A Pansophy Algorithm

Jeffery J. Boats and Lazaros D. Kikas
University of Detroit Mercy
4001 W. McNichols Road, Detroit, MI 48221-3038
boatsjj@udmercy.edu , kikasld@udmercy.edu

John K. Slowik
Northeastern University
slowikjk@udmercy.edu

Abstract

Given a graph G, we are interested in finding disjoint paths for a
given set of distinct pairs of vertices. In 2017, we formally defined a
new parameter, the pansophy of G, in the context of the disjoint path
problem. In this paper, we develop an algorithm for computing the
pansophy of graphs and illustrate the algorithm on graphs where the
pansophy is already known. We close with future research directions.

Keywords: Interconnection networks, graphs, algorithms, vertex disjoint
paths, pansophy

1 Introduction

In 2017, Boats and Kikas introduced a new parameter, the pansophy of
G, as a new measure of performance of graphical structures serving as
communication networks. [3] However, pansophy is extremely difficult to
compute in all but the simplest graphical structures. In this paper we
introduce an algorithm for computing the pansophy of G, and we test it on
graphs with known pansophy.

JCMCC 114 (2020), pp.47-57

Figure 1: AG4

2 Motivation

Consider the following problem: Given k pairs of distinct nodes (s
(s2,t2),..., (sk,tk), do there exist k disjoint paths, one connection for
pair? This is called the k-Disjoint Path Problem, and has gene
much research. If for a graph G we can do this for any selection of k&
of distinct nodes, then G is said to have the k-Disjoint Path Prop

In 1992, Jwo et al introduced the alternating group graph [4]. The
nating group graphs AG,, have as its vertex set the set of even permuts
of n symbols taken from the set {1,2,3...,n}. Two even permuatior
adjacent if and only if one gets from one permutation to the other via
tation of symbols in the first, second, and kth position where k € {3, ..
It has been proven by Kikas, Cheng, and Kruk that AG,, has the (n
disjoint property for n > 5 [2, 5]. However for the n = 4 case, i
observed that AG4 does not have the two disjoint path property, be
the specific selection of (s1,%1) and (sg,t2) depicted in Figure 1 mak
routing of disjoint paths impossible. [2, 5|

But if we randomly select two pairs of vertices in AGy, the prob:
is high that we will be able to route the paths disjointly. Instead of t
to guarantee a certain number of disjoint paths, we ask: given a ra
choice of (s1,%1) and (so,t2), what is the probability of being able to
two disjoint paths? How about if we randomly select three pairs o
tices? Four pairs? Finally, what is the expected value of the numl
pairs we can route disjointly? This expectation represents a new pa:
ter, ¥(G), called the pansophy of G. Given a graph G and an algo
for adaptively finding disjoint paths for a given random selection o
tices, the pansophy of G represents optimum performance, and any rc
algorithm’s performance can be measured in relationship to ¥(G).

3 Definitions

Given a graph G, a maximum of O = LMEG—MJ vertex pairs can.be selected.
Given an ordered list of pairs (s1,1), (s2,%2), (sa,ta), we‘m{ls‘h to det.er-
mine how far down the list we can go before s1.mu1ta.neous disjoint routlpg
becomes impossible. In other words, we're looku‘lg for N such that the pairs
(s1, 1), (s2,t2)y - - - (sn,tn) can be routed disjointly, but (sy.41,¢N+1) can-

not because the Nth path necessarily disconnects the graph with sy and
tn41 separated. We call this N the mazimal routing volume of the (s;,1;)’s;

the value of N varies with each selection of pairs.

Definition Let a graph G be given, and let there be a random assignment
: hiore (es [EEEN

of vertex pairs (s1,%1), (s2,82)- - - (80, ta), where Q = | =]

The pansophy of G, denoted ¥(G), is the expected value of the maxi-
mal routing volume.

It was observed in [3] that if a routing algorithm is given a vertex pair
without foreknowledge of future pairs, the algorithm may accidentally block
future connections when a non-blocking alternative was available. Since the
pansophy of a graph is a measure of optimal disjoint routing, we will assume
in our computations of ¥(G) that this never happens. In reality, a routing

algorithm is likely to perform less than optimally. For a given list of vertex
pairs on a graph G, we call the algorithm’s performance its routing volume.

Definition A routing algorithm is prescient on a graph G if, given any
selection of vertex pairs, its routing volume is equal to the maximal routing

volume.

In other words, the pansophy of a graph is the expected value of the
routing volume of any prescient algorithm.

4 Computing Pansophy

For a random assignment of) vertex pairs, define p; to be the probabil-
ity that the first : pairs can be disjointly routed. Define ¢(i) to be the
probability that 7 is the maximal routing value, so that ¢(i) = p; — piy1.

