians are
discussed. In Section 5 we verify some properties of dual Laplacians. Theo-
rems 1, 3 and 4 are proven in Section 6; we also discuss a version of Theorem
1 for unreduced Laplacians, and we relate Theorem 3 to a famous planarity
criterion of MacLane [7]. A couple of illustrative examples are presented in
Section 7.

Before proceeding we should thank an anonymous reader for good ad-
vice, which significantly improved the readability of the paper.
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2 Some properties of Laplacian matrices

We use standard notation and terminology for graphs. A graph G has
a finite set E(G) of edges, and a finite set V (G) of vertices; we write
m = |E(G)| and n = |V (G)|. If e ∈ E(G) is incident on v, w ∈ V (G)
then we write e = vw. If e = vv then e is a loop at v; the number of loops
in G is denoted ℓ. Two edges e 6= e′ are parallel if e = vw and e′ = vw. A
graph is simple if it has neither loops nor parallels.

Definition 5 Let G be a graph with V (G) = {v1, . . . , vn}. Then the Lapla-
cian matrix of G is the n× n matrix with entries given by

L(G)ij =

{
−|{e ∈ E(G) | e = vivj}|, if i 6= j

|{e ∈ E(G) | e = vivk and k 6= i}|, if i = j
.

Six elementary properties of the Laplacian are immediately apparent
from Definition 5; we number them for ease of reference.

Property I L(G) is a symmetric matrix with integer entries.
Property II L(G) is not changed if loops are added to G or removed

from G.
Property III If G and G′ are graphs then L(G) = L(G′) up to simul-

taneous permutation of the rows and columns if, and only if, we obtain
isomorphic graphs when we remove all loops from G and G′.

Property IV The sum of the columns of L(G) is 0; and the same for
the rows.

Here the bold 0 denotes a matrix or vector whose entries all equal 0.
Property V The trace Tr(L(G)) is 2(m− ℓ).
Property VI If G is a disconnected graph with connected components

C1, . . . , Cc(G) then

L(G) =



L(C1) 0 0

0
. . . 0

0 0 L(Cc(G))


 .

Properties IV and VI tell us that in each connected component of G,
the row of L(G) corresponding to one vertex is the negative of the sum of
the remaining rows. The same holds for the columns, of course.

Definition 6 Let V0 be a subset of V (G), which contains precisely one
vertex from each connected component of G. The submatrix of L(G) ob-
tained by removing all rows and columns corresponding to elements of V0

is a reduced Laplacian of G, denoted LV0
(G).
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Reduced Laplacian matrices inherit properties I, II and VI directly from
L(G). The reduced version of property V is an inequality: Tr(LV0

(G)) <
2(m − ℓ) unless ℓ = m, in which case LV0

(G) is the empty 0 × 0 matrix.
The reduced version of property IV is the famous matrix-tree theorem:
detLV0

(G) is the number of maximal forests of G. Details are given in
many standard references, e.g. [4, Theorem 13.2.1].

The reduced version of property III is complicated by the arbitrary
choice of V0. If G and G′ are graphs then these two statements are equiv-
alent: (a) when we adjoin a row and column to each of LV0

(G), LV ′

0
(G′) so

that the row and column sums of both matrices are 0, we obtain matrices
that are equal up to simultaneous permutation of the rows and columns;
and (b) when we remove all loops from G and G′, identify all the vertices
from V0 to each other, and identify all the vertices from V ′

0 to each other,
we obtain isomorphic connected graphs.

We also use fairly standard terminology when discussing matrices asso-
ciated with graphs. Recall that a square matrix of integers U is unimodular
or invertible over Z if detU = ±1.

Definition 7 Two matrices B and B′ are strictly row equivalent over Z

if and only if B′ = UB, where U is unimodular.

Definition 8 Two matrices B and B′ are loosely row equivalent over Z if
and only if (

B′

0

)
= U

(
B
0

)
,

where U is unimodular and the two 0 submatrices may be of different sizes.

Row equivalence can also be described using elementary operations.
Two matrices are strictly row equivalent over Z if and only if one can
be obtained from the other using some finite sequence of elementary row
operations over Z, i.e., multiplying a row by −1, adding a nonzero multiple
of one row to another and permuting rows. For loose row equivalence, it is
also permissible to adjoin 0 rows, or remove them. A third way to describe
row equivalence is that two k-column matrices are loosely row equivalent
if and only if their rows generate the same subgroup of Zk. If two loosely
row equivalent matrices have the same number of rows, then the matrices
are strictly row equivalent. (The last assertion follows from properties of
the Smith normal form of matrices with entries in Z, cf. [5, Chapter 3] for
instance.)

Definition 9 Two matrices B and B′ are congruent over Z if and only if
B′ = UBUT , where U is unimodular and UT is the transpose of U .
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Definition 10 Let ~G denote an arbitrary directed version of G. Then the
incidence matrix N(~G) is the n×m matrix whose entries are given by the
following.

N(~G)ve =





−1, if v is the initial vertex of e, and e is not a loop

1, if v is the terminal vertex of e, and e is not a loop

0, if e is not incident on v, or e is a loop

Definition 11 Let V0 be a subset of V (G), which contains one vertex from

each connected component of G. Then the submatrix of N(~G) obtained by
removing all rows corresponding to elements of V0 is a reduced incidence
matrix of G, denoted NV0

(~G).

The following equalities are immediate.
Property VII If V0 ⊆ V (G) contains one vertex from each connected

component of G, then

N(~G) ·N(~G)T = L(G) and NV0
(~G) ·NV0

(~G)T = LV0
(G).

