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Abstract
In this paper, we determine the second largest number of maximal
independent sets and characterize those extremal graphs achieving
these values among all twinkle graphs.

1 Introduction

Let G = (V,E) be a simple undirected graph. An independent set is a
subset S of V such that no two vertices in S are adjacent. A mazimal
independent set is an independent set that is not a proper subset of any
sther independent set. The set of all maximal independent sets of G is
lenoted by MI(G) and its cardinality by mi(G). For a vertex r € V(G),
let MI,.(G) ={I e MI(G) :z € [} and MI_(G) ={I € MI(G) : = & I}.
The cardinalities of MI, ;(G) and MI_.(G) are denoted by mi,.(G) and
mi_.(G), respectively. Note that mi(G) = mi.(G) + mi_.(G). The
problem of determining the largest value of mi(G) in a general graph of
srder n and those graphs achieving the largest numnber was proposed by
Erdés and Moser, and solved by Moon and Moser [12]. The same problem
was investigated for certain families of graphs, including trees [5, 13, 14],
forests [5], graphs with at most one cycle [5], triangle-free graphs [1, 2],

A twinkle graph W is a connected unicyclic graph with the cycle C such
that W — z is disconnected for any z € V(C). Additionally, a connected
sraph G with vertex set V(G) is called a quasi-tree graph, if there exists
a vertex ¢ € V(G) such that G — z is a tree. The concept of quasi-tree
sraphs was mentioned by H. Liu and M. Lu in [11]. Lin [8, 9] solved
the largest and the second largest numnbers of mi(G) amovg all quasi-tree
graphs and quasi-forest graphs of order n. Trivially, the connected graphs
with at most one cycle are the union of trees, twinkle graphs and quasi-tree
graphs with exactly one cycle. Recently, Lin and Jou [10] investigated the
largest cardinality of mi(G) among all twinkle graphs of order n. In this
paper, we determine the second largest number of maximal independent
sets among all twinkle graphs. We also characterize those extremal graphs
achieving these values.
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2 Preliminary

For a graph G = (V, E), the cardinality of V(G) is called the order, and
it is denoted by |G|. The neighborhood Ng(v) of a vertex v € V(@) is
the set of vertices adjacent to v in G and the closed neighborhood Ng[v] is
{v} U Ng(v). Two distinct vertices v; and vy are called duplicated vertices
if Ng(v1) = Ng(vp). The degree of z is the cardinality of N¢g(z), denoted
by degg(z). A vertex z is a leaf if degg(z). = 1. For a set A C V(G),
the deletion of A from G is the graph G — A gbtained from G by removing
all vertices in A and their incident edges. If A = {v} is a singleton, we
write G — v rather than G — {v}. Two graphs G; and G, are disjoint if
V(G1) N V(G2) = 0. The union of two disjoint graphs G; and Gy is the
graph G; U G, with vertex set V(G; U Gs) = V(G;) U V(Gy) and edge
set £(G1 U G3z) = E(G1) U E(G3). The short notation for the union of n
copies of disjoint graphs isomorphic to G is nG. Denote by P, a path with
n vertices. The number of edges of a path is its length. Throughout this
paper, for simplicity, let r = /2.

The batons B(%, j) is the set which are the graphs obtained fromn a basic
path P of 7 > 1 vertices by attaching j > 0 paths of length two to the
endpoints of P in all possible ways (see Figure 1).

Figure 1: The baton B(i,j) with j = j; + j,

Lemma 2.1. ([2, 4]) For any vertez z in a graph G, mi(G) < mi(G — )+
mi(G — Ng[z]).

Lemma 2.2. ([2, 4]) If u is a leaf adjacent to v in a graph G, mi(G) =
mi(G — Nglu]) + mi(G — Ng[v)).

Lemma 2.3. ([6]) If a graph G has duplicated leaves u, and uy, then
mi(G) = mi(G — uq).

Lemma 2.4. ([4]) If G is the union of two disjoint graphs G, and Gy, then
mi(G) = mi(G1) - mi(G,).

