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Abstract

For a positive integer k, let P*([k]) denote the set of nonempty
subsets of [k] = {1,2,...,k}. For a graph G without isolated
vertices, let ¢ : E(G) — P*([k]) be an edge coloring of G where
adjacent edges may be colored the same. The induced vertex
coloring ¢ : V(G) — P*([k]) is defined by ¢(v) = [.ez, (©),
where E, is the set of edges incident with v. If ¢’ is a proper
vertex coloring of G, then c is called a regal k-edge coloring
of G. The minimum positive integer k for which a graph G
has a regal k-edge coloring is the regal index of G. If ¢ is
vertex-distinguishing, then c is a strong regal k-edge. coloring
of G. The minimum positive integer k for which a graph G has
a strong regal k-edge coloring is the strong regal index of G.
The regal index (and, consequently, the strong regal index) is
determined for each complete graph and for each complete mul-
tipartite graph. Sharp bounds for regal indexes and strong re-
gal indexes of connected graphs are established. Strong regal
indexes are also determined for several classes of trees. Other
results and problems are also presented.

Key Words: color-induced coloring, edge coloring, regal and strong regal
colorings, regal and strong regal indexes.
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1 Introduction

For a graph G without isolated vertices, an edge coloring of @ is an assign-
ment of colors to the edges of G. An edge coloring c is unrestricted if no
condition is placed on how the edges may be colored; in particular, adjacent
edges may be colored the same by c. If every two adjacent edges of G are
colored differently, then c is a proper edge coloring and the minimum num-
ber of colors required of a proper edge coloring of G is its chromatic indez
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X' (G). A vertex coloring ¢’ of G is an assignment of colors to the ve
of G. A vertex coloring ¢’ of a graph G is neighbor-distinguishing or ;
if adjacent vertices are colored differently. The minimum number of .
required of a proper vertex coloring of G is its chromatic number x(¢
vertex coloring ¢’ of a graph G is vertez-distinguishing or rainbow if n
vertices are colored the same by ¢’.

During the past three decades, several types of edge colorings of g
have been described that give rise to vertex colorings defined in a vari
manners (see [1, 2, 4, 9, 10, 11] for example). Among the vertex colc
d of a graph G obtained from an edge coloring ¢ of G in which the ¢
are selected from a set [k] = {1,2,... ,k} for some positive integer %
most commonly studied are those where the color c/(v) of a vertex v o
either (1) the set of colors of those edges incident with v, (2) the multi,
colors of the edges incident, with v, or (3) the sum of the colors of the
incident with v. In most cases, the induced vertex coloring ¢’ is requir
be proper or rainbow.

While an edge coloring ¢ of a graph G typically uses colors from tt
[k] for some positive integer k, resulting in c(e) =i € [k] for e € E(G)
can define c(e) = {4} instead. That is, in (1), both the edge coloring «
the induced vertex coloring ¢’ assign subsets of [k] to the edges and ver
of G. This suggests the idea of studying edge colorings ¢ where both «
its derived vertex coloring ¢’ assign subsets of (k] to the elements (edges
vertices) of a graph G. A number of unrestricted edge colorings of a g
have been studied that use subsets of [k] as colors and give rise to pr
or rainbow vertex colorings by means of set union (see [5,6,7,8,9, 10
example). Here, set intersection is the operation. We refer to the boo
for graph theory notation and terminology not described in this papel

2 Regal Colorings

For a positive integer k, let P*([k]) denote the set of nonempty sut
of [k]. For a graph G without isolated vertices, let ¢ : E(G) — P*
be an unrestricted edge coloring of G, where then adjacent edges ma
colored the same. The vertex coloring ¢’ : V(G) — P*([k]) is defined t

