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Abstract

Necessary conditions for the existence of a 3-GDD(n, 3, k; Ay, Az)
are obtained along with some non-existence results. We also prove
that these necessary conditions are sufficient for the existence of a
3-GDD(n, 3,4; Ay, Ag) for n even. '

1 Preliminaries

Definition 1.1. A group divisible design GDD(n,m, k; Ay, A2) is a collec-
tion of k-subsets, called blocks, of an nm-set X, where the elements of X
are partitioned into m subsets (called groups) of size n each; pairs of dis-
tinct elements within the same group are called first associates and appear
together in Ay blocks while any two elements not in the same group are
called second associates and appear together in Az blocks.

Definition 1.2. A4 t-(v, k, \) design, or a t-design, is a pair (X, B) where
X is a v-set of points and B is a collection of k-subsets (blocks) of X with
the property that every t-subset of X 1is contained in ezactly A blocks. The
parameter X is called the indez of the design.

Hanani ({1}, pp 706-707) proved that the necessary conditions are suffi-
cient for the existence of 3-(v, 4, ), i.e., 3-(v, 4, \) exists if and only if :
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A=1,57o0r 11 (mod 12) and v= 2 or 4 (mod 6);
A=2or 10 (mod 12) and v = 1,2,4,5,8, or 10 (mod 12);
A=3or 9 (mod 12) and v =0 (mod 2);

A=4or 8 (mod 12) and v =1 or 2 (mod 3);

A=6 (mod 12) and v =0, 1, or 2 (mod 4);

A=0 (mod 12).

Sarvate and Bezire defined a 3-GDD(n, 2, k; Aq,A2) in [2] and obtainec

some necessary conditions for the case k =4. °
3

Definition 1.3. A 3-GDD(n,2,k; Ay, A3) is a set X of 2n elements par-
titioned into two parts of size n called groups together with a collection of
k-subsets of X called blocks, such that

(1) every 3-subset of each group occur in Ay blocks and

(ii) every 3-subset where two elements are from one group and one element
from the other group occurs in Ao blocks.

They (2] also gave the following fundamental construction.

Theorem 1. A 3-GDD(n,2,4;0,1) ezists for even n and a
3-GDD(n, 2,4;0,2) exists for all positive integers n.

Above Definition 1.3 is generalized below:

Definition 1.4. A 3-GDD(n,m, k; Ay, Ag) is a set X of mn elements par-
titioned into m parts of size n called groups together with a collection of
k-subsets of X called blocks, such that

(i) every 3-subset of configuration (3,0), i.e. where all 3 elements are from
the same group occur in Ay blocks,

(1i) every 3-subset of configuration (2,1) where two elements are from one
group and one element from the other group, or of configuration (1,1,1),
t.e. three elements from different groups, occurs in Ay blocks.

Example 1.1. 43-GDD(3,3,4;0,4) with X = {1,2,3,a,b,¢,z,y,2}; Gy =
{1,2,3}, G2 = {a,b,¢}, G3 = {z,y, z}. Blocks are written as columns:

112112112 112112112%2
2 3 3 2 3 3 2 3 3 2 3 8 2 83 3 2 3 3
a b ¢c ¢c a b b c a X T ¥y & Yy T Y & T
b ¢c a a b ¢ ¢ a b Yy 2 z z z Y z Y =z

a b ¢c a b ¢ a b ¢

b ¢c a b ¢c a b ¢ a

r ¥ T T R Ty oy Yy

Y Y Y & 2 2 2 F Z
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112112112 112112112
2 33 2 3 3 2 3 3 23321332333
a a a b b b c ¢c ¢ aaabd b b c cc
T Yy z Yy 2 T z r Yy x Yy 2 Y 2 T Z T Y
a a b a a b a a b a a b a a b a a b
b ¢ ¢ b ¢ ¢ b c ¢c bc cbcc b cc
zZ z zZ Yy Yy Yy T T T T T T Z Z 2 Y Y Yy
1 3 2 21 383 3 2 118 2 21338 21
¢ ¥ Yy &£ £ Y ¢ &y x E Yy LT Y T LY
Y 2 2 Y 2 B Y 2 2 Y Z T Y R F Y Z =2
2 2 21 113 3 3 2 2 21118 3 3
a ¢ b ¢c b a b a ¢c ¢c b a b a c a ¢ b

