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Abstract

We will discuss the vertex-distinguishing I-total colorings and vertex-
distinguishing VI-total colorings of three types of graphs: Sm V Fn, Sm V
W, and F, V W, in this paper. The optimal vertex-distinguishing [
(resp. VI)-total colorings of these join graphs are given by the method
of constructing colorings according to their structural properties and the
vertex-distinguishing I (resp. VI)-total chromatic numbers of them are
determined.
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1 Introduction and Preliminaries

Graph theory is the historical foundation of the science of networks and
the basis of information science. The problem in which we are interested is a
particular case of the great variety of different ways of labeling a graph. The
graph coloring is an important branch in graph theorem and has various ap-
plications such as in timetabling of teaching schedule, storage problem, etc.
The not necessarily proper edge colorings (i.e. general edge coloring) which
is vertex distinguishing had been proposed in [5] and studied in several pa-
pers [5)-[10]. The concepts of the vertex-distinguishing I-total coloring and
vertex-distinguishing VI-total coloring are introduced in [1]. The vertex-
distinguishing I-total chromatic numbers and vertex-distinguishing VI-total
chromatic numbers of the complete graph, star, complete bipartite graph,
normal double star, wheel, fan, cycle, path and C,, V C,, are determined in
[1]. Based on these results, Two conjectures (VDITC Conjecture, VDVITC
Conjecture) is proposed. The vertex-distinguishing I-total chromatic num-
ber of the join of two paths is determined in [2]. The vertex-distinguishing
I{resp. VI)-total chromatic numbers of the join of a cycle and a path and
join graphs Cp, V Cp(m # n), Cp V W, Cn V F, are determined in 3]
and [4] respectively. In this paper we will study the vertex-distinguishing
I(resp. VI)-total chromatic numbers of the joins of a star and a fan, a star
and a wheel, a fan and a wheel.

We consider the undirected, finite simple graphs only in this paper.

Definition 1 Suppose graphs G and H are disjoint. The join of G and
H, denoted by GV H, is a new graph such that
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V(GV H) =V(G)JV(H),

E(GV H) = E(G)J E(H) {wvlu € V(G),v € V(H)}.

Definition 2 Suppose G is a simple graph of order at least 2, kisa
positive integer. A mapping f : VUE — {1,2,...,k} is called an I-total
coloring of G using k colors, if

(i) for any wv € E(G),u # v, we have f(u) # f(v);

(ii) for any uv,vw € E(G),u # w, we have fluv) # f(vw).

A mapping f : VUE — {1,2,...,k} is called an VI-total coloring of G
using k colors if for any wv, vw € E(G), u # W, we have fuv) # f(vw).

For an I-total coloring (resp. VI-total coloring) f of G and z is a vertex
of G, the color set of x under f is the set {f(@)} U{ f(e) | e € E(G) and
e is incident with «} (not multiset), which is denoted by Cy(z) or simply
C(zx).

If an I-total coloring (resp. a Vl-total coloring) f of G satisfies C'(u) s
C(v) for any two distinct vertices u and v of G, then f is called a vertex-
distinguishing I-total coloring of G (resp. vertex-distinguishing VI-total
coloring of G), or a VDIT coloring (resp. a VDVIT coloring) for short. The
vertex-distinguishing I-total coloring (resp. vertex-distinguishing VI-total
coloring) using k colors is called k-vertex-distinguishing I-total coloring
(resp. vertex-distinguishing VI-total coloring), or k-VDIT coloring (resp.
k-VDVIT coloring). The number

min{k : G has a k — VDIT coloring}

is called the vertex-distinguishing I-total chromatic number of graph G and
denoted by x?,(G). The number

min{k : G has a k — VDVIT coloring}
is called the vertex-distinguishing VI-total chromatic number of graph G
and denoted by x¥(G).

For a graph G, let n; denote the number of vertices with degree 1,

0 <4< A. Suppose
C(G) = min{ll(:) + (z—f—l) s (z-tm) +o+ (i—:—s) + (i+;+1)
Z+ N+ 1,0 <i<i4s< A, s >0}

Obviously we have the following proposition.

Proposition 1 (i) ((G) < x¥%(Q) < x,(G); (i) if na > 2, then
A(G) +1 < xpi(@) < x1,(G).

The following two conjectures can be found in [1].