If V ′

0 is another such subset of V (G) then NV ′

0
(~G) can be obtained from

NV0
(~G) as follows. For every connected component of G where V0 contains

a vertex v and V ′

0 contains a vertex v′ 6= v, (a) add all the other rows of

NV0
(~G) corresponding to vertices from this connected component to the v′

row, (b) multiply the new row by −1, and (c) label the new row with v
rather than v′. If U is the product of elementary matrices corresponding
to the row operations mentioned in (a) and (b), then

U ·NV0
(~G) = NV ′

0
(~G) and hence U · LV0

(G) · UT = LV ′

0
(G). (1)

We deduce the following elementary properties of the reduced matrices.
Let V0 and V ′

0 be two subsets of V (G), each of which contains precisely one
vertex from each connected component of G.

Property VIII NV0
(~G) and NV ′

0
(~G) are strictly row equivalent over Z.

Property IX LV0
(G) and LV ′

0
(G) are congruent over Z.

Notice that ~G appears in property VIII, while G appears in property
IX. The difference is that changing the direction of an edge e does not affect
LV0

(G), but it multiplies the e column of NV0
(~G) by −1.

Formula (1) makes it clear that the row equivalence class of NV0
(~G)

determines the congruence class of LV0
(G). A natural question is this:

does the congruence class of LV0
(G) also determine the row equivalence

class of NV0
(~G)? Property X tells us that the answer is “yes.”

Property X Let G1 and G2 be graphs with the same number of loops,
and for i ∈ {1, 2} let V0i ⊆ V (Gi) be a subset that contains one vertex
from each connected component of each graph. Then any of the following
conditions implies the others.
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1. LV01
(G1) and LV02

(G2) are congruent over Z.

2. There are oriented versions ~G1, ~G2 and a bijection β : E(G1) →

E(G2) such that NV01
(~G1) and NV02

(~G2) are strictly row equivalent
over Z, when their columns are matched by β.

3. There are oriented versions ~G1, ~G2 and a bijection β : E(G1) →

E(G2) such that N(~G1) and N(~G2) are loosely row equivalent over
Z, when their columns are matched by β.

4. G1 and G2 are 2-isomorphic. (I.e., their cycle matroids are isomor-
phic.)

The equivalence among conditions 2, 3 and 4 of property X is a famous
theorem of Whitney [14], and there are many expositions in the literature.
For instance, a thorough discussion is provided by Oxley [9, Chapter 5].
Note that the phrase “over Z” is not important in conditions 2–4; these
conditions remain equivalent if Z is replaced by a field. In fact most text-
book presentations of the theory of incidence matrices, like those in [2,
Chapter 2], [4, Chapter 8] and [9, Chapter 5], are formally restricted to
fields; however the presentations are easily modified to work over Z.

The fact that condition 1 of property X is equivalent to the other con-
ditions is due to Watkins [11, 12]; this is Theorem 1 of the introduction. It
is important to realize that “over Z” is crucial in condition 1. In fact, con-
dition 1 is not equivalent to the other conditions for any nontrivial graph
over any field. For if F is a field, G is a nontrivial graph, a > 1 is an inte-
ger not divisible by the characteristic of F and a2G is the graph obtained
by replacing each edge of G with a2 parallel edges, then G and a2G are
certainly not 2-isomorphic. However

LV0
(a2G) = a2LV0

(G) = (aI)LV0
(G)(aI) = (aI)LV0

(G)(aI)T

and as aI is invertible over F , it follows that LV0
(a2G) is congruent to

LV0
(G) over F . More details of property X, including a proof of the equiv-

alence of condition 1 with conditions 2–4, are discussed in Section 6.
There are several equivalent ways to describe 2-isomorphisms. Two of

them are stated in Definition 12. We refer to Oxley [9] for other equivalent
descriptions, and a thorough account of their properties.

Definition 12 Let G1 and G2 be graphs. Then a bijection β : E(G1) →
E(G2) is a 2-isomorphism if it defines an isomorphism between the cycle
matroids of G1 and G2. That is, β satisfies the following equivalent condi-
tions.

1. A subset S ⊆ E(G1) is the edge set of a maximal forest of G1 if and
only if β(S) is the edge set of a maximal forest of G2.
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2. There are oriented versions ~G1 and ~G2 such that vectors in ZE(G1)

corresponding to circuits of G1 are matched by β to vectors in ZE(G2)

corresponding to circuits of G2.

Recall that a circuit in a graph is a minimal closed path. The vector
corresponding to a circuit is obtained by following the circuit according
to one of the two orientations, and placing ±1 in the e coordinate of the
vector for each edge e that appears on the circuit, with +1 (resp. −1)

representing agreement (resp. disagreement) between the ~G direction of e
and the direction of e on the circuit. The subgroup of ZE(G) generated by
these vectors is called the cycle group of G, or the lattice of integral flows
of G.

The last property we discuss concerns the relationship between Lapla-
cian matrices and maximal forests.

IfM is a maximal forest ofG and ~M inherits edge directions from ~G then
the matrix-tree theorem tells us that NV0

( ~M) is a unimodular submatrix

of NV0
(~G), which includes the columns corresponding to edges of M . For

convenience we adopt a notational shorthand: if ~G−E(M) is the directed

graph obtained from ~G by removing all the edges of M , then we define

C(M) := NV0
( ~M)−1 ·NV0

(~G− E(M)).

This useful matrix appears in several references [1, 4, 9, 10], but it does
not seem to have a standard name. We use the letter C because the rows
represent the fundamental cuts of G with respect to M . More information
about C(M) is given in Sections 4 and 5.

If ℓ = m or G is a forest then C(M) is the empty 0×0 matrix; otherwise,
C(M) is an (n−c(G))×(m−n+c(G)) matrix. Of course the C(M) notation

is incomplete, as it does not mention ~G or V0. Notice also that

NV0
(~G) = NV0

( ~M) ·
(
I C(M)

)
· PM ,

where I is an identity matrix of order n − c(G) and PM is a permutation
matrix that permutes the columns of

(
I C(M)

)
into the order of E(G)

used for the columns of NV0
(~G). Permutation matrices satisfy PMPT

M = I,
so

LV0
(G) = NV0

(~G) ·NV0
(~G)T = NV0

( ~M) ·
(
I + C(M)C(M)T

)
·NV0

( ~M)T .