Yemark 1. Suppose a Resolvable t-(n,k, 1) exists, where n = sk then by
leleting a parallel class, we get t-GDD(k, s, k;0,1).

In addition, we can relax condition (i7) and require that every 3-subset
vhere each element is from a different group occurs in Az blocks, where
\3 may not be equal to A2 and we will denote such a design by a 3-
’BIBD(n, m, k; A1, A2, Az) or a 3-GDD(n,m, k; A1, Az, As).

‘xample 1.2. A4 3-PBIBD(3,3,4;0,1,2) with X = {1,2,3,4,5,6,7,8, 9},
71 =1{1,2,3}, Gy = {4,5,6}, G3 = {7,8,9}, and the blocks written below
n columns:

1 2312312 3 1 2 31 2 3 1 2 3
2312 31 2 31 5 6 4 6 4 5 4 5 6
4 5 6 5 6 4 6 4 5 6 4 5 4 5 6 5 6 4
7 8 9 9 7 8 8 9 7 78 9 9 7 8 8 97

1 2 31 2 312 3

6 4 5 4 5 6 5 6 4

7 8 9 9 7 8 8 97

8 9 7 7 8 9 9 7 8

In fact, Hanani has used the concept of 3-GDDs with A; = 0 to construct,
-(v,4, \)’s. He used the notation P, [k, A, nt] to represent 3-PBIBD(n, t, k;
,0,A) and the notation Q;;[k, A, nt] to represent 3-PBIBD(n,t,k;0, A, \)
e. 3-GDD(n,t,k;0,). His following result and existence of designs such
s Qg (4,1) (i.e. 3-GDD(8, 3,4;0,1)) will be used in this note.
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Theorem 2. (/1], Proposition 5) If n'|n and a 3-PBIBD(n/,t,4;0,0, A)
exists then a 3-PBIBD(n,t,4;0,0, \) exists.

In the next section, we obtain some necessary conditions for the exis-
tence of a 3-GDD(n, 3, k; Ay, A2). Towards this aim, assuming a 3-GDD
exists, we count the number of blocks, A1, containing a first associate pair,
Az, the number of blocks containing a second associate pair and the re-
quired number of blocks, say b, and the number of blocks containing a
given element z (called the replication number ¥ for z), for a 3-GDD.

2 Necessary Conditions

Let A; denote the number of blocks containing {z1,z2} where z; and z,
are from the same block and let A; denote the number of blocks containing
{z,y} where z and y are from different groups. For each pair {z1, 22}
belonging to one group, there are n— 2 (3,0) triples which appear A; times
in the 3-GDD(n, m, k; Ay, A). Also the pair {z;,z2} can form n(m — 1)
triples with an element y belonging to other groups. Such triples appear A,
times in the 3-GDD(n, m, k; Ay, Ag), if it exists. If a block contains {z, 25}

then it has exactly ¥ — 2 triples which contains both z; and 3. Thus we
have

_ A;(n — 2) +A2n(m — 1)

A1 P . (1)

For a pair {z, y}, where z and y are elements from different groups; following
three types of triples can be formed:

i) {z,y,z:}, where z and «; are from the same group.
i) {z,y,v:}, where y and y; are from the same group.

ut) {z,y,2}, where z,y and z; are all from different groups.

This gives

_2n—-1)+n(m-2)
- k—2

Hence every 3-GDD(n, m, k; A1,A2) is also a 2-GDD(n, m, k; A1, A2).