Conjecture 1 x%,(G) = ¢(G) or ¢(G) + 1.

Conjecture 2 x3%(G) = {(G) or ¢(G) + 1.

In this paper we appointed that the k colors that we will use are
1,2,.-, k when a k-VDIT coloring is constructed. If we mention an I(resp.
VI)-total coloring using k colors 1,2, . . . ,k, then C(z) = {1,2,..., k}\C(x)
is called the complementary color set of z.

Suppose f is an I(resp. VI)-total coloring of graph G using colors
1,2,...,k. Let Ci denote the cycle such that V(Ck) = {1,2,...,k};
E(Cy)={i(i+1)|i= 1,2,...,k—=1} | J{k1}.

Note that the elements in C(z) are considered to be ordered and the
colors in C'(x) are listed from smallest to largest in this paper.



Denote by S, a star of order m + 1 with V(Sp) = {w;}i = 0,1,...,m},
E(Sm) = {uouwsli=1,2,... S

Denote by Fy a fan of order n + 1 with V(Fy,) = {v}i = 0,1,...,n},
E(F,) = {vovili = 1,2, ... yn} Hvivig1i =1,2,...,n =1}

Denote by W,, a wheel of order n+1 with V/(Wy,) = {w;|i = 0,1,.. ., n},
E(W,) = {wow;li = 1,2,...,n} \Hwiwiali = 1,2,...,n = 1} [ {wywn }.

2 Main Results

Theorem 1 If m,n > 2, then x%,(Sm V Fr) = m+n+2.

Proof. As A(S, V F,) = m+n+1, na > 2. By proposition 1 we
have X4;(Sm V F) > m +n+ 2. In the following we need only to give an
(m + n+ 2)—VDIT coloring f of S ¥ Fps

There are three cases to be considered.

Casel: m=2,n>3.

Obviously, So V F, = P3 Vv F,. Let V(P3) = {U1,U2,’U3}, E(P3) =
{ujus, uguz}. Construct an (n + 4)—VDIT coloring f of P3 V Fy, with
colors 1,2,...,n + 4 as follows ( Set vn41 = vo):

Fluy) = 1, flug) = 2, flug) = 1, fluwuz) = 1, flugus) = 7+ 3;
floj)=j+2forj=12...,n+1 flvive) = 1, f(vjvj41) = j + 4 for
i=23...,n—1; flugy;) =j—1for 3 =3,4...,7n Fflvov1) = n + 3,
f('UO'UQ) =n+4; f(ul'vl) =n-+2, f(ul'vj) =g for j =23,...,n+ 1
flugv;) =j+1lforj=12,...,n+1 f(uswo) = 1, f(ugv;) =7+ 2 for
j=1,2,...,n. We may see Figure 1 about this coloring in the next page.

Then under this coloring, we have the following color sets:

C(uy) ={1,2,3,...,n+2}; Cluz) = {1,2, 3,...,n+3}

C(uz) ={1,3,4,...,n+3}; C(vw) = {1,2,3,... n—1,n+1,...,n+4}

C(v1) =1{1,2,3,n+2,n+3}; C(v2) ={1,2,3,4,6,n + 4},

Clo))={j— L5 i+ 1,5 +2,5+3,5+4} for j=3,4,...,n— 1

Clvn) ={n—1,n,n+1,n+2,n+3}

It’s easy to verify that f is an I-total coloring. Next we have to confirm
that f is vertex-distinguishing.

(1) n=3.

There are 3 vertices uo, vg and vg whose color sets contain 6 colors.
This time, C(up) = {7}, C(vo) = {3}, C(v2) = {5}. So C(uz2), C(vo) and
C(vg) are different.

There are 4 vertices uy, uz, v; and v whose color sets contain 5 colors.

This time, C(u;) = {6, 7}, C(us) = {2,7}, C(v1) = {4, 7}, C(vs) = {1,7}.
So C(u1), C(us), C(v1) and C(wv3) are distinct.

(2) n=4.

There are 2 vertices up and vy whose color sets contain 7 colors. This
time, C(ug) = {8}, Cl(w) = {4} So Clug) # C(vo).

There are 4 vertices uq, u3, v and vz whose color sets contain 6 colors.
This time, C(u1) = {7, 8}, C(ua) = {2,8}, C(v2) = {5,7}, C(v3) = {1, 8}.
So C(u1), C(us), C(va) and C(v3) are different.