dv) = [ (o),

eckF,

where E, is the set of edges incident with a vertex v of G. That is, ¢/(-
the intersection of the sets of colors of those edges incident with v and -
consists of all elements of [k] belonging to the color of every edge incic
with v. Furthermore, the coloring c has the property that requires ¢/(v)
for every vertex v of G. If ¢ is a proper vertex coloring of G, then ¢ is cs
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a regal k-edge coloring of G. An edge coloring of G is a regal coloring if it is
, regal k-edge coloring for some positive integer k. The minimum positive
integer & for which a graph G has a regal k-edge coloring is called the regal
indez reg(G) of G. If ¢ is vertex-distinguishing, then ¢ is called a strong
regal k-edge coloring of G. An edge coloring of G is a strong regal coloring
if it is a strong regal k-edge coloring for some integer k > 2. The minimum

ositive integer k for which a graph G has a strong regal k-edge coloring is
called the strong regal index sreg (G) of G. While no regal coloring exists for
the graph Ka, such a coloring exists for every connected graph of order at
Jeast 3. Since every strong regal coloring is also a regal coloring, it follows
that reg(G) < sreg(G) for every connected graph G of order at least 3. For
example, Figure 1 shows a regal 3-edge coloring and a strong regal 4-edge
coloring of the path Ps of order 8. (We write the set {a} as a, {a,b} as ab,
and {a, b,c} as abc for simplicity.) In fact, reg(Pg) = 3 and sreg(FP) = 4,
as we will see later.

@_%13()2301201 13@23@12®

A regal 3-coloring of P

@O OO O—E—@

A strong regal 4-coloring of Pg

Figure 1: A regal 3-coloring and a strong 4-coloring of Fg

We mentioned that every connected graph of order 3 or more has a regal
coloring. To show this, we first present a lemma dealing with strong regal

colorings.

Lemma 2.1 Let H be a connected spanning subgraph of a graph G of
order at least 3. If H has a strong regal k-edge coloring for some positive
integer k, then so does G. Consequently, sreg(G) < sreg(H).

'Proof. Suppose that H has a strong regal coloring and that sreg(H) = k.
Let cy : E(H) — P*([k]) be a strong regal k-edge coloring of H. Then
dy () # ¢y (y) for every two distinct vertices « and y. The edge coloring cy
is extended to an edge coloring cg : E(G) — P*([k]) of G by defining

- cy(e) ifee E(H)
A T if e € E(G) — E(H).

Since ci;(z) = cy(z) for each x € V(G) and ¢y is vertex-distinguishing,
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it follows that ¢, is vertex-distinguishing. Therefore, cg is a strong :
k-edge coloring of G and so sreg(G) < k = sreg(H).

Theorem 2.2 FEvery connected graph of order 3 or more has a strong
coloring and therefore a regal coloring.

Proof. By Lemma 2.1, it suffices to show that every tree of order 3 or t
has a strong regal coloring. We proceed by induction on the order n >3
tree T' to show that there exists a strong regal coloring ¢ : E(T) — P
For n = 3, the path P is the only tree of order 3. Assigning the colors {
and {1, 3} to the two edges of P; produces a strong regal 3-edge colo
of P3. Thus, sreg(P3) < 3 (in fact, sreg(P3) = 3) and so the base ste
the induction holds. Now, suppose that every tree of order n—1 > 3§,
strong regal coloring whose edges are colored with elements of P* ([n—
Let T be a tree of order n. Let v be an end-vertex of T and let Ty = T
By the induction hypothesis, Ty has a strong regal (n — 1)-edge colo
& E(Tp) — P*([n— 1]). Let u be the vertex of T adjacent to v. Supj
that c4(u) = S C [n —1]. Then co(u) # cy(x) for all z € V(Tp) — -
Define an edge coloring ¢ : E(T) — P*([n]) by

[n] if e = uv.

Thus, ¢(z) = ¢(z) C [n - 1] for all z € V(Tp) and ¢ (v) = [n]. Si
d(v) # d(z) for all vertices z V(Tp) and (z) # d(y) for every
distinct vertices z and y of T', it follows that ¢’ is vertex-distinguishing

SO cis a strong regal n-edge coloring of T'. Therefore, sreg(G) exists anc
does reg(G).