Then o o "
VE) =S5 ¢() =D ilpi —pey1) = =) _pic
i=1 i=1 =1

Hence, computing the individual p;’s is the key to computing pansophy.
But this can be very difficult for large graphs. We will now demonstrate the

49

Figure 2: The symmetry group graph Ss

computation of pansophy for a small graph with exploitable symms¢
before moving on to the algorithmic approach.

Consider the symmetry group graph S3, depicted in Figure 2. I
Cayley graph with vertex symmtery, which we can exploit by fixing
place, and only considering the random distribution of the other sy’
tz’ ’s.

1. Since S5 is connected, we conclude that p; = 1.

2. Next we compute py. We are trying to find the probabilty we can
the two paths disjointly given a random selection (s1,¢;) and (s
We go through the cases. With s; fixed, there are five possit
for t1, and each occurs with probablility 31-

If 1 occurs at a, d, or e, the first path is the one edge betwee
adjacent s; and t;, and the remainder graph is connected, s
guaranteed that we can route sy to to.

Now suppose that ¢; occurs at b. Note there are Cy 2 ways to ¢
two vertices for s and ¢2, and it is only when they are placed at
d that we cannot complete the routings. Therefore the probab
being able to complete the routing is %. The same argument
when t; is at c.

Hence: p2=é+%+_%+.§.(2):%+%=%_

3. Now for ps. Again, consider the five equally likely locations fo:

Ift; is located at node a, the problem reduces to finding the prot
of being able to route two disjoint paths in the remainder graj
This probability is 2.

at b or ¢, the remainder graph has at most three

If ¢4 is located
bability of routing two other disjoint paths is 0.

vertices, so the pro
Suppose that ¢1 is located at d or e. Then the remainder graph is K3
with a leaf, and we can route two more disjoint paths only if the leaf

has a mated (s;, ¢;) pair on its ends. The probability of this event is
2 (1 4

2
1. Hence: ps= 1(2)+2 (1) =4
Therefore, the pansophy of 53 is:
U(Ss)=pi+p2+tps=1+E+f=% O

5 Frugality

We begin by specifying which paths are useful for routing.

Definition For vertices s and ¢ within a graph, a connecting path from s
to ¢ is frugal if no proper subset of its vertices forms a connecing path.

In other words, we cannot trim anything out of the path and still connect
s tot. There are no unnecessary detours, so to speak. Observe: this means
that as we travel from s to t, at no point will we reach a vertex adjacent
to more than one previous vertex in the path. Thus, by programming our
algorithm to avoid such paths, it only finds the frugal ones.

Definition The trail from s to ¢, denoted Trail(s,), is the set of all frugal
paths from s to t.

As a demonstration of how the program efficiently finds a trail, consider
the graph Q shown in Figure 3, made by removing a vertex and its adjacent
edges from the cube Q3. We will find all frugal paths from v; to v, from
vy to vz, and then from v, to vs.

Since vy and vy are adjacent, the only frugal path between them is the
edge connecting them, so Trail(v;,v3) consists only of this one path.

To begin routing from v; to v3, we first notice there are three vertices
adjacent to vy, so we separately consider the three branch stems: vy — ve,
v1 — v4, and v; — vs. The first two are simple, because v, and vy are
adjacent to the destination vs, so those branches immediately go to v7 and
terminate. For v; — vs, the next step must be to vg since backtracking isn’t
frugal, and then we have a choice between v4 and v7. Both are adjacent to
v, but the path v; — vs — vg — v4 — vz isn’t frugal because vy — v4 — v3
is a route whose vertices are a proper subset. The program avoids v4 by
noticing it is adjacent to vy, a previous vertex in the path. It correctly
stores Trail(vy,vs) as having three paths: vy — vs — vs — v7 — v3 is
frugal, along with the other two paths v1 — v — v3 and v — vq — v3.

51

Figure 3: Finding all frugal paths between two vertices

Notice how it’s not the length of the path that matters, only that ve
are trimmed off if the path could have been constructed without 1
It’s not hard to construct and example where taking the shortest p:
incorrect. Observe the guitar-shaped graph in Figure 3. If s; and 1
connected by the shortest route, the graph is disconnected, while rc
the first path counterclockwise around the perimeter permits a second
from s9 to tg.

Now consider the frugal paths from vy to v7. We start with the
three branch stems as before, but this time it’s the first and third th:
simple: vy — vy — v3 — v7 and v; = vs — vg — vr. If we first
to v4, we get vz and vg as next choices, and both are adjacent to v
vield frugal paths; these other two paths are vy — v4 — v3 — v
V1 — V4 —> Vg —> V7.