We observe that G — z and G — Ng|z] will form forests for the vertex z
in Lemma 2.1 if we choose z on the cycle. In addition, if the v in Lemma 2.2
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is a leaf in a twinkle graph, then G — Ng[u] and G — Ng[v] may be twinkle
graphs, trees or forests.

Lemmas 2.1 and 2.2 will be needed in proofs of Theoremn 3.1 and Leinma
3.3. The preceding observations tell us that the results listed in The-
orems 2.5 through 2.11 on the largest, second largest, and third largest
numbers of maximal independent sets of trees and forests lay the founda-
tion of our proof.

The results of the largest numbers of maximal independent sets for trees
and forests are illustrated in Theorems 2.5 and 2.6, respectively.

Theorem 2.5. ([5]) If T is a tree of order n > 1, then mi(G) < t;(n),
where

1 (n) = { -1, if n is odd,

r""2 4+ 1, ifn is even.

Furthermore, mi(T) = t1(n) if and only tf T € Ty (n), where

|

[ B{1,2Y, if n is odd,
Ti(n) = { 3(2’22_2) or B(4, Eg—‘*), if n 1s even,

Theorem 2.6. ([5]) If F is a forest of order n > 1, then mi(G) < fi(n),
where

1 ifn is odd,

fi(n) = { e, if n is even.
Furthermore, mi(F) = fi(n) if and only if F € Fy(n), where

_ | Bfi, %‘25) U sPy, ifn is odd,
Fain) = { 5Py, if n is even,

where 0 < s < 5=,

The results of the second largest numbers of maximal independent sets
among all trees and forests are described in Theoremns 2.7 and 2.8, respec-
tively.

Theorem 2.7. ([6]) If T is a tree of order n > 4 with T & Ty(n), then
mi(T) < ta(n), where

gl if n > 4 s even,

ta(n) =14 3, if n =5,
3Ir"=S 41, ifn> 7 is odd.

Furthermore, mi(T) = ty(n) if and only if T € {T4(8),T5(8), Po.T2(n)},
where Th(n) and T5(8), T5'(8) are shown in Figures 2.
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T5.(n), n > 4 is even T2(5) Too(n), n > 7is odd
TII

Figure 2: The trees T5(n), T5(8) and T4'(8)

Theorem 2.8. ([6]) If F is a forest of order n > 4 with ¥ & Fy(n), then
mi(F) < fa(n), where

3rn=d, ifn >4 is even,
fg(n) = 3; i n =,
Trn=T ifn> 7 is odd.

Furthermore, mi(F) = fa(n) if and only if F € Fy(n), where

Py U n—;ipg, if n > 4 is even,
Fy(n) T5(5) or PLUPy, ifn=>5,
Py EZZZPQ, ifn>7 1is odd.

‘The results of the third largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.9 and 2.10, respec-
tively.

Theorem 2.9. ([3)) If T is a tree with n > 7 vertices having T & T(n),
1= 1,2, then mi(T) < t3(n), where

Fpi—t, ifn > 7 s odd;
)T, i =8
falm) = 15, ifn=10;

"8 12 ifn > 12 is even.
Furthermore, mi(T) = t3(n) if and only if T € {T5(8), T4(10), T4 (10),T3(n)}.

where T3(n) and T3(8), T3(10), T;'(10) are shown in Figures 3 and 4, respec-
tively.
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T3.(n), n > 12 is even T3,(n), n > 7is odd

Figure 3: The trees T3(n)

a0

0

Ty(8) T}(10) Ty(10)

Figure 4: The trees T3(8),T4(10) and T3'(10)
Theorem 2.10. ([7]) If F is a forest withn > 8 vertices having F' ¢ Fi(n),
i =1,2, then mi(F) < f3(n), where

5rn=8,  ifn > 8 is even;
Falmy = { 13r7=9, if n > 9 is odd.

Furthermore, mi(F) = fa(n) if and only if F € F3(n), where

B T1(6)U1‘~5—6Pg, if n > 8 is even;
F3(TL) - { Tz(g) U -n—;—gpz, ifn>9 is odd.