A consequence of the proof of Theorem 2.2 is that if G is a connec
graph of order n > 3, then reg(G) < sreg(G) < n. Also, observe tha
¢ is an edge coloring of a connected graph G of order at least 3 such t
c(e) is a singleton set for some edge e = uv of G, then the induced ver
coloring ¢’ of ¢ satisfies ¢/ (v) = ¢(v) and so ¢ cannot be not regal. T
observation yields the following useful lemma.

Lemma 2.3 If ¢ is a regal coloring of a connected graph G of order
least 3, then |c(e)| > 2 for each e € E(G) and so reg(G) > 2.

Even Lemma 2.3 can be improved, however. The following result gi
a lower bound for the regal index (and the strong regal index) of a gra
in terms of its chromatic number.

Theorem 2.4 JfG is a connected graph of order 3 or more, then

max{3, [logy(x(G) + 1)]} < reg(G).
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proof. Suppose that reg(G) = k. Then k > 2 by Lemma 2.3. However,
ifthere were a regal 2-coloring of G using the colors in P*([2]), then each
edge ¢ of G must be colored {1,2} by Lemma 2.3, but then the induced
yertex coloring assigns {1,2} to every vertex of G, which is impossible.
Thus, k > 3. Next, let ¢ : E(G) — P*([k]) be a regal k-edge coloring of G
where k > 3. Since ¢ : V(@) — P*([k]) is a proper vertex coloring of G, it
follows that x(G) < |P*([k])] = 2F — 1. Therefore, k > log,(x(G) + 1) and

<0 k > [oga(x(G) + 1)]. Thus, reg(G) = max{3, [logy(x(G) + 1)I}- B

Since x(Kn) = n, it follows by Theorem 2.4 that reg(K,) = sreg(K,) >
[loga(n + 1)] for n > 4. We show that equality holds here.

Theorem 2.5 For each integer n > 4,
reg(K.) = sreg(Kn) = [loga(n + 1)1

proof. Let k = [logy(n+1)] > 3. Hence, 28=1 < n < 2% — 1. We have
already observed that reg(G) > k. It remains to show that reg(Ky,) <
k, namely that there is a regal k-edge coloring of K,. Let V(K,) =
{v1,v2,...,vn} and let Sy, Sz, ..., Sax_y be the 28 — 1 elements of P*([k])
such that 1 = |Sy| < |S2| € |S3] € -+ < |S2x_q|l = k. Therefore,
1S =1for 1 <i<k |Sil=2frk+1<i<k+(5), |5 =3 for
k+(5)+1 <i <k+(5)+(§), and so on. We may assume that S; = {4} for
1 < i< k. First, we define a labeling f of the vertices of K, by f(v;) = S;
for 1 <i < n. Since n > 2¥~1 and k > 3, it follows that n > k and so
Si,82,...,Sk are assigned to the vertices of K, by f. We now use the
vertex labeling f to define an edge coloring of K,. In particular, we define
c: E(K,) = P*([k]) by c(viv;) = f(v;) U f(v;) for each pair ¢, j of integers
with 1 €< ¢ < § < n. This coloring is illustrated in Figure 2 for n = 4, 5.
The vertex coloring ¢’ : V(K,) — P*([k]) induced by c is then defined by

c(v;) = M clvwy). (1)
l<j<n
i

From the manner in which c(v;v;) is defined, it follows that f(v;) C ¢/(vy)
for 1 < i < n. We claim that ¢’(v;) = f(v;) for 1 <1 < n. First, suppose
that f(v;) = [k]. Then c(v;v;) = [k] for all integers j with 1 < j < n and
j # i and so ¢/(v;) = [k]. Next, suppose that f(v;) C [k]. For each integer
£ ¢ [k] — f(v), let t € [k] — {i,€}. Then f(v,) = {t}. It follows by (1)
that ¢(v;) C e(vvy) = F(v:) U f(ve) = f(vs) U {t}. Since £ ¢ f(v;) U {¢}, it
follows that £ ¢ ¢ (v;). Because f(v;) C ¢/(v;) and, for each £ € [k] — f(vs),
we have £ & ¢/(v;), it follows that ¢/(v;) = f(v;) for 1 <i < n. Hence, cis a
regal k-edge coloring of K, and so reg(Ky,) < k. Therefore, reg(K,) = k. m
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Figure 2: Regal 3-colorings of K4 and K

With the aid of the proof of Theorem 2.5, we are able to determine t]
regal indexes of all complete multipartite graphs.

