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Abstract

We introduce a variation of o-labeling to prove that every disconnected
unicyclic bipartite graph with eight edges decomposes the cornplete graph
K. whenever the necessary conditions are satisfied. We combine this re-
sult with known results in the connected case to prove that every unicyclic
bipartite graph with eight edges other than Cs decomposes K, if and only
if n =0,1 (mod 16) and n > 16.

1 Introduction

A decomposition of the complete graph K, is a set G = {G1,G2,...,G} of
pairwise edge-disjoint subgraphs of K,, which partitions the edges of K. If each
subgraph in G is isomorphic to the same graph G, then we call the decomposition
a G-decomposition or G-design of order n. If we take the vertex set of K, to
be Z, and the permutation 7 : v + v+ 1 is an automorphism of the design,
we say the decomposition is cyclic. If instead we take the vertex set of K, to
be Z,_1 U {00} and 7 is an automorphism of the design (with oo + 1 = o by
definition), we call the decomposition one-rotational.

All graphs considered in this article are simple. A graph G is unicyclic if
it contains exactly oune cycle. An attempt is underway to classify the complete
graphs which allow a G-decomposition where G is a unicyclic graph with eight
edges (see [4], [5], [8]). In this article, we introduce a new graph labeling and
apply it, along with other Rosa-type labelings, to show that every unicyclic
disconnected bipartite graph with eight edges decomposes the complete graph
whenever the necessary conditions are met.
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2 Tools and related results

We seek to classify integers n such that a G-decomposition of K, exists for a
unicyclic bipartite graph G with cight edges. The necessary conditions are that
8 must divide |E(K,)| = (}) which is true whenever n = 0,1 (mod 16). The
exceptional case is G = Cy. Since Cg is 2-regular and K,isn- I-regular, Cj
does not decompose K,, when » = 0 (mod 16). However, Rosa used a-labelings
to prove the following in [9).

Theorem 2.1. [9] The cycle Cg decomposes K 16n+1 for all positive integers n,

Froncek, along with his students and colleagues have made significant progress
towards a complete classification. They proved the following theorems over
series of articles [4], [5], [8].

Theorem 2.2. [4] Let G be q connected unicyclic bipartite graph with eight .
edges. If G Cs, then there exists q G-decomposition of K, if and only if
n=0,1 (mod 16).

Theorem 2.3. [5] Let @ be a unicyclic graph with eight edges which contains
a 3-cycle. There exists q G-decomposition K, if and only if n = 0,1 (mod 16).

Theorem 2.4. [8] Let G be a connected unicyclic graph with eight edges which

contains a 5-cycle. There exists a G-decomposition of K, if and only if n = 0,1
(meod 16).

Theorem 2.5. [7] A bi-cyelic graph G with eight edges decomposes the complete
graph K, if and only if

e there is a vertex of an odd degree and n = 0,1 (mod 16), or
® all vertices have even degrees and n = 1 (mod 16).

Theorem 2.6. [6] A tri-cyclic graph G with eight edges decomposes the complete
graph K, if and only ifn=0,1 (mod 16)

Rosa introduced the graph labelings in Definitions 2.7 and 2.8 as a tool to
attack the problem of decomposing complete graphs in the late 1960’s [9]. We
will use them, along with their variations, to prove the main result.

Definition 2.7, Let ¢ be a graph with n edges. A p-labeling of G is an injection

F i1 V(G) — {0,1, - 2n} inducing the length function ¢ - E(G) - {1,2,...,n}
defined as

luv) = min{|f(u) - f(v)],2n +1 - 1f () - f(v)|}
with the property that
{e(uwv) - wv € E(G)} = {1,2,...,n}.

Definition 2.8. A a-labeling of a graph G is a p-labeling such that luv) =
[f(u) = £ (v)].
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Observing that K3zny1 has exactly 2n + 1 edges of each length 1,2,..,n.
od the cyclic permutation v — v + 1 preserves edge lengths, Rosa proved the

low1ng.
‘heorem 2.9. [9] Let G be a graph with n edges. A cyclic decomposition of
on+1 ezists if and only if G admats a p-labeling.

To address the problem of decomposing the complete graph Kanz41 into
omorphic copies of a graph with » edges, El-Zanati et al. introduced the idea

f ordered labelings in [1} and [3].
)efinition 2.10. A p- or o-labeling of a bipartite graph G with bipartition

X,Y) is called an ordered p- or o-labeling and denoted pt, o™, respectively, if
()< f (y) for each edge zy with z € X andy € Y.

yefinition 2.11. A p*- or o*-labeling of a bipartite graph G with bipartition
X,Y) is called a uniformly ordered p- or o-labeling and denoted p*t,ott,
sspectively, if f(z) < f(y) for z € XandyeY

Notice that Definition 2.10 requires the labeling to be only locally ordered,
hereas Definition 2.11 demands a global ordering of the labeled vertices. El-
anati et al. used these labelings to prove the following in [3].

‘heorem 2.12. [3] Let G be a graph with n edges which has a pt labeling.
“hen G decomposes Konz 4y for all positive integers .

The labelings defined here can also be useful in finding isomorphic decom-
ositions of complete graphs of even order.

‘heorem 2.13. (2] Let G be a graph with n edges and a vertez v of degree 1.
fG — v has a p-labeling, then G decomposes Kz,.

To extend this result to decomposing K>, for positive integers z, we intro-
uce the following labeling which is more restrictive than ot but less restrictive
han att.

definition 2.14. A ot ~-labeling of a bipartite graph G with n edges and
ipartition (X,Y) is a 0¥ labeling with the property that f(z) — f (y) # n for
lzeXandyeY.