6 The Pansophy Algorithm

We've created a program in MATLAB, and another in JavaScript, -
computes the pansophy of a given graph. It is available upon request
tact Corresponding Author), and we describe its function here.

The graph G(V, E) to be analyzed is input in the form of an adja
matrix. The vertices are indexed 1 through |V| based on how the
cency matrix is entered. At the time of this writing, we are only stu
undirected simply-connected graphs, so only the upper triangular p
the matrix need be entered, and the program will fill in the lower tr:
automatically. Tt will be very easy to adapt the program to study di
graphs as well, should future research avenues demand it.

52

m then begins its “SuperSubPath” routine, the purpose of

hich is to quickly build a library of all trails within G. There are Cjy) o
i ‘ble choices for the end vertices of a given path, but every edge in G rep-
posslits one choice where the program need not think; the only frugal path
rbj;veen adjacent vertices is the edge connecting them. Hence the paths li-
prary contains Cjv|,2 trails, but only Cjy| 2 —|E| need be computed. Later,
h time the algorithm is given a set of (s;,t;) vertex pairs and attempts

ac
:o maximize the number of disjoint paths, it calls on this SuperSubPath

library.
The user must decide whether the algorithm should compute the maxi-
mum number of paths for every possible choice of (si,t:)’s, or instead take

a Monte Carlo approach.

Monte Carlo approach: the user toggles off the “TryAllPaths” switch
and inputs the desired number of attempts; the program then generates a
random selection of (s;,t;) pairs for each attempt. Once all its attempts are
completed, the program takes the mean of all the results, and declares it to
be ¥(G), the pansophy of G. It then also computes the sample standard
deviation of all its results, which can be used to construct a confidence
interval, as a reasonable estimate for the accuracy of the run. The Monte
Carlo approach gives an inexact result, but its approximation error due to
statistical variance can be made arbitrarily small with a sufficiently large

sample.

“Try All Paths” approach: the program uses Heap’s Algorithm (1] to
generate the complete list of possible permutations for the (s;,t;) vertices,
thus eliminating the need to store this list, which is impractically large
for graphs of more than 12 vertices. Since swapping the s; and ¢; for any
i=1,..., has no effect on which paths are to be connected, nor the order
of their connection, the program further reduces its workload by ignoring all
(si, t;) assignments where any s; is indexed higher than its ¢;; this measure
alone cuts run time by a factor of 2. The program tries every remaining
possibility, and at the end of its run, it takes the mean of all the results,
and declares it ¥(G). Trying all paths will, by definition, give the exact
pansophy.

The Progra

For a given (s;,t;) set, the algorithm determines the maximal routing
volume via the following steps. First, the trails for each (s;,t;) pair are
recalled, and all frugal paths are stored using step structures, with each
vertex in the graph represented as one step, and with each step leading to
other steps to form the paths.

The program then begins exploring each path in Trail 1, recording the
vertex it uses at each step. Whenever the end of a trail is reached, this

53

Two paths
possible

Figure 4: Finding disjoint paths within Q for a given (s;,t;) ass

represents a successful routing,
incremented and the program
point the program finds that its
that child is skipped. Wheneve

so the current number of disjoint
moves on to try the next trail.]
next child step does not exist in t}

I the program reaches a dead enc
back to the last step where it had an unexplored child step, and

new branch of its search. When ajl valid child steps have been ¢

the program returns those routes which constitute the maximum
disjoint paths.

Consider the example in Figure 4, reusing @), with vertex-pai

ments: (sy,t1) = (vy,v7), (s2,¢3) = (v2,v4), (s3,t3) = (vs, vg), a
unpaired.

The program creates a library of trails, recording paths as order
T‘rail(vl,v7)={1—+2—>3~—>7, 124567,

1545357, 1—+5—6—7}
Trail(vo,v4) = {251 4, 2 3—4}
Trail(vs,vﬁ) = {5 — 6}
As the program sorts through the trails, it records step infor:
Below we show the step-by-step process and the information the p
stores along the way, with the following notations: let d be the re

depth, v be the vertex of the current step, b be the best trail depth
and in brackets are listed the vertices still available in the graph.