Assuming a 3-GDD exists, the replication number = of an element z is
the number of blocks containing . Suppose a 3-GDD(n, m, k; A1, Az) exists
with groups G1,Ga,. .., Gp. Without loss of generality, let z € G and let
r be the replication number for . There are (";1) 3-subsets containing z,
where all elements are from the same group G;. A triple of configuration

Ay

A;. (2)
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(2,1) may be of type {z,x;,y;}, where z; is an element from G; and y;
from any of the remaining m — 1 groups or of the type {z, Yi,Y;j}, where
y; and y; are from a group other than G;. Also, for triples with (1,1,1)
configuration, we have {z,y;, z;}, where y; and z; are elements from two

different groups other than G;. Moreover z appears in (’“;1) 3-subsets of
every block. Thus we have

(5397 = ("3 A1+ (n— 1)(m = D+ (m— 1) (?)Az + ("5 )n - nAs.
Hence we have
_(n=1)(n—2)A1 +n(m—1)(mn+n—3)A\y 3)
- (k—1)(k-2)

v

The number of blocks in a 3-GDD, if exists, is denoted by b. Using mnr =
bk, we get

b=

o Ai(n—1)(n—2) + Ag(m — 1)(n? — 3n +mn2).

k(k — 1)(k - 2) )

Substituting m = 3 and ¥ = 4 in Equations 1, 2, 3, and 4, we get the
following parameters for a 3-GDD(n, 3,4; Ay, As).

_ M(n—-2)+2A3n  Ay(n—2)

)‘1 2 9 “F A2n1 ) (5)
Ag = (_3_’1_—2_2)._{\2’ (6)
_ (n=1)(n— 2)A; + (8n® — 6n)A,
r= L 7
and &
b= g(Al(n—l)(n——Q)+2nA2(4n—3)) (8)

As these parameters must be integers, one of the necessary conditions for
the existence of a 3-GDD(n, 3,4; A1, A2) is

(n—1)(n —2)A; +2n°A2 =0 (mod 6). (9)

from Equation 7. From the above equation, when A; =0 (mod 3), 2n%A; =
0 (mod 6) and hence either n or As must be congruent to 0 modulo 3.

Further, when m = 3, if a 3-GDD(n, 3, 4,0, A3) exists, there can be only 2
types of blocks (2,1,1) or (2,2). Note, there are 3n?(n — 1) A triples of the
form (2, 1) and nA; triples of the type (1, 1, 1) in the blocks of the 3-GDD.
Blocks of the type (2,1, 1) cover two triples of type (1,1,1) per block and
also covers two (2, 1) triples. The remaining (2, 1) triples must occur in the
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blocks of the type (2,2). Each such block contributes 4 triples. Hence g
necessary condition for the case when A; =0 is

3n%(n —1)Ay —n3A2 =0 (mod 4). (10)

Which implies
n%(2n —3)As =0 (mod 4). (11)
Hence if n is even, there is no restriction on A2 but if n is odd then A, =

0 (mod 4). What is interesting is this condifion is not sufficient for the

existence, as we will see, (Remark 2), that a 3-GDD(5, 3,4;0,4) does not
exist.

Theorem 3. If there ezists a 3-GDD(n,m, k;0,A) and a 3-(n, k, A) then
a 3-(nm, k, \) ezists.

Proof. Let X be a 3-GDD(n,m, k;0,A) and Y be a 3-(n, k, A). The blocks
of X and the blocks of Y on each group together give a 3-(nm,k, A). O

Corollary 3.1. If a 3-(n, k, A) exists and a 3-(nm, k, A) does not exist then
¢ 3-GDD(n, m, k;0,A) does not exist.

Remark 2. As an application of the corollary above a 3-GDD(4, 3,4;0,1)
and a 3-GDD(5,3,4;0,4) can not ezist.