There are 2 vertices v; and v4 whose color sets contain 5 colors. This
time, C(v;) = {4, 5,8}, C(vs) = {1,2,8}. So C(v1) # Clvy).
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Figure 1: An (n +4)-VDIT coloring of P vV F,(n > 3).

(3} 8= 5

There are 2 vertices us and vy whose color sets contain n + 3 colors.
This time, C(ug) = {n + 4}, C({vw) = {n}. So C(ug) # C(vo).

There are 2 vertices u; and uz whose color sets contain n + 2 colors.
This time, C(u1) = {n+ 3,n+ 4}, C(uz) = {2,n +4}. So C(u1) # C(us).

There are exactly n — 2 vertices v,v3,...,v,_1 such that |C(v;)| =
6,7 = 2,3,...,n — 1. The subgraph induced by all colors of C(v;)(; =
3,4,...,n—1)in 5n+4 is a path of order 6. The starting pointisj—1,5 =
3,4,...,n — 1. As the beginning points of the n — 3 paths are distinct.
Thus C(v3), C(v4), . . ., C(vp—1) are mutually different. Furthermore, C(vs)
contains color 1 while C'(v;){(j = 3,4,...,n—1) doesn’t contain color 1. So
C(v2) # C(v;)(1 =3,4,...,n—1)

There are 2 vertices v; and v, whose color sets contain 5 colors. C(v;)
contains color 1 while C(v,) doesn’t contain color 1. So C(v;) # C(v,).

Thus we get an (n+4)—VDIT coloring f of P3V F,,. So x%,(S2V F,) =



n -+ 4(n > 3).

Case 2. m=n=2.

Based on the coloring f in Case 1, we change the colors of ujvg, ujvy
and ujvp such that f(ujvg) = 2, f(uiv1) = 6 and f(ujve) = 5 with other
conditions unchanged. It is easy to verify that the resulting coloring is a
6—VDIT coloring of P; V Fy by giving the color set of each vertex. So
Xit(Sg \Y FQ) = G

Case 3: m > 3,n> 2.

We only need to give an (m + n + 2)—VDIT coloring of S, V E,.
Construct a mapping f : V(S,,VFL,)UE(S,V Fp) = {1,2,...,m+n+2}
as follows ( Note that v, £ vp):

f(uo) =2, f(u;)) = 1fori =1,2,...,m; flupw;) = n+1i+1 for

fe2 100,00 f(v_,)_]+2for]_12 yn+1; flvv;) =35 — 2 for
j=3, 4, » 7 f(vov1) =n+m+1, f(vov) = n+m+2 f(vjv541) = n+m
136{, 2. .,n—1} and j is an odd number; f(v;v;41) =n+m+1
fje{1,2,...,n—1} and j is an even number; f(u;v;) =i+ j — 1 for
=12.. m]—12 an+ 1 flugv) =n+m+2, fluv;) =5 —1,
for 7 =2, 3 coyn+ 1. We may see Figure 2 about this coloring in the next
age.
b Then under this coloring
(1) ¥ =2

Cu;) ={1}U{s,2+ 1,1+ 2,4+ 3} fori=1,2,...,m;
C(UO):—‘ {1,2,4,5,,m+4}, C('Uo) = {2’3,47’m+4}’

C(v1)=1{1,2,3,...,m,m+2,m+3,m+4};

Clve) = {1,2,3,...,m+1,m+2 m+4}.

(2) n>3

Clug) = {1}U{i i+ 1,i+2,...i+n+1}fori=1,2,...,m;

Cluw) =1{1,2,3,...,n,n+2,n+3,...,n+m+2};

Clve) =1{1,2,8)-.-58=2, A0+ ),...,8bm+ 2}

Cv1)={1,2,3,...,mn+mn+m+1,n+m+2}

Cve) =1{1,2,3,....m+Ln+mn+m+1,n+m+2}

Clw;) ={ij—-2j—-Lj4..,d+m—-—1n+mn+m+1} for j =
3,4,...,n—1,

(vn _{n 2,n—1,n,...,n+m—1,n+m+1} if n is an odd number;
Clop) ={n—-2,n—1,n,...,n+m—1,n+m} if nis an even number.