Recursion starts with the first path in Trail 1:
d=0,v=1b=0, {2,3,4,5,6,7}

dzl"uzz’b—:o, {3,4,5,6,7}
d: 2,U=3,b=0){495’6)7}
d=3,1}=7,b=0, {4,5,6}

The end point has been reached, so the best path is now at least one,
but this is not reflected until this recursion iteration returns. The first step
of Trail 2 is now checked. Since 2 is not in the set of valid vertices, this
recursion abandons this avenue and goes back to Trail 1.

d=0,v=1,6=1,{2,3,4,5,6,7} The recursion returns to depth
0, since it has alternative steps it can take. The best trail depth has been
incremented to 1.

d=1l,v=4,b=1,{23,5,6,7}

d=2,v=3,=1,{2,5,6,7}

d=3,v="7,b=1,{25,6}

d=4,v=2b=1,{56)

Since 2 is now a valid vertex, this time we can actually try to connect

Trail 2. However, none of its adjacent vertices are available, so the program

~abandons this avenue. The recursion returns to depth 1, since it still has
alternative steps it can take at the previous d=1 step.

d=1l,v=4,b=1, {2,3,5,6,7}
d=2,v=6b= 1,{2,3,5,7}
d=3,v="7b=1, {2,3,5}
d=4,v=2,b=1,{3,6}
The program once again begins Trail 2, but again can’t get far.

d = 5v = 3b=1, {6} ... and the program abandons this
avenue. The recursion returns to depth 0 to check the final path in Trail 1.

d=0,0=1,b=1{23,4,56,7)
d=1v="5b=11{234,6,7)
d=2,v=6b=1/{234,7)
d=3,v=7,b=1,{2 3 4)
d=4,v=2b=1 {3 4)
d=5v=3b=1,{4}

d=6,v=4,b=1,{0}... and since a path from Trail 2 has been
completed, b increments to 2, and the program begins looking at Trail 3.

35

Since s3 = vs is not available, the program abandons this avenue.

Since the entire library of Trail 1 has been explored, the program
and returns b = 2 for the best performance for this (s;,t;) set. O

7 Testing the Pansophy Algorithm

Previously, in [3], we demonstrated that the graphs of P,, C,, and |
are pansophical, meaning that the pansophy of every graph in that cl:
known, either by explicit formula or through a recursion which can be
in polynomial time. As part of the debugging process, we ran the proy

on “Iry All Paths” mode for graphs of known pansophy, to see if its re
matched.

We began with the complete graphs as they represent the most ti
case, since we can always connect every (s;, ;) pair through the edge
necting them: ¥(K,) =Q = |3]. The program passed this test, s
moved on to more interesting graphs.

The class K, ,, is pansophical by polynomial time recursion, anc
program’s results matched perfectly up to m = n = 5; we have not te
further yet due to long run times. Meanwhile, P, and C, are pansop

by the formulas: V(Pyn) = ¥(Papy1) = E?:l (25_11)11

and ¥(C,)=-1+2%(P,) , VneN.
Again, our program had matching results through » = 10.

Finally, we explored the “wheel graphs,” formed by adding a vert
adjacent to every vertex in a cycle graph, i.e. W,, = C,,_; + V. We wi
proving the wheel graphs to be pansophical in an upcoming paper; *
matters here is that, again, the program exactly matched our combinat
calculations.

We feel quite confident that the program can be applied accurate.
any simple graph, and that it will give good approximations of panst
when in Monte Carlo mode. In order to use Try All Paths mode, we
need to improve the efficiency of the program.

8 Future Directions

The research presented here was part of an institutionally-sponsored ¢
mer undergraduate research project, which we are happy to say has
tinued into the school year and should continue on for some time. Ow

¢ MATL AB and JavaScript was to take advantage of existing subroutines
Oh_ich made the programs’ constructions easier. Now that the students
b otten the program off-the-ground and performing well, our upcom-

‘havi) lins involve translating it into C++ or Python, as this will greatly
ilfngprove run time. There are a number of other small inefficiencies which

we will also eliminate.
Once this is accomplished, the improved program will be used to aug-
ment our continuing research into:

1. Proving other graph classes are pansophical, such as C, +V, P, +V,
and n-partite graphs;

2. Exploring other communications structures (trees, grid graphs, etc.);

3. Exploring the pansophies of the numerous Cayley graphs which have
been recommended in past research as communications structures
(Qn, Sn, AGp, etc.), and comparing their relative efficiencies;

4. Examining the effects on pansophy of attaching a “super-user” to a
graph (i.e. adding a vertex which is connected to all other vertices).

Is there a relationship between ¥(G) and ¥ (G + V)7

References

[1] B.R.Heap. Permuations by interchanges. The Computer Journal,
6(3):293-294, 1963.

(2] E.Cheng, L.D. Kikas, and S.Kruk. A disjoint path problem in the al-
ternating group graph. Congressus Numerantium, 175:117-159, 2005.

[3] J.Boats and L.D.Kikas. The pansophy of a graph. Congressus Numer-
- antium, 229:125-134, 2017.

[4] J.S. Jwo, S.Lakshimivaharan, and S.KDhali. A new class of intercon-
nection network based on the alternating group. Networks, 23:315-325,
1993.

[5] Lazaros D. Kikas. Interconnection networks and the k-disjoint path
property. Ph.D Thesis, Oakland University, 2004.

5