If G = M is a forest then C(M) is empty, and the equation holds with
I + C(M)C(M)T = I. If m = ℓ, on the other hand, then the equation
holds vacuously – all the matrices are empty.

We deduce the following.
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Property XI The congruence class of I + C(M)C(M)T over Z is the
same as that of LV0

(G).
Property XI tells us that we may think of the reduced forms of properties

I – X as applying to I+C(M)C(M)T matrices rather than LV0
(G) matrices,

up to congruence over Z. For instance the equivalence between conditions 4
and 1 of property X may be rephrased like this: G1 and G2 are 2-isomorphic
if and only if there are oriented versions ~Gi, maximal forestsMi, and subsets
V0i ⊆ V (Gi) containing one vertex from each connected component of each
graph, such that I +C(M1)C(M1)

T and I +C(M2)C(M2)
T are congruent

over Z.

3 An example

Before discussing dual Laplacian matrices, we consider a small example.
Suppose G has two vertices and three parallel non-loop edges. A max-

imal forest M of G consists of one edge. Depending on the edge direc-
tions, C(M) is

(
1 1

)
,
(
1 −1

)
,
(
−1 1

)
or

(
−1 −1

)
. In every case,

I +C(M)C(M)T is the 1× 1 matrix whose only entry is 3; this is the same
as LV0

(G).
Foreshadowing the results of the next sections, notice that if I ′ is the

2× 2 identity matrix then I ′ + C(M)TC(M) is one of these two matrices.

(
2 −1
−1 2

) (
2 1
1 2

)

The first matrix is the reduced Laplacian of K3, the dual graph of G. The
trace of the unreduced Laplacian L(K3) is 6. In contrast, the second matrix
is not a reduced Laplacian of any graph. Moreover, if we enlarge this matrix
to a 3 × 3 matrix whose rows and columns sum to 0 we get a matrix of
trace 10, 


2 1 −3
1 2 −3
−3 −3 6


 .

4 Dual Laplacian matrices

Here is another famous definition of Whitney [13]; again, we refer to Oxley
[9] for a thorough discussion.

Definition 13 Let G1 and G2 be graphs. Then G1 and G2 are abstract
duals if and only if there is a bijection β : E(G1) → E(G2) that defines an
isomorphism between the cycle matroid of G1 and the bond matroid of G2.
That is, β satisfies the following equivalent conditions.
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1. A subset S ⊆ E(G1) is the edge set of a maximal forest of G1 if and
only if β(S) is the complement of the edge set of a maximal forest of
G2.

2. There are oriented versions ~G1 and ~G2 such that vectors in ZE(G1)

corresponding to circuits of G1 are matched by β to vectors in ZE(G2)

corresponding to edge cuts of G2.

If W is a proper subset of V (G) then the vector corresponding to the
edge cut determined by W is obtained by placing ±1 in the e coordinate
of the vector for each non-loop edge e that is incident on just one vertex
of W , with +1 (resp. −1) representing an edge directed toward W (resp.

away from W ) in ~G. The subgroup of ZE(G) generated by these vectors is
called the cut group of G, or the lattice of integral cuts of G.

It is easy to see from Definitions 12 and 13 that there is a strong con-
nection between 2-isomorphism and abstract duality: if G1 and G2 are
abstract duals, then every graph 2-isomorphic to G1 is an abstract dual of
every graph 2-isomorphic to G2. It is not so easy to see another famous
theorem of Whitney [13]: G has an abstract dual if and only if G is planar.

It turns out that if I ′ is an identity matrix of order m− n+ c(G), then
almost all of the fundamental properties of Laplacians listed in Section 2
have analogues for matrices of the form I ′ + C(M)TC(M).

Definition 14 If G is a graph with a maximal forest M then any matrix
congruent over Z to I ′ +C(M)TC(M) is a reduced dual Laplacian matrix
of G.

When C(M) is the empty matrix – i.e., when m = ℓ or G is a forest –
the matrix I ′+C(M)TC(M) of Definition 5 should be interpreted as being
equal to I ′. It is empty if G is a forest.

Definition 15 If G is a graph then an unreduced dual Laplacian matrix
of G is obtained by adjoining a row and column to a reduced dual Laplacian
matrix of G, so that the rows and columns of the resulting matrix sum to
0.

Notice that compared to Definitions 5 and 6, Definitions 14 and 15 are
“backward”: we start with reduced dual Laplacian matrices, and construct
unreduced dual Laplacian matrices by enlarging the reduced ones. To make
sure there is no misunderstanding we should emphasize that dual Laplacians
do not require dual graphs: every graph has reduced and unreduced dual
Laplacian matrices, whether the graph is planar or nonplanar. If G =
M is a forest, the only reduced dual Laplacian matrix of G is the empty
0 × 0 matrix, and the only unreduced dual Laplacian matrix of G is the
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1 × 1 matrix 0. Otherwise the reduced dual Laplacian matrices of G are
symmetric (m− n+ c(G)) × (m− n+ c(G)) matrices.

In general we use ∗ to indicate dual Laplacian matrices and their prop-
erties. For instance L∗

V0
(G) denotes a reduced dual Laplacian of G obtained

using V0, and L∗(G) denotes an unreduced dual Laplacian matrix of G. It
is important to keep in mind that unlike LV0

(G) and L(G), the notations
L∗

V0
(G), L∗(G) are not well defined. In consequence there is no property

III∗. However, we will see in Section 5 that these matrices satisfy the
following property.

Property IX∗ L∗

V0
(G) and L∗(G) are well defined up to congruence

over Z.
That is, the reduced dual Laplacian matrices of G are all congruent over

Z, and the unreduced dual Laplacian matrices of G are all congruent over
Z.