It isn’t difﬁcult to verify that f is an I-total coloring. We can easily
summarize up the following facts.

Fact 1: C(uz),C(us),...,C(un) are mutually different.
Proof. The subgraph induced by all colors of C(u;)\{1}(z = 2,3,...,m)
in Crnyn4to is a path of order n+2. The initial point is ¢ for i =2,3,..., m.

As the initial points of the m—1 paths are distinct, Therefore C(us), C(us),
-, C(uy,) are mutually different.
Fact 2: C(vy), C(v3),....,C(vn-1) are mutually different.
Proof. The subgraph induced by all colors of C'(v;) \ {n +m,n +m +

1}(_7' = 3, 4,...,n—1)in Cpynt2 is a path of order m+2. The starting point
I87—2,7=3,4,...,n—1. Because the initial points of the n — 3 paths are
dlstmct C(vg) c ('04), ..,C(vy_1) are mutually different. Furthermore,
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Figure 2: An (m + n + 2)-VDIT coloring of S,,, V Fo(m>3,n>2).

C(vg) contains color n + m + 2 while C(v;)(7 = 3,4,...,n — 1) doesn’t
contain color n +m + 2. So C(vy) # C’(vj)(Jj =3,4,...,n—1).

Now we will confirm that f is vertex-distinguishing.

(1} n=2,

There are 4 vertices ug, vy, v; and vy Whose color sets contain m +3

colors. This time, C(up) = {3}, C(vg) = {1}, C(vy) = {m + 1}, C(vy) =
{m 4+ 3}. So C(ug), C(vo), C(v1) and C(vy) are different.

There are exactly m — 1 vertices ug,us, ..., u,, such that |C(u;)| = 5,
1 =2,3,...,m. According to fact 1, C'(u2), C(u3),..., C(uy,) are mutually
different.

There is only one vertex u; whose color set contains 4 colors.

(2) =23

There are 3 vertices ug, vg and vy whose color sets contain m+4 colors.
This time, C(uo) = {4}, C(vo) = {2}, C(v2) = {m + 2}. So C(uy), C (o)
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and C(vy) are different.

i) For m = 3, there are 4 vertices ug, u3, V1 and v whose color sets
contain 6 colors. This time, C(us) = {7,8}, C(u3) = {2,8}, C(v1) = {4, 5},

C(vs) = {6,8}. So C(ua), C(ug), C(v1) and C(v3) are distinct.

ii) For m > 4, there are 2 vertices vy and v3 wWhose color sets contain

m + 3 colors. This time, C(vy) = {m+1,m+2}, C(v3) = {m+3,m+
5}. So C’(vl) # C(v3). Meanwhile, there are exactly m — 1 vertices
ua, U3, - - - , U Such that |C(u;)| = 6,71 = 2,3,...,m. According to fact
1, C (ug) Cllua)y oo « o © (s arE mutually different.

There is only one vertex u; whose color set contains 5 colors.

(3) n > 4.

a) n=m.

There is only one vertex u; whose color set contains m + 2 colors.

There are m + 1 vertices wusp,us,..., Uy, vy and v, whose color sets
contain m + 3 colors. According to fact 1, C(uz2),C(u3),...,C(um) are
mutually different. Furthermore, C(v,) and C(u;)( = 2,3,...,m) don’t
contain color n+m + 2 while C(v) contains color n+m + 2. So C(v,) #
C(vy), and C(u;) # C(vq) for ¢ = 2,3,...,m. Meanwhile C(u;) (2 =
2,3,...,m) contains color 1, but C(v,,) doesn’t contains color 1. So C'(u;) #
C(v,) for i = 2,3,...,m. Above all, C(us),C(u3),...,C(um),C(v1) and
C(v,) are mutually distinct.

There are exactly n — 2 vertices v, vs,...,v,—1 such that 1C'(vJ)| ==
m+4,7 =2,3,...,n—1. According to fact 2 C(ve), C(v3),...,Clvn_1)
are mutually diiferent

There are 2 vertices ug and vp whose color sets contain 2m + 1 colors.
This time, C('ug) == {n =+ ].}, C('vo) = {n— l}. So C('u.()) -‘,é C(’Uo).

by n=m+ 1.