Corollary 2.6 If G is a complete ¢-partite graph of order 3 or more f
some integer £ > 2, then

reg(G) = max{3, [log, (¢ + 1)]}.

Proof. Since x(G) = ¢, it follows that reg(G) > max{3, [logy (£ + 1)]} t
Theorem 2.4. Thus, it remains to show that reg(G) < max{3, [log,(€+ 1)]
First, suppose that £ = 2 and we show that reg(G) = 3. Let the parti
sets of G be U = {uy,up,...,u,} and W = {w1,ws, ..., w,} where r <
and r + s > 3. When r = 1, define ¢ such that cluwgw;) = {1,2} ar
c(urw;) = {1,3} for all 2 < j < s. Then c(u1) = {1} and |c/(wj)| >
for all 2 < 7 < s. Now, when r > 2, define ¢ such that c(uyw;) = {1,<
for 1 < j < s and c(e) = {1,3} for all edges e € E(K,,) that are n
incident with u;. Then ¢(u;) = {1,2}, ¢/(w;) = {1,3}for2<i<r, an
d(w;) = {1} for all 1 < j < s. Thus, ¢’ is a proper vertex coloring of -
and therefore c is a regal 3-edge coloring of G. Therefore, reg(G) = 3.
Next, suppose that £ > 3. Let V1, V2,..., Ve be the partite sets of «
and let H = K, where V(H) = {v1,v2,...,v¢}. For £ =3, let ¢ : E(H) -
P*([3]) be the regal 3-edge coloring of K3 defined by co(viv;) = {1,5} &
1 €7 <j <3 Fort >4, let k = reg(K,) = [logy(£41)] and Ik
co : E(H) — P*([k]) be the regal k-edge coloring of K, described in tt
proof of Theorem 2.5. We now use this regal k-edge coloring ¢y of H = K
(€ > 3) to define a regal k-edge coloring ¢ of G. In particular, we defir
c: E(G) — P*([k]) by c(usuj) = co(vsv;) if u; € V; and uj € V; &
each pair ¢, 7 of integers with 1 < i < j < £ Since (i) d(u;) = cp(v,
if u; € V; for 1 <7 < £ and (i) ¢ is a regal coloring of H = K,,
follows that ¢’ is a proper vertex coloring of G. Hence, c is a regal k-edg
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coloring of G- Therefore, if £ = 3, then reg(G) = 3, while if £ > 4, then
©20(G) < reg(Ke) = [logo(¢+ 1)1} :

3 Strong Regal Colorings of Trees

We have seen that if H is a connected spanning subgraph of a graph G of
order at least 3, then sreg(G) < sreg(H). In particular, if T' is a spanning
tree of a graph G of order at least 3, then sreg(G) < sreg(T'). Thus, for each
integer n > 3, trees of order n have the largest strong regal index among
all connected graphs of order n. Hence, strong regal indexes of trees play
an important role in studying strong regal colorings of connected graphs
in general. Therefore, our emphasis in this section is on the strong regal
indexes of trees. While the strong regal index of every complete graph of
order n > 4 is [logy(n + 1)], the strong regal index of every star of order
n>3is 14 [logyn].

Theorem 3.1 For every integer n > 3,
sreg(Ky n-1) =1 + [loga n].