Here are some other properties of dual Laplacian matrices.
Property I∗ L∗(G) and L∗

V0
(G) are symmetric matrices with integer

entries.
Property II∗ L∗(G) and L∗

V0
(G) are not changed if bridges are added

to G or removed from G.
Property IV∗ The sum of the columns of L∗(G) is 0; and the same

for the rows. The reduced version of property IV∗ is that reduced dual
Laplacian matrices satisfy the matrix-tree theorem, just as reduced Lapla-
cian matrices do. That is, det(I ′+C(M)TC(M)) is the number of maximal
forests of G [4, Theorem 14.7.3].

Property II∗ implies that the dual version of property VI is rather dif-
ferent from the original:

Property VI∗ If G is not connected then any connected graph obtained
by adding bridges to G has the same L∗ and L∗

V0
matrices as G.

Before stating a property VII∗, it is helpful to discuss C(M) a little

more. Recall that C(M) = NV0
( ~M)−1 ·NV0

(~G−E(M)). The rows of C(M)

correspond to the rows of NV0
( ~M)−1, which are indexed by the same set

that indexes the columns of NV0
( ~M), i.e., E(M). The columns of C(M)

correspond to the columns of NV0
(~G − E(M)), which are indexed by the

edges of G− E(M).
Now, consider the matrix

(
C(M)T −I ′

)
. The columns of I ′ inherit

an indexing from the rows of C(M)T , which are the columns of C(M); so
the columns of I ′ are indexed by the edges of G − E(M). Of course the
columns of C(M)T are the rows of C(M), and as was just discussed they
are indexed by E(M). All in all, then, the columns of

(
C(M)T −I ′

)
are

indexed by the edges of G. We define F (M) to be the matrix

F (M) :=
(
C(M)T −I ′

)
· PM ,
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where PM is a permutation matrix that permutes the columns of

(
C(M)T −I ′

)

into the order of E(G) used for the columns of NV0
(~G), as before. N.b. Like

C(M), the notation F (M) is incomplete; it does not mention either ~G or
V0.

It turns out that F (M) plays a role dual to that of NV0
(~G). We give

more details in Section 5, but we can certainly see the following.
Property VII∗ If F̂ (M) is the matrix obtained from F (M) by ad-

joining a new row equal to the negative of the sum of the rows of F (M),
then

F (M)F (M)T = I ′+C(M)TC(M) = L∗

V0
(G) and F̂ (M)F̂ (M)T = L∗(G).

Recall that properties VIII and IX differ in that the former involves ~G
and the latter involves G. In Section 5 we see that there is an analogous
difference between properties VIII∗ and IX∗.

Property VIII∗ For a fixed choice of edge directions in ~G, the F (M)
matrices that arise from different choices of M and V0 are all strictly row
equivalent to each other over Z.

Before proceeding we take a moment to describe the effect on F (M) of
changing the direction of an edge e, while holding M and V0 fixed. (a) If
e /∈ E(M), then reversing the direction of e has the effect of multiplying

the e column of NV0
(~G − E(M)) by −1. This in turn has the effect of

multiplying the e column of C(M) = NV0
( ~M)−1 · NV0

(~G − E(M)) by −1.
The effect on F (M) =

(
C(M)T −I ′

)
· PM is to multiply the e row of

C(M)T by −1 while leaving the −I ′ block of F (M) unchanged. Of course
multiplying part of a row by −1 is not an elementary row operation. (b)
If e ∈ E(M), then reversing the direction of e has the effect of multiplying

the e column of NV0
( ~M) by −1. This in turn has the effect of multiplying

the e row of C(M) = NV0
( ~M)−1 · NV0

(~G − E(M)) by −1. The effect on
F (M) is to multiply the e column of C(M)T by −1. Again, this effect is
not an elementary row operation. These observations explain why property
VIII∗ requires a fixed choice of edge directions.

On the other hand, Property IX∗ does not require a fixed choice of
edge directions. The preceding paragraph gives two reasons for this. (a)
If e /∈ E(M) then multiplying the e column of C(M) by −1 has the ef-
fect of replacing C(M) with C(M)U , where U is the elementary matrix
corresponding to the column multiplication. As UTU = I ′, the effect on
I ′ + C(M)TC(M) is to replace it with

I ′ + UTC(M)TC(M)U = UT · (I ′ + C(M)TC(M)) · U ,

12



which is congruent to I ′ + C(M)TC(M) over Z. (b) If e ∈ E(M) then
multiplying the e row of C(M) by −1 has no effect on I ′ + C(M)TC(M).

So far, we have stated properties I∗, II∗, IV∗, VI∗, VII∗, VIII∗ and
IX∗. There is no property III∗, and property XI∗ is Definition 14. The two
remaining dual properties, V∗ and X∗, are Theorems 3 and 4, stated in the
introduction.

5 Properties II∗, VIII∗ and IX∗

Let ~G be a directed version of a graph G, and M a maximal forest of G.
Let I ′ be the identity matrix of order m− n+ c(G), and let F (M) be the
matrix

F (M) =
(
C(M)T −I ′

)
· PM

mentioned above. Then F (M)F (M)T = I ′ + C(M)TC(M) is a reduced
dual Laplacian matrix of G. Also

F (M) ·NV0
(~G)T =

(
C(M)T −I ′

)
· PMPT

M ·

(
I

C(M)T

)
·NV0

( ~M)T

=
(
C(M)T − C(M)T

)
·NV0

( ~M)T = 0,

so each row of F (M) is orthogonal to all the rows of NV0
(~G).