There are 3 vertices u;, v1 and v, whose color sets contain m + 3
colors. C(u;) and C(vy,) don’t contain color n+m-+2 while C(v;) contains.
Therefore, C(uy) # C(v1), and C(v,) # C(v1). Moreover, C(u;) contains
color 1, but C(v,,) doesn’t contain color 1. So C(u;) # C(v,). In summary,
Clur) # C(v1) # Cvn).

There are m+4-n—3 vertices us, us, . .., Uy, and vg, vs,. .., v,_1 such that
|Cui)l =m+4,i=2,3,...,m and [C(v;)| =m+4,j =2,8,...,n -1,
According to fact 1, C(us), C(uz),...,C(uy,) are mutually different. On
the basis of fact 2, C(vs), C(v3),...,C(vn—1) are mutually distinct. C(u;)
(¢ =2,3,...,m— 1) doesn’t contain color n + m + 1 while C(v;) (j =
2,3,...,n—1) contains n+m+1. So C(u;) # C(v;) fori =2,3,...,m—1
and j = 2,3,...,n — 1. Now we need only to prove C(u,,) # C(v;) for
7=2,3,...,n— 1. Obviously, C(vs) contains color n+ m + 2, but C(u,)
doesn’t contain color n +m + 2. So C(unm) # C(v2). It’s easy to know
Clum) # C(v;) for 5 =.38,4,...,n—1. Above all, C(u;) # C(v;) for
i=2,3,....,mand j=2,3,. n—l

There are 2 vertices (ug a.nd vg) whose color sets contain 2m + 2 colors.
C(uo) # C(vo).

c)n=m+2.
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There are 2 vertices v; and v,, whose color sets contain m + 3 colors
C(v) # C(vy).

There are n — 1 vertices uj,vs,v3,...,v,_1 Whose color sets contair
m+4 colors. On the basis of fact 2, C(v2), C(v3),...,C(v,_y) are mutually
distinct. C(v;)(j = 2,3,...,n — 1) contains color n 4+ m + 1, but C(uy)
doesn’t contain color n +m + 1. So Clup) #C(v;) for 7 =2,3,...,n—1.

There are exactly m — 1 vertices u, us, ..., un such that |C(u;)| =
m +5,t = 2,3,...,m. According to fact 1, Cl(u2), C(us),...,C(um,) are
mutually different. )

There are 2 vertices ug and vy whose color sets contain 2m + 3 colors.
C(ug) # C(vp).

d) The remainder cases.

There is only one vertex (u1) whose color set contains n + 2 colors,
There are exactly m — 1 vertices ug, ua, ..., u; such that IC(w)| = n+
3,2 =2,3,...,m. There are 2 vertices v; and v,, whose color sets contain
m + 3 colors. There are exactly n — 2 vertices v2,?3,...,VUn_1 such that
|C(v;)| = m+4 with j = 2,3,....,n — 1. There are 2 vertices (up and vyp)
whose color sets contain n+m + 1 colors. The color sets of all vertices are
different.

So we get an (m 4 n + 2)—VDIT coloring f of S,, V Fo(m>3,n>2).

The proof is completed.

Theorem 2 If m > 2,n > 3, then x%,(S;m V Wy) = m +n + 2,

Proof. Obviously, we know that ASmVWo)=m+n+1, 05 > 2
According to proposition 1, we know X (Sm VW,) > m +n+ 2 Now we
need only to give an (m + n + 2)—VDIT coloring f of S,, VvV W,,.

There are three cases to be considered.

Case 1: m=2,n> 3.

Now based on the (n + 4)—VDIT coloring f of P; V F,, appeared in
the proof of Theorem 1, we add the edge vyv, and color it n 4+ 4. Let
w; = wv; (j = 0,1,...,n). Under this coloring, the color sets of other
vertices stay the same except for w; and w,. C(w1) = C(v1) U{n + 4},
Clwn) = C(va) U{n +4}. It’s easy to verify that f is an I-total coloring.
Next we have to confirm that f is vertex-distinguishing.

(1) =3

There are 2 vertices u; and u3 whose color sets contain & colors. This
time, C(u;) = {6,7}, C(u3) = {2,7}. So C(uy) # C(u3).

There are 5 vertices us, wp, wy, we and ws whose color sets contain 6

colors. This time, C(ug) = {7}, C(wp) = {3}, C(w1) = {4}, C(wq) = {5},
Clws) = {1}. So C(us), C(wy), C(wy), C(wa) and C(w3) are different.