In fact, we can get several such examples, for instance, using Corollary
3.1, we get

Theorem 4. A 3-GDD(n,3,4;0,Ay) does not ezist for n = 2,4 (mod 6)
and A2 = 1,5 (mod 6).

Proof. A 3-(n,4,1) exists when n = 2,4 (mod 6). But a 3-(3n,4, Ay) does
not exist when Ay = 1,5 (mod 6). a

Remark 3. If A, =0 (mod 4) and A; =0 (mod 4) then n =0 (mod 3).
The reason is as follows: If n=1,2 (mod 3) and a 3-GDD(n, 3,

4;0,4) exists, we can use a 3-(n,4,4) on each group and construct a 3-
(3n,4,4). But forv=0 (mod 3), a 3-(v, 4, 4) does not exist.

Remark 4. If a 3-(n, k, \) exists then a 3-GDD(n, m, k; X, 0) ezists.

Though it is possible to use the conditions and the divisibility require-
ments to give a general table for parameters n, A1 and Ay; for organization
purpose and simplicity, we consider the conditions for n odd and n even
in the next two sections. In this short note, our main purpose is to obtain

families of 3-GDDs for even n though we have given above results for odd
n as well.
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3 n odd

From Equations 5 and 6 we have nA; =0 (mod 2) which implies that if n
s odd then Aq is even. Also, (3n — 2)Ag = 0 (mod 2) implies that if n is
»dd then A; is even. For n odd, from Equation 8,

i) for n =1 (mod 8), A2 =0 (mod 4).

i3) for n = 5 (mod 8), 2A; + A2 = 0 (mod 4). As A; is even, we have
A2 =0 (mod 4).

ii7) for n =3 (mod 8), A; = Ay (mod 4).
iv) for n =7 (mod 8), A; = Az (mod 4).

Based on the above requirements and Remark 3, we have the following
necessary conditions for the existence of a 3-GDD(n, 3,4; A1, A;) when n is

odd. The values of A; and A; are given modulo 12.

A1\Az| O 2 4 6 8 10

0 alln none all n none all n none

2 L5 3.7 Lq b 3,7 1.5 | 37
(mod 8) | (mod 8) | (mod 8) | (mod 8) | (med 8) | (mod 8)

4 all n none alln none all n none

6 1.0 3,7 1,5 3,7 1,5 3,7
(mod 8) | (mod 8) | (mod 8) | (mod 8) | (mod 8) | (meod 8)

8 all n none all n none all n none

10 1,:6 3.7 1,5 a7 1,5 3,7
(mod 8) | (mod 8) | (mod 8) | (mod 8) | (mod 8) | (mod 8)

Table 1

For A; and A given in modulo 4, the above table can be written as follows:

A\A2 | O 2
0 all n none
2 1 (mod 4) 3 (mod 4)

Table 2
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4 n even
Using Equation 9,

i) for n=0 (mod 6), A; =0 (mod 3), and
1) for n=2,4 (mod 6), A; =0 (mod 3).

Based on the above requirements from Equation 9, and as other equa-
tions do not give any further restrictions, we have the following necessary

conditions on even n for the existence of a 3-GDD(n,3,4; A1, A2). The
values of Ay and A, are given modulo 3.

A\A2 | O 1 2

0 0,2,4 (mod 6) 0 (mod 6) 0 (mod 6)

1 2,4 (mod 6) no even no even

2 2,4 (mod 6) no even no even
Table 3

Theorem 5. If a 3-GDD(n, 3,4;0, 3) ezists, then there exists a 3-GDD(n, 3,
4; Ay, A2) when A1 and Ao are congruent to 0 (mod 3).
Simalarly, when Ay = 1,2 (mod 3), if a 3-GDD(n, 3,4;0,3) exzists then the
necessary conditions will be sufficient for the existence of a 3-GDD(n, 3, 4;
Ay, Ag), where Ay = 1,2 (mod 3) and Ay, =0 (mod 3).