Proof. Let G = K ,_; be a star of order n > 3, where V(G)={v, v1,v2,
..., vn_1} and v is the central vertex of G, and let k = 1+ [logy n]. Thus,
ok=2 « n < 251 and so

gk—2 _1en-1<c1-1 (2)

First, we show that sreg(G) < k. Let Sy, Sa,...,Spx-1_; be the distinct
nonempty subsets of the set [2,k] = [k] — {1} = {2,3,...,k} such that
Si={i+1}for1 <i<k—1 Now,letT; = {1}U5; for 1 <i< 25! 1.
Since n — 1 < 281 — 1 by (2), we can define an edge coloring ¢ : E(G) —
P*([k]) of G by c(vv;) = Ti for 1 <4 < n—1. Then ¢/(v) = {1} and
d(v;) = c(vyy) =T for 1 < i < n— 1. Since ¢ is vertex-distinguishing, it
follows that c is a strong regal k-edge coloring of G and so sreg(G) < k.
Next, we show that sreg(G) > k. Assume, to the contrary, that sreg(G) =
£<k—1. Letcy: E(G)— P*([€]) be a strong £regal coloring of G where
co(vv;) = X;for 1 <i < n—1 Then |X;|>2forl1 <7< n-1and
Xy, Xa,. .., X1 are distinct subsets of [¢]. Since ¢j(v) # 0, we may assume
that £ € ¢/(v). This implies that £ € X for each integer « with 1 <: <n—1.
Let V; = X; — {¢} for 1 < i< n—1. Then ¥1,Y,...,Y, are distinct
nonempty subsets of [£ — 1]. However then, n—1 <271 —1< oh-% .. 1,
which is impossible by (2). Hence, sreg(G) > k and so sreg(G) = k. C

We now turn to another class of trees of interest, namely the paths. We
will soon see that we have a special interest in the strong regal index of the
path P;.
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Proposition 3.2 sreg(P;) = 4.

Proof. Let P; = (v1,s,...,v7) where e; = vvi4q for 1 <i < 6. Figure ¢
shows a strong regal 4-edge coloring of P;; consequently, sreg(P;) < 4.

@[313128 2313134{4]

Figure 3: A strong regal 4-edge coloring of P;

kY

Next, we show that sreg(P;) > 4. Assume, to the contrary, that
sreg(P;) = 3. Let ¢ : E(P7) — P*([3]) be a strong regal 3-edge color-
ing of P;. Then

{c'(vi): 1 < <7} =P ([3)). (3)
Since |¢/(v;)| > 2 for i = 1,7, there are integers r, s,¢ such that 2 < r <
§ <1 < 6 such that |¢/(v,)| = |/(vs)] = |/ (v)| = 1. We may assume that
¢(vr) = {1}, ¢'(vs) = {2}, and ¢/(v;) = {3}. Since |c(e)| > 2 for each edge
e of P7, no edge incident with v, v,, or v; can be colored 3].

First, suppose that {r,s,t} = {2,4,6}. This implies that c(e) # (3] for
every edge e of P;. However then, ¢/(v) # [3] for any vertex v of Py, which
is impossible by (3). Thus, either s = r + 1 or ¢ = s+ 1. By the symmetry
of P7, we may that either I (v2)| = |/ (vs)] = 1 or |¢/(v3)] = I (vg)| = 1.
We consider these two cases.

Case 1. |d(vq)| = |c/(v3)] = 1, where d(v2) = {1} and (v3) = {2}.
Thus, |e(v102)| = |e(vavs)| = |e(vgua)| = 2. Since ¢/ (va) = {1} and ¢ (v3) =
{2}, it follows that c(vivg) = {1, 3}, c(vavs) = {1,2}, and c(v3vy) = {2,3}.
Thus, ¢/(v1) = {1,3} and ¢/(vy) € {{3},{2,3}}.

* If ¢(vq) = {3}, then c(vqvs) = {1,3}. Hence, either dlvg) = &'(w) =
{1,3} or ¢/(vs) = (vg) = {3}, which is impossible.

* If ¢/(v4) = {2,3}, then c(vgvs) = {2,3} or c(vqvs) = [3]. First, sup-
pose that c(vqus) = {2,3}. Since ¢/(v3) = {2} and ¢(v4) = {2,3},
it follows that ¢/(vs) = {3}. Hence, c(vsvg) = {1,3}. However
then, ¢/(vg) = ¢/(v1) = {1,3}, a contradiction. Next, suppose that
c(vgvs) = [3]. Since ¢/(v1) = {1,3} and ¢/(vg) = {2, 3}, it follows that
(vs) = c(vsvs) = {1,2}. However then, d(ve) € {{1},{2},{1,2}} =
{c/(v2), ¢ (vs),c (vs)}, which is a contradiction.