2l n=4,

’(1’})1ere are 6 vertices uj, us, wy, ws, w3 and wy whose color sets contain
6 colors. This time, C(u1) = {7,8}, C(uz) = {2, 8}, C(w1) = {4,5},
O(wn) = {5,7}, Clwy) = {1,8}, Clws) = {1, 2}. Therefore, C(ur), Clus)
C(w1), C(wz), C(ws) and C(wy) are distinct.

There are 2 vertices uy and wy whose color sets contain 7 colors. This
time, C(uz) = {8}, C(wo) = {4}. So C(ug) # C(wp).
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(3) n = 5.

There are n vertices wi, ws, ..., W, such that |C(w;)] = 6 with j =
1,2,...,n. The subgraph induced by C(w;) (7 = 3,4,. .. ,n)in Cpyq is a
p;th of order 6. The initial point is j —1 with 7 = 3,4,...,n. As the initial
points of the n — 2 paths are distinct, therefore C(ws), C(wa), ..., C{wn)
‘are mutually different. Obviously, C(wy) # C(wa), Clwy) # Clw;) (4 =
), Clun) # Clwy) (G = 3,4,..,m). Thus, Olwy), Clwa), -+,
* C(wy) are mutually different.

There are 2 vertices u; and ug whose color sets contain n + 2 colors.
We have proved C(u;) # C(us) in the proof of Theorem 1.

There are 2 vertices ug and wo whose color sets contain n + 3 colors.
We have confirmed C(uz) # C(wp) in the proof of Theorem 1. '

Thus we construct an (n+4)—VDIT coloring f of PsVW,. So x3:(S2V
W) =n+4(n=> 3

Case 2: m=n=3.

Based on the following (m + n 4 2)—VDIT coloring f of Sn V Wy
appeared in Case 3, we exchange the colors of ug and wy. Namely, let
fluo) = 4, f(wz) = 2. By listing the color sets of all vertices, we can prove
that it is a 8—VDIT coloring of S3 V Ws easily. So x3,(S3 V W3) = 8.

Case 3: m=3n>4orm>4n2>3.

By the (m+n+2)—VDIT coloring f of SV Fa(m > 3,n > 2) appeared
in the proof of Theorem 1, we add the edge viv, and color it n +m. We
change the color of edge vivy and let f(vivg) = n+ m — 1. Meanwhile,
flojujp1) =n+m+2ifj € {1,2,...,n — 1} and j is an odd number;
flojvip) =n+m+1,ifj€{1,2,...,n = 1} and j is an even number;

Let w; = vj(j = 0,1,...,n). We may see Figure 3 about this coloring in
the next page.
Under this coloring, the color sets of u; (¢ = 0,1,...,m) and wp keep

the same. Under this coloring,

Clwy) ={1:2,8,...,myn+m—1,n+mntm+ 1,n+m+ 2}

Clwy) ={1,2,3,....m+1Ln+m—1,nt+m+ L,n+m+ 2}

C(w]) = {.7'_ 27.7 - laj:'-':j‘{"m“ 17n+m+ 1;n+m+2}7 fOI'
jedd sy h=1)

Clw,)={n—-2,n— 1,n,...,n+m,n+m+ 1} if n is an odd number;
Clwp) ={n—-2,n—1,n,...,n+mn+m+ 2} if n is an even number.

It isn’t difficult to verify that f is an I-total coloring. Similarly, we have
the following facts.

Fact 1: C(ug),C(u3),...,C(un) are mutually different.

The proof is the same as the proof of Fact 1 appeared in the proof of
Theorem 1.

Fact 2: C(wy),C(ws),...,C(w,) are mutually different.

Proof. The subgraph induced by C{w;)\ {n+m+1,n+m+ M =
3,4,...,m—1) in 5’m+n+2 is a path of order m + 2. The initial point is
j—2,7 = 3,4,...,n— 1. Since the initial points of the n — 3 paths are
distinct, C(w3), C(wa), ..., C(wn_1) are mutually different. Furthermore,
C(wy) and C(ws) contain color n+m — 1 while C(w;)(J = 3,4,...,n— 1)
doesn’t contain color n 4+ m — 1. So C(wy) # Clw;), Clwz) # Clw;)(j =
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L2,...,n3=L1L2,...,0n+1; f(wovy) = 2n + 2, f(wovj) =7 -
2,3,...,n+ 1. We may see Figure 4 about this coloring.
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Figure 4: An (2n + 2)-VDIT coloring of F,, V W, (n > 4).