Notice that F (M) is an (m − n + c(G)) ×m matrix and NV0
(~G) is an

(n − c(G)) ×m matrix. Both matrices have linearly independent rows, so
it follows that the row spaces of these two matrices are orthogonal comple-
ments in the vector space Qm. Because of the I and −I ′ blocks of

NV0
( ~M)−1·NV0

(~G)·P−1
M =

(
I C(M)

)
and F (M)·P−1

M =
(
C(M)T −I ′

)
,

it is easy to deduce that the groups generated by the rows of F (M) and

NV0
(~G) are orthogonal complements in the free abelian group ZE(G). That

is, the rows of F (M) generate the cycle group (also called the lattice of
integral flows) of G. The fact that the rows of F (M) represent a basis of
the cycle group implies directly that F (M)F (M)T is a Gram matrix for the
lattice of integral flows of G, as mentioned by Godsil and Royle [4, Chapter
14].

Each row of F (M) has precisely one nonzero entry from I ′, so each
row of F (M) corresponds to a circuit of G that includes precisely one edge
outside M . That is, the rows of F (M) represent the fundamental circuits
of G with respect to M . The observation of the preceding paragraph – that
the cycle group of G is generated by the fundamental circuits with respect
to M , for every maximal forest M – is a well-known elementary property of
the fundamental circuits. In textbooks of graph theory or matroid theory

13



like [2] or [9], this elementary property of fundamental circuits is often
stated only for cycle spaces defined over fields; but as noted above it is
easy to deduce the integral version, because of the I and −I ′ blocks in the
matrices. The statement over Z is more common in textbooks of algebraic
topology, like [8]; it is also discussed by Bacher, de la Harpe and Nagnibeda
[1, Lemma 2].

The same cycle group is generated by the rows of F (M), independent
of the choices of M and V0. We deduce property VIII∗: All of the F (M)

matrices associated with ~G are strictly row equivalent over Z.
That is, if M and M ′ are maximal forests of G then UF (M) = F (M ′)

for some unimodular matrix U . It follows that

U
(
I ′ + C(M)TC(M)

)
UT = UF (M)F (M)TUT (2)

= F (M ′)F (M ′)T = I ′ + C(M ′)TC(M ′),

so I ′ + C(M)TC(M) and I ′ + C(M ′)TC(M ′) are congruent over Z. We

conclude that all the reduced dual Laplacian matrices of ~G provided by
Definition 14 are congruent to each other over Z. As discussed at the end
of Section 4, changing edge directions does not affect reduced dual Laplacian
matrices, up to congruence; it follows that ~G may be replaced by G in the
preceding sentence. This is the reduced form of property IX∗.

For the unreduced form of property IX∗, notice that (2) implies that if
L∗(G) and L′∗(G) are the matrices obtained from I ′ + C(M)TC(M) and
I ′ + C(M ′)TC(M ′) (respectively) by adjoining a new row and column so
that the row and column sums are 0, then

L′∗(G) =

(
1 −1

0 I ′

)(
0 0

0 I ′ + C(M ′)TC(M ′)

)(
1 0

−1 I ′

)

=

(
1 −1

0 I ′

)(
1 0

0 U

)(
0 0

0 I ′ + C(M)TC(M)

)(
1 0

0 UT

)(
1 0

−1 I ′

)

=

(
1 −1

0 I ′

)(
1 0

0 U

)(
1 1

0 I ′

)
L∗(G)

(
1 0

1 I ′

)(
1 0

0 UT

)(
1 0

−1 I ′

)
.

If M is a maximal forest of G and e is a bridge of G then e ∈ E(M)
and e does not appear in any circuit of G, so every entry of the e column of
F (M) is 0. It follows that F (M)F (M)T is exactly the same as the reduced
dual Laplacian matrix F (M − e)F (M − e)T of G− e. This is property II∗.

As mentioned above, the rows of F (M) correspond to fundamental cir-
cuits with respect to M . Circuit-cutset duality is reflected in the fact that
the rows of

(
I C(M)

)
correspond to fundamental cuts with respect to M ,

and this fact implies that
(
I C(M)

)
·
(
I C(M)

)T
= I +C(M)C(M)T is

a Gram matrix for the lattice of integral cuts of G. See [1, Lemma 2] or [4,
Theorem 14.2.4] for a detailed discussion.
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6 Theorems 1, 3 and 4

The following matrix result will be useful. The argument is adapted from
[11].

Lemma 16 Let A be an n × m integer matrix, and let a be the number
of nonzero columns in A. Then either of these two conditions implies the
other.

1. There are a directed graph ~G and a unimodular matrix C such that
CA = N(~G).

2. There are a symmetric integer matrix B and a unimodular matrix C
such that B = CAATCT , the row sum of B is 0, and Tr(B) ≤ 2a.

If C satisfies one condition then C also satisfies the other condition.
Moreover, every matrix B in condition 2 has Tr(B) = 2a.

Proof. For the implication 1 =⇒ 2, suppose C is unimodular andN(~G) =
CA. Then the number a of nonzero columns of A is the same as the number
m − ℓ of nonzero columns of N(~G). The matrix B = CAATCT = L(G)
has row sum 0 and trace Tr(B) = 2a = 2(m− ℓ) by properties IV and V
of unreduced Laplacian matrices.

For 2 =⇒ 1, suppose C is unimodular and B = CAATCT has row
sum 0 and trace Tr(B) ≤ 2a. If 1 denotes a vector whose entries are all 1
then 1 · B = 0, because the rows of B sum to 0. Hence 0 = 1 · B · 1 = 1 ·
CAATCT · 1 = (1 · CA) · (1 · CA)T= ‖1 · CA‖

2
, so 1 · CA = 0. That is,

the rows of CA sum to 0. It follows that each nonzero column of CA has
at least one positive entry and at least one negative entry.

As C is nonsingular, A and CA both have a nonzero columns. The
trace Tr(B) = Tr(CA · (CA)T ) is the sum of the squares of the entries of
CA, so since every nonzero column of CA has at least two nonzero entries,

Tr(B) =
∑

i,j

(CA)2ij ≥ 2a,

with equality only if every nonzero column of CA has exactly two nonzero
entries, both of absolute value 1.