Case 2. |c'(v3)| = | (v4)| = 1. By Case 1, we may assume that | (v2)| >
2 and so c'(v3) = {1} and ¢(v4) = {2}. Thus, |c(vovs)| = |e(vavg)| =
|c(vavs)| = 2. Since ¢/(v3) = {1} and ¢/ (v4) = {2}, it follows that c(vovs) =
{1,3}, c(vava) = {1,2}, and c(vavs) = {2,3}. Thus, c/(v3) = {1,3} or
d(v2) = {3}. Since |c'(v2)| > 2, it follows that ¢(v3) = {1,3}. Then
¢(vivz) = [3] and so ¢/(v;) = [3]. Thus, ¢/(vs) € {{3},{2,3}}.
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* If c'(vs) = {3}, then c(vsvg) = {1,3}. However then, c/(vg) €
{{1}, {3}, {1, 3}}, which is a contradiction.

*x If ¢(vs) = {2, 3}, then c(vsve) = {2,3} or c(usvg) = [3]. Necessarily,
c(ve) = {3}; so c(vsvs) = {2,3} and c(vgv7) = {1,3}. However then,
¢/(v7) = c/(vg) = {1, 3}, which is a contradiction. 8

Next, we consider the paths P,, where n > 4 and n # 7. Observe that
if G is a connected graph of order n where n > 2%~1 = |P*([k — 1)) + 1
for some integer & > 3, then sreg(G) > k. Consequently, if 25~1 < n <
2F — 1, then sreg(G) > 1 + |log, n]. Since 1+ llogy 7] = [log,(n + 1)] for
each integer n > 4, this observation is also a consequence of Theorems 2.4
and 2.5. '

Corollary 3.3 If G is a connected graph of order n > 4, then
sreg(G) > 1 + |logy n].

We saw in Proposition 3.2 that equality in Corollary 3.3 does not hold
for the path P7. However, equality holds for all other paths P, when n > 4.
In order to show this, we first present some useful notation. For n > 4,

let P, = (v1,v2,...,v,) where e; = v;u;.1 for 1 < i< m— 1. For an edge
coloring ¢ of P, and a vertex coloring ¢ of P,, let

Se(Pn) = (cler),clez),.. ., clen—1))

Se(Pn) = ((v1),c(v2),...,¢ (vn)).

For two integeré a and b with a < b, let [a,b] = {a,a+1,...,b} be the set
of integers between a and &.

Theorem 3.4 Ifn > 4 is an integer with n# 7, then
sreg(Pp,) =1+ [log,n|.

Proof. Let k =1+ |logyn|, where n > 4 and n # 7. Since sreg(P,) > k
by Corollary 3.3, it suffices to show that P, has a strong regal k-edge
coloring. Figure 4 shows that P,, has such a coloring for n € [4, 6] U [12, 15].
Observe that the induced vertex coloring of each path P, in Figure 4 for
n € [4,5]U[12, 15] contains two adjacent vertices whose colors are disjoint.
For an integer n € [4,5] U [12,15], let H = (v1,v2,...,v,) be the path P,
of order n and let H* = (v, vp_q, ..., v1) be the path P, in reverse order.
Let ¢y be the edge coloring of H shown in Figure 4. We now define a
strong regal (k + 1)-edge coloring cy+ : E(H*) — P*([k + 1]) of H* by

CHx* ('Ui-l—l'ui) = C}{('Ui'vi-{—l) U {k + 1} for 1 S’t S n—1.
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S.(Fy)" = 1{12,23,13)

Se(Ps) = (12,2,3,13)

S.(Ps) = ([3],12,23,13)

Se(Ps) = ([3],12,2,3,13)

So(Ps) = (12,13,13,23,[3))