Theorem 2.11. ([10]) If W is a twinkle graph of order n > 6, then
mi(W) < wi(n), where

4, if n =6,
_ 13, ifn =29,
wi(n) = 3pn—5, ifn=7n2>111s odd,

=241, ifn > 8 is even.

Furthermore, mi(W) = wy(n) if and only if W € Wi(n), where

LA in=6,
— 1 9 ) an:g’
Wi(n) = Wio(n), ifn="7,n2= 11 is odd,

Wie(n). or Wi, (n), ifn =8 s even,

where W1(6), W1(9), Wis(n), Wie(n) and Wi, (n) are shown in Figure 5.
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WI(G) Wl(g) W]_o('n.)

Wie(n) | Wre(n)
Figure 5: The graphs W1(6), W1(9), Wis(n), Wie(n) and Wy, (n)

3 Main results
Define the graph Ws(n) of order n > 10 as follows.

fial = Wae(n) or Wi, (n), ifn > 10 is even,
T\ Wao(n), if n > 11 is odd,

where Wy (n), W5, (n) and Ws,(n) are shown in Figure 6.

*
W, (n

Wgo('n)

Figure 6: The graphs Wy (n), W3, (n) and Wy, (n)
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To calculate mi(Wa(n)), we illustrate with mi(Wse(n)) as follows. See
Figure 7.

mi(Wae(n)) = miyz(Wae(n)) + mi_z(Wae(n))

= mi(PyU P U~ = 5 p)
—8
+mi(Pr U= ——P2) — mi(D)
=4+ 7% -1
=78 43

Gy

miy s (Wae(n))=mi(G1)=mi(P3UP,U%5E Py )

Mi — o (Wae (n))=mi(G2)-mi(Ga)=mi(P;UZ5E P;) —mi(0)

Figure 7: The mi(Wa.(n))

Let wq(n) = mi(Wa(n)). By similar calculation, we obtain:

) = 7rn8 43, if n > 10 is even,
2 Z 5T 43, ifn>111s odd.

In this paper, we will prove the following result.

Theorem 3.1. If W is a twinkle graph of order n > 10 with W & W;(n),
then mi(W) < wq(n). Furthermore, the equality holds if and only if W €
Wg(n).

Lemmas 3.2 and 3.3 are needed for our discussions.
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Lemma 3.2. Suppose that W is a twinkle graph of order n > 10 having
duplicated leaves, then mi(W) < wa(n).

Proof. Suppose that W has duplicated leaves u; and ug, then W/ = W —y,
is a twinkle graph of order n — 1. By Lemma 2.3 and Theorem 2.11, we

have that

mi(W) = mi(W — uy)

3rin—1)-5 if n is even,:
= | r®D-211 ifnisodd,
< ’UJ2(TL).
This completes the proof. a

By Lemma 3.2, we assume that W is always a twinkle graph of order
n > 10 without duplicated leaves in the remainder of the paper. As an
illustration, a path P, is attached to a vertex v on the cycle C in a twinkle
graph is exhibited in Figure 8.

C

¢ } n vertices

P

Figure 8: The path P, is attached to v € V(C)

Lemma 3.3. Suppose that W is a twinkle graph of order n > 10 obtained

by attaching a Py or a Ps to each verter in the unique cycle C. Then
mi(W) < wy(n).

Proof. By the assumption of W and [W| > 10, we obtain that IC| > 4. If
|C| = 4, then there are four possibilities for W. See Figure 9. By simple

calculation, we have w < wp(n) for 1 <1 < 4.

T

W(I) W(z)

?
®
[ ]
®

®
®

o
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—W—(3) W(4)
Figure 9: The possible graph W with |C| = 4

If |C| = 5, then there are eight possibilities for W. See Figure 10. By
simple calculation, we have W < wy(n) for 1 <4 <8.

~1r— I I

wm w® Wwe®
ﬁ—‘ *—=o—§ - o—-@——g:‘ i
G =2 -
W@ W) W
pul 1T
D@
wm we

Figure 10: The possible graph W with |C| =5

Hence we can assume that |C| > 6, that is, |{v € V(C) : degy (v) =
3}| > 6. We distinguish two cases to consider.