The hypothesis Tr(B) ≤ 2a implies that the equality Tr(B) = 2a holds.
The rows of CA sum to 0, so it follows that every nonzero column of CA
has exactly two nonzero entries, +1 and −1. That is, CA is the incidence
matrix of a directed graph.
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6.1 Proof of Theorem 1

Recall that property X includes Theorem 1. As discussed in Section 2,
the equivalence of conditions 2, 3 and 4 of property X is well known. The
implication 2 =⇒ 1 follows immediately from property VII. For 1 =⇒ 2,
suppose G1 and G2 are graphs each of which has ℓ loops, and suppose U
is a unimodular matrix with ULV01

(G1)U
T = LV02

(G2). We may assume
without loss of generality that |E(G2)| = m2 ≤ m1 = |E(G1)|.

Let G′

1 be the connected graph obtained from G1 by identifying all the
vertices of V01 to a single vertex v1, and let G′

2 be the connected graph
obtained from G2 by identifying all the vertices of V02 to a single vertex
w1. Let V ′

01 = {v1} and V ′

02 = {w1}. Then LV01
(G1) = LV ′

01
(G′

1) and

LV02
(G2) = LV ′

02
(G′

2), so ULV ′

01
(G′

1)U
T = LV ′

02
(G′

2). Let

W =

(
1 −1

0 I

)
, X =

(
1 0

0 U

)
and Y =

(
1 1

0 I

)
,

where I is an identity matrix. Let Z = WXY , and order the vertices of
V (G′

1) and V (G′

2) with v1 and w1 first (respectively). Then

ZL(G′

1)Z
T = WX

(
0 0

0 LV ′

01
(G1)

)
XTWT = W

(
0 0

0 LV ′

02
(G2)

)
WT ,

which is L(G′

2). Let B = L(G′

2) = ZN(~G′

1)N(~G′

1)
TZT . Properties IV and

V of Laplacian matrices tell us that the row sum of B is 0 and Tr(B) =
2(m2 − ℓ) ≤ 2(m1 − ℓ), which is twice the number of nonzero columns of

N(~G′

1). Applying Lemma 16 with A = N(~G′

1) and C = Z, we conclude

that there is a directed graph ~G3 such that ZN(~G′

1) = N(~G3). Moreover,

L(G3) = N(~G3)N(~G3)
T = ZN(~G′

1)
(
ZN(~G′

1)
)T

= ZL(G′

1)Z
T = L(G′

2),

so property III tells us that G3 is isomorphic to G′

2, except possibly for the
placement of loops. Loop placement does not affect incidence matrices, so
we conclude that ZN(~G′

1) = N(~G′

2), i.e., the unreduced incidence matrices

of ~G′

1 and ~G′

2 are strictly row equivalent over Z. It follows that NV ′

01
(~G′

1)

and NV ′

02
(~G′

2) are also strictly row equivalent over Z; these are the same

matrices as NV01
(~G1) and NV02

(~G2).

6.2 The unreduced version of Theorem 1

The unreduced version of Theorem 1 is not so different from the reduced
version, but we provide details for the sake of completeness.

Lemma 17 The rank of L(G) over Q is n− c(G).
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Proof. Properties IV and VI tell us that the rank of L(G) overQ is no more
than n− c(G). The matrix-tree theorem tells us that a reduced Laplacian
of G is a nonsingular submatrix of L(G), of order n− c(G).

Lemma 18 If V0 includes one vertex from each connected component of G
then L(G) is congruent over Z to the matrix

(
LV0

(G) 0

0 0

)
.

Proof. Properties IV and VI tell us that the displayed matrix is UL(G)UT ,
where U is obtained from an identity matrix by changing the vw entry to
1 whenever v ∈ V0, v 6= w and v, w lie in the same connected component of
G.

Corollary 19 Suppose the unreduced Laplacian matrices of G1 and G2 are
congruent over Z. Then the reduced Laplacian matrices of G1 and G2 are
congruent over Z.

Proof. As L(G1) and L(G2) are congruent over Z, Lemma 18 tells us that

A1 =

(
LV01

(G1) 0

0 0

)
and A2 =

(
LV02

(G2) 0

0 0

)

are also congruent over Z. Hence there is a unimodular matrix U with
UA1U

T = A2. Also, the fact that L(G1) and L(G2) are congruent implies
that they have the same rank; so according to Lemma 17, LV01

(G1) and
LV02

(G2) have the same size. It follows that

UA1U
T =

(
U1 U2

U3 U4

)(
LV01

(G1) 0

0 0

)(
UT
1 UT

3

UT
2 UT

4

)
= A2

requires U1LV01
(G1)U

T
1 = LV02

(G2) and U1LV01
(G1)U

T
3 = 0.

As LV01
(G1) and LV02

(G2) are both nonsingular, U1LV01
(G1)U

T
1 =

LV02
(G2) implies that U1 is nonsingular too. Then U1LV01

(G1)U
T
3 = 0

implies that U3 = 0, so det(U) = det(U1) det(U4). Necessarily then U1

is unimodular, so U1LV01
(G1)U

T
1 = LV02

(G2) implies that LV01
(G1) and

LV02
(G2) are congruent over Z.
Here is the unreduced version of Theorem 1.

Proposition 20 Let G1 and G2 be graphs with the same number of loops.
Then L(G1) and L(G2) are congruent over Z if and only if G1 and G2 are
2-isomorphic graphs with the same number of vertices and the same number
of connected components.
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Proof. If L(G1) and L(G2) are congruent over Z, then they certainly have
the same rank and size. It follows that G1 and G2 have the same values for
n − c(G) and n, so G1 and G2 have the same number of vertices and the
same number of connected components. Corollary 19 and Theorem 1 tell
us that G1 and G2 are 2-isomorphic.