Se(Ps) = (12,1,13,3,28,[3]) -

Se(Pr2) = (124,123, (4], [4],234, 134, 14, 24,12, 13, 134)
Se(Pr2) = (124,12,123,[4], 234,34, 14, 4,2,1,13,134)

Se(Pis) = (123,13,124,12, 234,124, [4], 234,23, 134 14, 34)
Se(Pi3) = (123,13,1,12,2,24, 124, 234, 23, 3,14,4, 34)
Se(Pa) = (123,13,124,12,234,124, 4], 234,23, 134,14, 34, 134)
Se(Plg) = (123,18,1,12,2,24, 124, 234,23, 3,14,4,34,134)
SelP1s) = ([4],123,13,124,12, 234,124, [4], 234, 23 134,14, 34, 134
Se(Pis) = ([4],128,13,1,12,2, 24,124,234, 23, 3,14,4, 34,134

Figure 4: Showing that sreg(Pn) =1+ |log, n| for n e [4,6] U[12,1!

Let G be the path of order 2n obtained from H and H* by joining the
vertices v,, in H and H* by the edge f. The edge coloring ¢ : E(G)
P*([k +1]) is defined by

cy (e) ifee E(H)
cc(e) =4 cys(e) ifee E(H*)
cH*(Vpvn_1) ife= o o

The coloring ¢4 is illustrated in Figure 5 for G — Py when n = 5. Si:
this edge coloring is a strong regal (k + 1)-edge coloring of the path G
order 2n, it follows that sreg(G) =1+ [logy(2n) .

(3] 12 23 13 134 134 34~ 124 [4]
O-000-0-0—0" 0 e 0 e
U1 v2 V3 V4 Vs Us Uy v3 Vg v

Figure 5: Constructing a strong regal 4-edge coloring of Py

Next, for each n € [4, 5] U [12,15], let F be the path of order n
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obtained from H by subdividing an edge v;vj41 of H where g (v;) N

i" (9541) = @, obtaining the subpath (v;,u,v;41). Define an edge coloring
H
CF Of F by .
iy (vy) %f e=v;u
cr(e) = ¢ cy(vjp1) ife=uvjp
cyle) if e # vju, uvjq1.

(The edge coloring cp is not a regal edge coloring since cp(u) = §.) Let
F* = (U, Un—ls -0 Vjtly % Vg5 - v1) be the path F' in reverse order.
Define the edge coloring cp» : E(F*) — P*([k + 1]) of F* by

cp+(e) = cp(e) U {k + 1} for each e € E(F™).

Then cipa (v) = ciy(v) U{k +1} for 1 <4 <nand v (u) = {k+ 1}. Since
s 18 vertex-distinguishing, it follows that cp« is a strong regal (k+ 1)-edge
coloring of F*. The graphs H, F and F* are shown in Figure 6 as well
as the corresponding edge colorings. Let G be the path of order 2n + 1
obtained from H and F'* by joining the vertex v, in H and F* by the
edge f. The edge coloring c; : E(G) — P*([k + 1]) is defined by

cy(e) if e E(H)
cale) = { cp+(€) if e € E(F*)
Cp» ('Unvn—l) ife=f.

The coloring cg is illustrated in Figure 6 for G = Py when n = 5. Since
this edge coloring is a strong regal (k + 1)-edge coloring of the path G of
order 2n + 1, it follows that sreg(G) = 1 + |logy(2n +1)].

The colorings defined above show, in particular, that if n € [4, 31] where
n # 7, then sreg(P,) = 1+ |logyn|. Furthermore, the induced vertex
coloring of each such path P, where n € [16,31] has the property that
there exist two adjacent vertices whose colors are disjoint. By proceeding
as above, we see that if n € [32,63], then sreg(P,) = 1 + |log,n| and
the induced vertex coloring of each such path has the property that there
exist two adjacent vertices whose colors are disjoint. Consequently, for
each integer £ > 2 and each integer n € [2¢,2¢7! — 1], we have sreg(Py) =
1 + |logyn| except when n = 7. That is, for each integer n >4 and n # 7,
it follows that sreg(P,) = 1+ |logy n]. B

The following result is a consequence Corollary 3.3 and Theorem 3.4.
Corollary 3.5 Ifn >4 is an integer, then sreg(Cy) = sreg(Fr).