Then under this coloring

C’(wo)={1,2,3,...,n,n+2,n+3,...,2n+2};

Clw) ={1,2,3,...,n+2,2n+1,2n + 2};

Clw2) ={1,2,3,...,n+3,2n + 1};

Clwi))={i—2i-1,7,...,i+n+1}fori=3,4,...,n—1;

Clwn) ={n—2,n,n+1,...,2n 42}, '

Clw) =1{1,2,3,...,n-2,n,n+1,...,2n+2};

C(v1) ={1,2,3,...,n,2n,2n+ 1,2n + 2},

C(v2) ={1,2,3,...,n+1,2n,2n+ 1,2n + 2};

Clv;) ={j—2,7-1,4,...,j+n—1,2n,2n+1} for j = 3,4,...,n—1;

Clvn) ={n—-2,n—1,n,...,2n — 1,2n + 1} if n is an odd number;
Clvp) ={n—2,n—1,n,...,2n— 1,2n} if n is an even number.

It is easy to verify that f is an I-total coloring. Now we need only to
confirm that f is vertex-distinguishing.
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There are 2 vertices vy and wv,, whose color sets contain n + 3 colors.
This time, C(v1) contains color 1, but C(v,) doesn’t contain color 1. So
C(v1) # Clvn).

There are 2n — 2 vertices wvg, v3,...,Vn—1 and wy, wsy, ..., w, such that
|C(v;)] = n+dforj=2,3,...,n—1and |C(wi)| = n+4 withi = 1,2,... ,n.
The subgraph induced by C(w;) (i = 3,4,...,n — 1) in Cy,,9 is a path
of order n + 4. The initial point is i — 2,2 = 3,4,...,n — 1. Because the
initial points of the n — 3 paths are distinct, C(ws3), C(wy),...,C(wn-1)
are mutually different. By analyzing the color set, we can easily know that
C(wy), C(ws), ..., C(wy,) are mutually different. Meanwlgile, the subgraph
induced by C(v;) \ {2n,2n + 1} (j =3,4,...,n — 1) in Co,y9 is a path of
order n+2. The initial point is —2, 7 = 3,4, ..., n—1. As the initial points
of the n — 3 paths are distinct, C(v3),C(vy),...,C(v,_1) are mutually
different. Obviously, C(v2) # C(v;)(j = 3,4,...,n — 1). By analyzing the
color set, we can easily know that C(v;) # C(w;) for i = 1,2,...,n and
j=2,3,...,n—1. :

There are 2 vertices vg and wgy whose color sets contain 2n + 1 colors.
This time, C(vg) = {n — 1}, C(wp) = {n+ 1}. So C(vg) # C(wp).

Above all, we get a (2n + 2)-VDIT coloring f of F,, vV W,(n > 4). So
X (Fn vV Wy) =2n+2(n > 4).

Case 2: n = 3.

Based on the coloring f in Case 1, we change the colors of ws and
ws such that f(wy) = 7 and f(ws3) = 2 with other conditions unchanged.
According to this specific coloring, we have x%,(F3 vV W3) = 8.

The proof is over.

According to Proposition 1, we can get the following three theorems.

Theorem 4 If m,n > 2, then x% (S V Fr) =m+n+ 2.

Theorem 5 If m > 2,n > 3, then x%(S,, VW,) =m +n+2.

Theorem 6 If n > 3, then x%(F,V W,) = 2n + 2.

For the above join graphs, we can calculate the value of ¢ according
to its expression. ((S, VF,) =m+n+2, ((SpnVW,) =m+n+2,
C(FrvW,) = 2n+2. We find that the conclusions obtained in this paper are
consistent with Conjecture 1 and Conjecture 2. We substituted using ¢ by
proposition 1(ii) to give a lower bound of X%, and X% in this paper. That’s
to say, we still can determine the lower bounds of the vertex-distinguishing
Ijor VI]-total chromatic number by computing ¢. Therefore, proposing
-conjectures is an important milestone in solving mathematical problems.
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,2,...,?’2;j = 1,2,...,7’&-'— L f(wovl) = 2n+27 f('wo'vj) =7-
y- .-, + 1. We may see Figure 4 about this coloring. '
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Figure 4: An (2n + 2)-VDIT coloring of F), V Wi(n > 4).