Case 1. There exists a vertex y € V(C) is attached by a P : zy, see
Figure 11. Note that W — Ny [z] is a tree of order n — 2 and W — Ny [y
is a forest of order n — 4.

C\?,I’/
T

Figure 11: The graph for Case 1
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Claim 1. W — Ny [z] & Ty (n — 2).
Check. Note that

[{v € V(C) : degy_ v,y () (v) = 3}
={veV(C): degy _ Ny [2) (v) = 3}
={v € V(C) : degy (v) = 3}| - |{v € V(C) : v € Nw[y]}|
=|C| -3
>6—3 :
=3

which is contradiction to |[{v € V(Ty(n — 2)) : degr, (n-g)(v) > 3}| < 2,
Hence we have that W — Ny, (2] ¢ Ti(n — 2).

Claim 2. W — Nw [y] € Fi(n — 4).
Check. Note that
{v € V(C) : degy _py,, 1y (v) = 3}
= |{v € V(C) : degw_pyp 1y (v) = 3}
= [{v € V(C) : degy(v) = 3}| - [{v € V(C) : v € N [y]}]
>6—3
=3,

which is contradiction to |[{v € V(F(n — 4)) : degp (n—q)(v) > 3}| < 1.
Hence we have that W — Ny, [y] & Fy(n — 4).
By Lemma 2.2, Theorems 2.7 and 2.8, we have that

mi(W) = mi(W — Ny [z]) + mi(W — Nw [y])

r(n=2)-2 4 37~(n—4)—4, n is even,
B { (3r(=2=5 4 1) + 77(=9=7 1 s odd,
B Trif n is even,
- { 197"~ 11, nis odd,
< wa(n).

Case 2. Every vertex in C is attached by a P;. Choose two Ps’s, say
P 2192, and P2 . Tay222, such that 21,25 € V(C) and z; is adjacent
to 27, see Figure 12.

Claim 3. W — Nw[z1] — Nw (23] — z1 € Ti(n — 5), To(n — 5).

Check. Since Nw(z,] = {z1,y1} and Ny [z,] = {z2,v2}, it follows that
W — Nw[x1] — Nw [z2] - 21 is a tree of order n— 5. Note that |{v € V(C) :
degw _ Ny (z1)—Nw(za]-2 (V) = 3} = [{v € V(C) : degy (v) > 3}| -3 >
6 — 3 = 3, which is contradiction to [{v € V(T}(n — 5)) : degr, (n_g)(v) >
3} < 2. On the other hand, every vertex in C is attached by a Ps, it



Z1 2
Y1 Y2
T T2
p  p2)

Figure 12: The graph for Case 2

follows that W — Ny [z1] — Nw(z2] — z1 € To(n — 5). Hence we have that
W — Nw(z1] — Nw(z2) — 21 € T1(n = 5), Ta(n — 5). By similar arguments,
we have the following.

e W — Nw[z1) — Nwlze] — 21 is a tree of order n—5 and W — Nw|z1] —
Nw[ﬂfz] — 2] ﬁ Tl(ﬂ . 5),T-2(TL == 5).

o W — Nwlz1] — Nwlyz] is a tree of order n — 5 and W — Nw[z1] —

Nwlya) & Ti(n — 5), Ta(n — 5).

e W — Nwly1] — Nwl(zo] is a tree of order n —5 and W — Nw(y1] —
Nw [z2] € T1(n — 5), Ta{n — 5).

e W — Nw|[z1) — Nwlz2] — Nw|z1] is a forest of order n — 7.

o W — Nw(y1] — Nwlyz] is a tree of order n — 6.
Hence, by Lemmas 2.1, 2.2, Theorems 2.5-2.9, we have that

mi(W) " mi(W — Nw([za]) + mi(W — Nw[u1])
L2 mi(W — Nw (o) — Nw(ze])
-+ mz(W = NW[-TI] — Nwlyg])
+ mz(W — Nw[y]] - Nw[:tgl)
+mi(W — Nwly] — Nw(y2])

< mi(W — Nwlzi]) — Nwlza] — 21)
+ mi(W — Ny [z1] — Nw [z2] — Nw|z1])
+mi(W — Nwlz1] — Nwlyz])
+ mi(W — Nwin| — Nw [2])
+ mi(W — Nwiy| - Nw(y2])

Thins 2529 3. 3p(n=8)=5 4 p(n=T)=1 4 p(n=6)=2 4 1 n is even,
3. p(n=5)=2 4 pn=7 4 p(n=6)-1 n is odd,

_ 13r"~10 4+ 1, n is even,
— ] BT, n is odd,
< Wwa (Tl)
This completes the proof. O
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Now we are ready for the main result.