We have seen that if T is a star of order n > 4, then sreg(T) = 1 +
log, n]; while if T' is a path of order n > 4, then sreg(T) = 1 + |log, n].
Next, we show that if 7' is a double star (a tree of diameter 3) of order
n >4, then 1+ |log, n| < sreg(T) < 1+ [logyn].
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134 34 24 124 A~ [4]
- @O O2O2G1E
V4 u V3 Vg vy
@ (3] 21_2 23 — 13 ' 134 . 134.34 ._2:4_®21.[ﬂ.
A e ”@3_”®4 / v3

A strong regal 4-coloring of G = P13

Figure 6: Constructing a strong regal 4-edge coloring of Pjy

Theorem 3.6 IfT is a double star of order n > 4, then
1 4 |logyn| < sreg(T) <1+ [logyn].

Proof. Since the lower bound is a consequence of Corollary 3.3, we need
only to establish the upper bound. Since sreg(P;) = 3, we may assume that
n > 5. Let k = 1+[log, n] > 4. Since k = 1+ [logy n] > 1+log, n, it follows
that n < 25=1. We show that sreg(T) < k or there is a strong k-coloring
of T. Let T be a double star of order n whose central vertices u and v have
degrees a and b, respectively, where 2 < a < b. Then n = a + b. Suppose
that « is adjacent to the end-vertices uy, ug, ..., uqa—1 and v is adjacent to
the end-vertices vi,va,...,v5_1. Let X1, Xs,..., Xok—2_, be the distinct
nonempty subsets of {3,4,...,k} where | X;| < |X3| < ... < |Xge-2_4| and
Xi={i+2}forl1 <4< k-2 Sincca<banda+b=n & Dh=d
it follows that a — 1 < £ (25" —2) = 28=2 _ 1. Define an edge coloring
¢t B(T) — P*([k]) by |

{132} ifezu'u
(e) = {1}u X, fe=uy;,1<i<a-1
Ce)— {2}UXj ife='uvj, 1§j§2‘=-—2_1

{12} WX, ifes= VU p(2k-2_1), 1< J < b —Qk—4
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The induced vertex coloring ¢’ satisfies

( {1} fw=u

{2} ifw=v

dw)y=4{ {1}UX; fw=wu; 1<i<a-1

{2} U X; fw=v;, 1<j<262-1

\ {1,2}UXJ lfw= j+(2k—2_1), 15]__<_b'—2k_2

Since ¢ is vertex-distinguishing, it follows that c is a strong k-regal coloring
of T and so sreg(T') < k =1+ [log, n]. B

It can be verified that there are infinitely many double stars T of order
n > 4 with sreg(T) = 1 + |logyn| and there are infinitely many double
stars T of order n > 4 with sreg(T) = 1+ [logy n]. In fact, if T is any tree
of order n with 4 < n < 6 that is not a star, then sreg(T) = 3 = 1+ |log, 1|
and if T is any tree of order n = 7, then sreg(T) = 4 = 1 + [log,n]. It
is not known if there is any tree of order n > 8 whose strong regal index
is neither 1 + |log, n| nor 1 + [logy n]. Therefore, we conclude this paper
with the following conjecture.

Conjecture 3.7 For every tree T' of order n > 4,
1+ |logyn| < sreg(T) < 1+ [log, n].

Conjecture 3.7, if true, states that if 73 and T3 are any two trees of the
same order n > 4, then |sreg(T) —sreg(T3)| < 1. Of course, Conjecture 3.7
also states that every two trees of order 2k for some integer k > 2 have the
same strong regal index. Furthermore, Conjecture 3.7, Proposition 3.3 and
Lemma 2.1 give rise to the following conjecture.

Conjecture 3.8 For every connected graph G of order n > 4,
1+ |logy n| < sreg(G) < 1+ [logyn].
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