Then under this coloring
C’(wo)z{1,2,3,...,n,n+2,n+3,...,2n+2};
C’(wl)={1,2,3,...,n+2,2n+1,2n+2};
Clwn) = {1,2,3, ... n+3.2n+ 1}
C(w,-)::{i—2,z'——1,i,...,i+n+1} fori=3,4,...,n—1;
C’(wn)={n—+2,n,n+l,...,2n+2};
C’(vo)={1,2,3,...,n—2,n,n+1,...,2n+2};
Cv1)={1,2,3,...,n,2n,2n + 1,2n 4+ 2};
C(vg):{1,2,3,...,n+1,2n,2n+1,2n+2};
C(vj)={j—2,j—1,j,...,j+n~1,2n,2n+1} ot ) =84..00m—1
Clon) ={n—-2,n—1,n,...,2n - 1,2n + 1} if n is an odd number
Clvn) ={n—2,n—1,n,...,2n — 1,2n} if n is an even number.
It is easy to verify that f is an I-total coloring. Now we need only tc
confirm that f is vertex-distinguishing.
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There are 2 vertices vy and v, whose color sets contain n + 3 colors.
This time, C(v1) contains color 1, but C(v,) doesn’t contain color 1. So
C(v1) # Clvn)-

There are 2n — 2 vertices v2,v3,...,VUn-1 and wy, wa, ..., w, such that
: [C(’Uj)| — ntdforj =2,3,...,n—1and |C(w;)| = nt+4 wit}lz' == 1,2, ..M
The subgraph induced by C(w;) (¢ = 3,4,...,n — 1) in Ch,y2 is a path
of order n+ 4. The initial point is i — 2,7 = 3,4,...,n— L. Because the
initial points of the n —3 paths are distinct, C(ws), C(wa),- - ,C(wn-1)
are mutually different. By analyzing the color set, we can easily know that
C(wi), C(wa2), - - -5 C(wy,) are mutually different. Mea,nwllile, the subgraph
induced by C(v;) \ {2n,2n+1} (J =3,4,...,n— 1) in Cap42 is a path of
order n+2. The initial point is j—2,7 = 3,4,...,n—1. Asthe initial points
of the n — 3 paths are distinct, C(v3), C(vy), - - ., Cvn_y) are mutually
different. Obviously, C(v2) # Cv)(7=3,4,...,n— 1). By analyzing the
color set, we can easily know that C(vj) # Clwy) for i = 1,2,...,n and
j::2,3,...,n—1. .

There are 2 vertices vp and wo whose color sets contain 2n + 1 colors.
This time, C(vg) = {n — 1}, C(wo) = {n+1}. So C(vo) # C(wo).

Above all, we get a (2n + 2)-VDIT coloring f of F,vWgy(n >4). So
Xy (F VWn) =2n+2(n 2 4).

Case 2: n=3.

Based on the coloring f in Case 1, we change the colors of wo and
wy such that f(ws) = 7 and f (w3) = 2 with other conditions unchanged.
According to this specific coloring, we have Xt (Fs Vv W3) = 8.

The proof is over.

According to Proposition 1, we can get the following three theorems.

Theorem 4 If m,n > 2, then X% (Sm V Fn) =m+n+2.

Theorem 5 If m > 2,n > 3, then X% (S, VW,)=m +n+2.

Theorem 6 If n > 3, then x¥(F, vV W,) = 2n+ 2.

For the above join graphs, we can calculate the value of ¢ according
to its expression. ((Sm V Fp) = m+n+2, (S ¥ W) =4 n+2,
((FaVW,) = 2n+2. We find that the conclusions obtained in this paper are
consistent with Conjecture 1 and Conjecture 2. We substituted using ¢ by
proposition 1(ii) to give a lower bound of x%, and x%; in this paper. That’s
to say, we still can determine the lower bounds of the vertex-distinguishing
I[or VI]-total chromatic number by computing {. Therefore, proposing
conjectures is an important milestone in solving mathematical problems.
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