Theorem 3.1. If W is a twinkle graph of order n > 10 with W & Wi(n),
then mi(W) < wa(n). Furthermore, the equality holds if and only if W e
Wg(n)

Proof. Let W be a twinkle graph of order n > 10 having W ¢ Wi (n) such
that mi(W) is as large as possible. We shall prove the result by induction
on n. It is true for n = 10,11. Assume that it is true for all n’ < n. For
a leaf u, let £(u,C) be the length of the unique shortest path, P, from u
to C; as a convention, we will take v := v,, where {vu} = PN Nw(u). By
Lemma 3.3, we have that there exists a leaf u with £(x, C) > 3 or a vertex
z € V(C) with degy (z) > 4. Trivially, W — Ny [u] is a graph of order
n — 2. Moreover, if there exists a leaf u with £(u, C) > 3, then the length
of P' = P — {u,v} is not less than 1. On the other hand, if there exists
a vertex z € V(C) with degy, (z) > 4, we can find a leaf u such that the
length of the path joining v and x is not less than 2 by Lemina 3.2. Then
degy,_ nyy u) () = degy () =1 > 4—1 = 3. Hence W — Ny [u] is a twinkle
graph of order n — 2. Consider the cases of W — Ny [u] € Wi(n — 2) and
W — Nw [u] € Wi(n — 2).

Case 1. W—Nw[u] € Wi(n—2). Then W — Ny [u] is one of Wio(n—2),
Wie(n —2), or Wi, (n —2) (see Theorem 2.11 and Figure 5). When we add
Nw [u] back, there are 14 possibilities for graph W (see Figure 13 for a
complete list).

W) [9rn=9 4 q] W@ [9rn=9]
W®) [5pn=7] W@ [5r7=7 4]

S—— S —

a b W) [3r7-6 4 9]
WG [<7rm-8 4 3]
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W (3776 + 2] W® 1< 7rn=8 4 1)

jﬂi jﬁi

W(Q) rn— 6+6 W(IO P 6_|_2]
W(ll) 137.11 10+1] W(IZ) P 8+3

W) [13rn=10 4 ] W4 [13rn—10 4 2]

Figure 13: The possible graphs W

The number inside the brackets in Figure 13 indicates the number of max-
imal independent sets of the corresponding graphs. Note that W ®) =
We(n) when a = ”T’S, b=1and W2 = W3, (n). By simple calculation,
we have mi(W®) < wy(n) for 1 # 5, 12.

Case 2. W—Nw[u] € Wj(n—2). By the induction hypothesis, mi(W —
Nw(u]) €< wy(n —2). Now we consider the cases of W — Ny [v].

Subcase 2.1. For each leaf u with £(u,C) = 3 and for each z € V(C)
with degy, (z) = 3. Note that n is even. Recall that W has no duplicated
leaves. There is only one possibility for graph W. See Figure 14.
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Figure 14: The possible graph W

Suppose that |C| = 3, then W is a twinkle graph of order n, where
n = 2a+2b+2c+6 and a,b,c > 1, see Figure 15. Note that 1 < a < 1‘;219.

C

e m—

Figure 15: The case of |C| =3
By Lemma 2.1, we have that

mi(W) < mi(W — z) + mi(W — Ny [z])
- T2a(r26+2c+4—2 + 1) + T2ar(2b+l)—lr(2c+l)—-l

— T20+2b+2c+2 + T2a + ,r2a+2b+2c

% ,rn—4 4 ,rn-—l() 4 ,r.n—G

= 13,7710

< 'LU‘Z(TL).