Proof. Let a 3-GDD(n, 3,4;0,3), say X, exists, then as a 3-(n,4,3), say
Y, exists for n even. If A; = 3s and A = 3!, the blocks of s copies
of Y on each group and [ copies of X together provide the blocks of 3-
GDD(n, 3,4; Ay = 3s,A; = 3l). Hence for n even, the necessary conditions
for the existence of a 3-GDD(n, 3, 4; A1, A2) will be sufficient when both A4
and Az are congruent to 0 (mod 3) if a 3-GDD(n, 3, 4,0, 3) exists.

Similarly, for n = 2,4 (mod 6), a 3-(n, 4, 1) exists and hence if A} =3s+1
and Ag = 3! (or if Ay = 3s+ 2 and Ay = 3! respectively), the blocks of
a 3-GDD(n, 3,4; A; = 3s, A = 3l) together with the blocks of a 3-(n,4,1)
(or blocks of a 3-(n,4,2) respectively) provide the blocks of the required
3-GDD. a

4.1 Ay, =0 (mod 3)

Example 4.1. A 3-GDD(2,3,4;0,3) with X = {1,2,a,b,2,y}, G1 =
{1,2}, Go = {a,b}, G3 = {z,y}. Blocks are written as columns:
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Hence the necessary conditions are sufficient for the existence of a 3-
GDD(2, 3,4; A1, Az) when Ag =0 (mod 3).

Example 4.2. A 3-GDD(4,3,4;0,3).

Note that there are 156 blocks in the design if it exists. Let Gy = {1,2,3,4},
G, = {a,b,c,d} and G3 = {w,z,y, z} be three groups. Partition each group
in two subsets: G11'= {1,2}, G12 = {3,4}, Ggl = {a,b}, GQQ = {C, d},
G31 = {w,z} and G32 = {y, z}. For these siz groups a 3-PBIBD(2,6,4,0,0,
3) exists by Hanani [1]. There are 3(5)2% = 120-4 triples of the type (1,1,1)
and they are covered in 120 blocks 1n a 3-PBIBD(2,6,4;0,0,3). If two el-
ements are from same group G;; and third element is from another group
then a triple must occur from the remaining 36 blocks of the type (2,2).
This is achieved by taking 3 copies of the following twelve blocks, written
as columns below.

1 1 1 13 3 3 3 a a c c
2 2 2 2 4 4 4 4 b b d d
a ¢ w Yy a ¢ w Yy w y wy
b d z z b d xz z T z2 T 2

This example can be generalized as follows:

Theorem 6. 3-GDD(n, 3,4;0,3) exists forn=0 (mod 4).

Proof. Let n = 4t for some t. Let G;; and Gi2 be two subsets of G; of
size 2¢; 1 = 1,2,3 and G;; U G2 = Gy A 3-PBIBD(2,6,4;0,0,3) exists
by Hanani [1], so Theorem 2 implies a 3-PBIBD(2t,6,4;0,0,3) exists on
groups, Gij, ¢+ = 1,2,3; 7 = 1,2. As in the example above, the triples,
where exactly 2 elements are from one of the G;;'’s (and one element from
another group) are not contained in the blocks of 3-PBIBD(2t, 6, 4;0,0,3).
These triples are obtained by taking 3 copies of a 3-GDD(2t,2,4;0,1) on
Gij, G, where 1 < k; 1,k € {1,2,3}; 7,1 € {1,2}. Recall, the Fundamental
Construction (Theorem 1) gives a 3-GDD(2t,2,4;0, 1). a

Corollary 6.1. Necessary conditions are sufficient for the ezistence of a
3-GDD(n, 3,4; A1, A2) for n =0 (mod 4) when Ay =0 (mod 3).
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1.2 A;=1,2 (mod 3)