For the converse, suppose G1 and G2 are 2-isomorphic graphs with the
same number of vertices and the same number of connected components.
Then the matrices

A1 =

(
LV01

(G1) 0

0 0

)
and A2 =

(
LV02

(G2) 0

0 0

)

have the same size. Theorem 1 tells us that LV01
(G1) and LV02

(G2) are con-
gruent over Z, so A1 and A2 are congruent over Z. According to Lemma 18,
it follows that L(G1) and L(G2) are congruent over Z.

6.3 Proof of Theorem 3

Let G be a graph with m edges and b bridges. Recall that Theorem 3 has
two parts. 1. If L∗(G) is an unreduced dual Laplacian matrix of G then
Tr(L∗(G)) is an even integer ≥ 2(m − b). 2. G is planar if and only if G
has an unreduced dual Laplacian matrix with Tr(L∗(G)) = 2(m− b).

It is easy to verify that Tr(L∗(G)) is an even integer. The row sum
of L∗(G) is 0, so the sum of the entries of L∗(G) is 0. It follows that
−Tr(L∗(G)) is the sum of the off-diagonal entries of L∗(G); this sum is
even because L∗(G) is symmetric.

It is also easy to verify one direction of part 2. If G is planar then G has
an abstract dual G∗, and Theorem 4 tells us that L(G∗) is an unreduced
dual Laplacian matrix of G. (Theorem 4 is proven below; there is no
circularity because the proof does not involve Theorem 3.) As G∗ has m
edges and b loops, property V guarantees that Tr(L(G∗)) = 2(m− b).

We verify part 1 and the other direction of part 2 simultaneously, by
proving that if L∗(G) is an unreduced dual Laplacian matrix of G with
Tr(L∗(G)) ≤ 2(m− b) then Tr(L∗(G)) = 2(m− b) and G is planar.

Suppose that G is a graph with an unreduced dual Laplacian matrix
L∗(G) such that Tr(L∗(G)) ≤ 2(m − b). According to Definitions 14 and
15, G has a maximal forest M such that L∗(G) is obtained from a matrix
congruent to I ′+C(M)TC(M) by adjoining a row and column to make the
row and column sums equal to 0. Let

F (M) =
(
C(M)T −I ′

)
· PM

as in Section 4, and let A be the matrix obtained from F (M) by adjoining
a new first row with all entries equal to 0. Then the number of nonzero
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columns of A is the same as the number of nonzero columns of F (M), and
according to the discussion in Section 5 this is the number of edges of G
that appear in circuits of G. That is, A has a = m− b nonzero columns.

Suppose U is unimodular and L∗(G) is obtained by adjoining a row and
column to U(I ′+C(M)TC(M))UT , in such a way that the row and column
sums equal 0. Then we have

L∗(G) =

(
1 −1

0 I ′

)(
0 0

0 U(I ′ + C(M)TC(M))UT

)(
1 0

−1 I ′

)

= ZAATZT , where Z =

(
1 −1

0 I ′

)(
1 0

0 U

)
=

(
1 −1 · U
0 U

)
.

Then A, B = L∗(G) and C = Z satisfy part 2 of Lemma 16, so the lemma
guarantees that Tr(L∗(G)) = 2a = 2(m− b) and there is a directed graph
~G∗ such that ZA = N(~G∗). The group generated by the rows of N(~G∗)
is the group of cuts of G∗, and as noted at the beginning of Section 5,
the group generated by the rows of F (M) is the group of cycles of G.

The equation ZA = N(~G∗) implies that these two groups are the same,
so if β : E(G) → E(G∗) is the bijection that matches edges according

to the correspondence between columns of A and N(~G∗), then cuts of G∗

correspond to cycles of G under β. That is, G and G∗ are abstract duals;
hence both are planar.

6.4 Theorem 3 and MacLane’s criterion

The planarity criterion of MacLane [7] is this: G is planar if and only if
there is a GF (2) basis for its cycle space, in which each edge appears no
more than twice. If we augment such a basis with one more element, equal
(modulo 2) to the sum of the basis elements, then the resulting set has the
property that every non-bridge edge appears precisely twice.

In one direction, the relationship with Theorem 3 is simple. If L∗(G) is
an unreduced dual Laplacian matrix of G, then there is a Z basis B of the
group of cycles of G, such that L∗(G) records the dot products among the
vectors in the set B′ obtained by augmenting B with one more element,
equal to the negative of the sum of the elements of B. Notice that every
non-bridge edge of G is represented at least once among the elements of
B, and at least twice among the elements of B′. Each diagonal entry
of L∗(G) is a positive integer, at least as large as the number of edges
represented in the corresponding element of B′. (A diagonal entry will be
larger than the number of edges represented in the corresponding element
of B′ if the absolute value of some coordinate of that element is more than
1.) It follows that Tr(L∗(G)) ≥ 2(m − b), with equality only if each non-
bridge edge is represented in precisely two elements of B′. Clearly then
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Tr(L∗(G)) = 2(m− b) implies that B satisfies MacLane’s criterion.
The opposite direction is not so immediate, as MacLane’s criterion pro-

vides only a GF (2) basis, not a Z basis. Of course if G satisfies MacLane’s
criterion then G is planar, and it is easy to verify Theorem 3 for planar
graphs, as indicated in Subsection 6.3.

6.5 Proof of Theorem 4

Let G be a planar graph. Theorem 4 asserts that these two statements
about a graph G∗ are equivalent. 1. G and G∗ are abstract duals. 2. The
number of loops in G∗ is the same as the number of bridges in G, and a
reduced Laplacian matrix of G∗ is a reduced dual Laplacian matrix of G.