Hence we can assume now that |C| > 4. Note that W — Ny [v] — z is the
union of a tree T' of order n—2s—4 and s copies of Py, W — Ny [v] — Ny [z]
is a forest of order n — 6. Note that 0 < s < 2212, Since |C| > 4, by
similar arguments as in the checks of Claims in Lemima 3.3, we have that
T ¢Ti(n—2s—4) and W — Nw[v] — Nw|z] &€ Fi(n —6) for i = 1,2,3. By



Lemma 2.1, Theorems 2.9 and 2.10, we have that

mi(W — Nw[v]) < mi(W - Nwv] — z)
+ mi(W — Nw[v] — Nw(z])
< T25(7T(n-2s—4)—8 e 2) o 5,,,(71—6)—6
— 19pn—12 4 2542
< 14r™ 12

— 77,71—10

Hence, by Lemma 2.2, we obtain that

mi(W) = mi(W — Nw[u]) + mi(W — Nw [v])
< wp(n—2)+ 7rm 10

= 'LUQ(TL).

Subcase 2.2. There exists a leaf u with £(u, C) # 3 or a vertex z € V(C)
with degyy (z) > 3. There are two possibilities for W — Ny [v].

e W — Ny [v] is a forest T of order n—3. By similar arguinents as in the
checks of Claims in Lemmma 3.3 and W is a twinkle graph with W & Wi(n),
it follows that ' ¢ Fy(n — 3) for n is even and F ¢ Fy(n—23), Fo(n—3) for
n is odd. So, by Theorems 2.8 and 2.10, we have that

7r(n=3)=7 " if n is even
¢ _ < 1 bl
mi(W — Nwv]) < { 5r(n=3=6_ if n is odd. )
@ W—Nw[v] is the union of a forest (inay be empty) and a twinkle graph
W of order t, 6 < t < n — 3. By the induction hypothesis, Theorems 2.6
and 2.11, we have that
(I): When n is even,

4p(n—3-6)-1 ift =86,
i(W — Nulu]) < ;;n;i;t-);l(rt*Z + 1), lgi = g is even, (2.1)
0 y 1t =J,
L ift=7,¢t>111is odd.
(IT): When n is odd,
4rn—3-6 ift =86,
A pr3-t(pt=2 4+ 1), if t > 8 is even, (2.2)
mi(W — Nw[v]) < 13r(n=3-9)-1 ift =0,

3pt=5p(n=3-t=1  jft =7 ¢ > 11 is odd.
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Thus, by (1), (2.1)and (2.2), we have that

max{?r"‘lo, 47.11—-10, 7,.n—G o T'n—4—t,
137*"_12,37"”“8,} if n is even,
mi(W — Ny [v]) <
max{5r™~°, 4rn-9 pn—5 4 pn—3-t
13r™=13 3r"=9% if n is odd,

W8 9 s aven,
5779, if n is odd.
Also, if the equalities hold, then

_ | F2(n=3), ifniseven,
W_NW[U] _{ Fs(-n_3), if n is odd.

Hence, by Lemma 2.2, we obtain that
mi(W) = mi(W — Nw[u]) + mi(W — Nw[v])

wa(n —2) + 7710 if n is even,
wo(n —2) + 572 if nis odd,
(7r"=19 £ 3) + 777710 if n is even,
5r" ® +3) + 58, if n is odd,

’wz

Furthermore, the equality holding imply that W — Ny [v] = F(n — 3) for
even n and W — Ny [v] = F3(n — 3) for odd n and, using the induction
hypothesis, W — Ny [u] € W5(n—2). Based upon the fact that W—Ny [u] €
Wa(n — 2), there are ten possibilities for W for even n and there are six
possibilities for W for odd n. See Figure 16. Note that for even n only
e( ) satisfies VV(8 — Ny [v] = F3(n—3) and for odd n only Wom satisfies

We) — Ny [v] = Fa(n — 3). Since WS = Wyo(n) and WS = Wyy(n),
the proof is complete. O

W
W W



we? w®
f%nf f% §?
Wi W
W w0
wil W
Wi Wi
we? we

Figure 16: The possible graphs W
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