Vhen A; = 1,2 (mod 3), from the necessary conditions, Ay = 0 (mod 3)
nd n = 0 (mod 6). Theorem 2 and a 3-PBIBD(3,6,4;0,0,1) given in
Janani [Page 709, [1]], imply that a 3-PBIBD(3t,6,4;0,0,1) exists. Now
ve can construct a 3-GDD(6t, 3, 4,0, 1) for ¢ even and a 3—GDD(6t 3,4;0,2)
or t odd as follows:

Ne partition the groups G; into subsets G;; and Gy of size 3t,: = 1,2, 3,
[(hen form a 3-PBIBD(3t, 6,4;0,0, 1) on groups G;;,¢ = 1,2,3and j = 1,2.
on the other hand, we use the Fundamental Construction (Theorem 1), to
onstruct a 3-GDD(3¢,2,4;0,2) if ¢ is odd or a 3-GDD(3¢,2,4;0,1) if ¢ is
:ven on the following pairs of groups:

Gn with Gjl and sz, J == 27 3;
G12 with Gjl and Gj2, J= 2,3
GQ.,; with G31 and G32, §== 11 2.

Let t be even: Putting together three copies of the blocks of 3-PBIBD(3t,
5,4;0,0, 1) and three copies of, just constructed, 3-GDD(3¢, 2,4;0,1)’s, we
1ave a 3-GDD(6t, 3,4;0,3). Now as n is 0 (mod 6), 3-(n, 4, 3) also exists,
1ence one copy of a 3-GDD(6t, 3, 4,0, 1), s copies of a 3-(n, 4, 3) and [ copies
f a 3-GDD(6t, 3, 4; 0, 3) together give a 3-GDD(n, 3,4; 3s, 3l+1). Similarly,
wo copies of a 3-GDD(6t, 3,4;0,1), s copies of a 3-(n,4,3) and ! copies of
1 3-GDD(6t, 3,4; 0, 3) together give a 3-GDD(n, 3, 4; 3s, 3l + 2).

Let ¢t be odd: Putting together six copies of the blocks of 3-PBIBD(3t,
3,4;0,0, 1) and three copies of, just constructed, 3-GDD(3¢, 2,4;0,2)’s, we
1ave a 3-GDD(6t, 3,4,;0,6). Now as n is 0 (mod 6), 3-(n, 4, 3) also exists,
herefore one copy of a 3-GDD(6t, 3, 4;0, 2), s copies of a 3-(n,4,3) and !
‘opies of a 3-GDD(6t, 3,4;0,6) together give a 3-GDD(n, 3, 4; 3s, 6] + 2).
{ence we have the following theorem.

TCheorem 7. Necessary conditions are sufficient for the existence of a 3-
3DD(6t,3,4;3s,3l + 1) whent =0 (mod 2) and 3-GDD(6t, 3,4; 3s, 6! + 2)
‘or all t, where s and l are any positive integers.

All together, we have:

Theorem 8. Necessary conditions are sufficient for the existence of a 3-
GDD(n,3,4; A1,A2) for Ao = 0 (mod 3) for n = 0 (mod 4) and are suf-
fcient for the exzistence of 3-GDD(n,3,4; A1, A2) for Az = 1,2 (mod 3)
=xcept possibly for n =6 (mod 12), with Ay = 1,4,5 (mod 6).
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What remains to prove is the existence of a 3-GDD(6¢,3,4;0, 1) for all
odd, but in [3] authors have generalized a design given in [1], to obtain
1e following theorem for all ¢.

‘heorem 9. A 3-GDD(n = 6t,3,4;0,A) ezists for any A.
As n is even, there exists a 3-(n, 4, 3) and hence a 3-(n, 4, Ay) exists if
41 =0 (mod 3). The blocks of a 3-GDD(n = 6t, 3,4;0, A2) together with

1e blocks of 3-(n,4,A;) on each group gives the blocks of a 3-GDD(n =
t,3,4; A1, A2) and hence we have:

“heorem 10. The necessary conditions are sufficient for the existence of
. 3-GDD(n, 3,4; A1, A2) for all even n.
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