If G and G∗ are abstract duals then there are oriented versions ~G, ~G∗

and a bijection β : E(G) → E(G∗) under which the cycle vectors of G
correspond to the cut vectors of G∗. If we match the columns of F (M) and

NV ∗

0
(~G∗) according to β, then the rows of F (M) and NV ∗

0
(~G∗) generate the

same group. Recall that F (M) has m − n + c(G) rows by definition, and

the number of rows in NV ∗

0
(~G∗) is the same as the number of edges in a

maximal forest of G∗. As G and G∗ are abstract duals, the number of edges
in a maximal forest of G∗ is m−|E(M)| = m− (n− c(G)), the same as the

number of rows in F (M). It follows that F (M) and NV ∗

0
(~G∗) are strictly

row equivalent over Z, so there is a unimodular U with NV ∗

0
(~G∗) = UF (M).

Then LV ∗

0
(G∗) = NV ∗

0
(~G∗)NV ∗

0
(~G∗)T = UF (M)F (M)TUT is a reduced

dual Laplacian matrix of G. Also, the number of loops in G∗ is the number
of 0 columns of NV ∗

0
(~G∗), and the number of bridges in G is the number of

0 columns of F (M); if the matrices are row equivalent these numbers must
be equal. This verifies the implication 1 =⇒ 2.

Suppose condition 2 holds. As G is planar, it has an abstract dual D.
Applying the implication 1 =⇒ 2 to D in place of G∗, we conclude that
the number of loops in G∗ is the same as the number of loops in D, and
both LV ∗

0
(G∗) and a reduced Laplacian of D are reduced dual Laplacians

of G. But then LV ∗

0
(G∗) and a reduced Laplacian of D are congruent to

each other over Z, so Theorem 1 tells us that G∗ and D are 2-isomorphic.
As D is an abstract dual of G, so is G∗.

7 Two examples

Example 1 Suppose G is the graph pictured in Figure 1, with bold edges
indicating the spanning tree M with E(M) = {e1, e2, e4, e5, e6, e8}. Using
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Figure 1: The graph G in Example 1.

the indicated edge directions and V0 = {v3}, we obtain




e1 e2 e3 e4 e5 e6 e7 e8 e9

v1 −1 −1 0 0 0 0 0 0 0
v2 1 0 −1 0 0 0 0 0 0
v3 0 1 1 −1 0 0 0 0 0
v4 0 0 0 1 −1 −1 0 0 0
v5 0 0 0 0 1 0 −1 −1 0
v6 0 0 0 0 0 1 1 0 −1
v7 0 0 0 0 0 0 0 1 1




= N(~G),

so



−1 1 −1 0 0 0 0 0 0
0 0 0 0 −1 1 −1 0 0
0 0 0 0 1 −1 0 1 −1


 = F (M)

and




6 −3 −1 −2
−3 3 0 0
−1 0 3 −2
−2 0 −2 4


 = F̂ (M)F̂ (M)T ,

in the notation of Section 4.
Notice that the trace of F̂ (M)F̂ (M)T is 16 = 2(m−b), so in the notation

of Subsection 6.3, U can be taken to be an identity matrix. As predicted
by the argument of Subsection 6.3, it turns out that ZA = F̂ (M) is the
incidence matrix of a graph G∗. This graph is pictured in Figure 2, with
bold edges indicating the spanning tree M∗ with E(M∗) = {e3, e7, e9}. It
is not difficult to verify that G∗ is an abstract dual of G, but it happens
that the two graphs are not geometric duals, i.e., they cannot be drawn
together in the plane in such a way that each graph has one vertex in each
complementary region of the other graph. One way to see this is to observe
that there is no vertex of G∗ incident only on e7, e8 and e9, but every
drawing of G has a complementary region with boundary {e7, e8, e9}. This
example illustrates the fact that Theorem 4 involves abstract rather than
geometric duality.
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Figure 2: The graph G∗ in Example 1.

Example 2 In Example 1 it happens that G has a maximal forest M
such that Tr(F̂ (M)F̂ (M)T ) = 2(m − b). That is, the planarity criterion
of Theorem 3 is satisfied by an unreduced dual Laplacian matrix obtained
directly from a matrix of the form I ′ + C(M)TC(M). It is not always
the case that Theorem 3 is satisfied so readily. For instance, consider the
graph G of Figure 3. Then G has m = 9 edges, none of which is a bridge.
As G has 5 vertices, an unreduced dual Laplacian matrix L∗(G) is a 6× 6
matrix. The diagonal entries of L∗(G) are the dot products with themselves
of certain nonzero elements of the cycle group of G, and the smallest cycles
of G are of length 3, so if Tr(L∗(G)) = 18 then each diagonal entry of
L∗(G) must correspond to a 3-cycle of G. This is not possible for an

F̂ (M)F̂ (M)T matrix, because the −I ′ block of F (M) guarantees that the

row adjoined to F (M) in constructing F̂ (M) has more thanm−n+c(G) = 5
nonzero entries. We leave it as an exercise for the reader to verify that
nevertheless, G does have an unreduced dual Laplacian matrix L∗(G) with
Tr(L∗(G)) = 18.

Figure 3: Example 2.

22



References

[1] R. Bacher, P. de la Harpe and T. Nagnibeda, The lattice of integral
flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math.
France 125 (1997), 167–198.

[2] B. Bollobás, Modern graph theory. Graduate Texts in Mathematics,
184. Springer-Verlag, New York, 1998.

[3] J. H. Conway, The sensual (quadratic) form. Carus Mathematical
Monographs, 26. Mathematical Association of America, Washington,
DC, 1997.

[4] C. Godsil and G. Royle, Algebraic graph theory. Graduate Texts in
Mathematics, 207. Springer-Verlag, New York, 2001.

[5] N. Jacobson, Basic algebra. I. W. H. Freeman and Co., San Francisco,
Calif., 1974.

[6] E. C. Kirby, R. B. Mallion, P. Pollak, and P. Skrzyński, What Kirchhoff
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