Cheorem 2.15. Let G be a graph with n edges and a o~ -labeling such that

he edge of length n is a pendant edge e. Then there exists a graph H™ oncn—1
dges that has a p-labeling and can be decomposed into ¢ — 1 copics of G and

me copy of G —e.

>r00f. Let G have bipartition (X, Yp), a pendant edge e = wv where the degree
f v is 1, and ot~ -labeling f’ such that £(e) = n. Construct c isomorphic
:opies of G denoted Gy, Gy, ..., Ge—1, with V(G;) having bipartition (X, Y;). Let
J — GoUGy U...UG,_1 and define f : V(H) — {0,1, .., 2cn} such that

so={ 1 . 2ER )
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Notice that there is no conflict with the labels since (@) — f'(y) # n for a]
z € X and y € Y. Also, each induced subgraph G; of H contains lengths
{in+1,in+2,.., (i + 1)n}, so H has exactly one edge of each of the lengths
{1,2,...,cn}. Now remove v from V(G.~1) and call the resulting graph H-
Notice that this removes the edge e of length cn from H, leaving the graph H-
with exactly one edge of each length 1,2, ..., cn — 1. Therefore, fisa p-labeling
of H~. The fact that H~— may be decomposed into ¢ — 1 copies of G and one
copy of G — e is clear by reversing the construction of H~. ]

Theorem 2.16. Let G be a graph with n edges and a ot~ -labeling such that the
edge of length n is a pendant edge e. Then there exists a cyclic G-decomposition
of Konz for every positive integer .

Proof. By Theorem 2.15, there exists a p-labeling of a graph H~ which decom-
poses into z — 1 copies of G and one copy of G — e where e = uv is a pendant
edge of G. Let H be the graph obtained by adding the edge e = wv to H™. By
Theorem 2.13, there exists an H-decomposition of K 2nz. Since G' decomposes
H, we have proved the theorem. a

Notice that the proof technique of Theorem 2.15 does not necessarily extend
to a o*-labeling of the graph G. However, the theorem does of course apply to
a ot *t-labeling of G since a o*t-labeling is a ot ~-labeling. The next theorem
provides the motivation for o~ -labeling.

Theorem 2.17. J f G is the vertez-disjoint union of Cy and four isolated edges,
then G does not admit a ot labeling.

Proof. Let G have bipartition (X, Y) and suppose a ot * labeling f : V —
{0,1,...,16} of G exists with f(z) < f(y) for all z € X and y € Y. Notice that
|X| = |Y| = 6. Since there exists an edge of length 8, it must be the case that
f(y) > 8 and f(z) < 8 for all = € X and y € Y. This implies the edge of length
1 has vertices labeled 7 and 8, which in turn implies the edge of length 2 either
has vertices labeled 8 and 6, or 7 and 9. Therefore, the length 1 edge labeled
{7,8} is on the 4-cycle.

Case 1: Suppose the vertices of the 4d-cycle are labeled {7,8,z,9} around
the cycle. Notice that z € X and f(z) < 5, since if f(z) = 6, there would be
two edges of length 2. Therefore, each of the remaining four isolated edges have
length at least 5. This implies z = 5 since the 4-cycle must contain the lengths
1,2,3, and 4. The remaining four isolated edges z;3; must have the property
that f(2;) <4 and fF (y:) > 10. But this is a contradiction, since there is no edge
of length 5. ‘

Case 2: Suppose the vertices of the 4-cycle are {7,8,6,y} around the cycle.
Observing that y € Y and f(y) > 10 leads to the same contradiction as in the
previous case. Therefore, a ot -labeling of G does not exist. a
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Catalog of graphs

et G and H be graphs. We will use the notation G+ H to represent the graph
‘hich is the vertex-disjoint union of G and H. For example, P + P3 is shown

1 Figure 1.
=0 o———8
Figure 1: P+ P3

There are (up to isomorphism) 32 disconnected unicyclic bipartite graphs
sth eight edges. Let G = C+ F be one of these graphs where C is the largest
onnected component of G containing the cycle and F is a forest. We establish
Jur cases, one for each of the possible values of |E(C)| € {4,5, 6,7}

If |E(C)| = 4, then C = Cy and F' is one of the eight forests on four edges
hown in Figure 2.

Z < K

7 e

Figure 2: All the forests on four edges

Before we examine the remaining cases, we introduce some notation. Let C;
se the cycle contained in C. We define the type of C by the t-tuple (21, i2, .-, %¢)
vhere i; is the number of edges in the tree attached to vertex v; of the cycle.
The non-zero entries of the ¢-tuple will always be non-increasing from left to
ight. For example, Figure 3 shows graphs of types (1,1,0, 0), (1,0,1,0), and
'2,0,0,0). Notice that there are two non-isomarphic graphs of type (2,0,0,0).

If |E(C)| = 5, then C is the unique graph of type (1,0,0,0), (the four cycle
with one pendant edge) and F' is congruent to one of the four graphs in the set
{P4,K1)3,P2+P3,P2+P2+P2}.

If |[E(C)| = 6, then C is either congruent to Ce or is of type (1,1,0,0),
(1,0,1,0), or (2,0,0,0). Notice that there is only one graph of each of the first
three types and two graphs of type (2,0,0,0) (see Figure 3). The forest, F is
either P3 or P, + Ps. Therefore, there are 10 non-isomorphic graphs in this case.
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(a) (1,1,0,0) (b) (1,0,1,0) (¢) (2,0,0,0) 1) (d) (2,0,0,0) [2
Figure 3: Non-isomorphic graphs C;such that |[E(C)| = 6
If [E(C)] =

7, then C is type (1,1,1,0), (2100) (2,0,1,0), (3,0,0,0), or
(1,0,0,0,0,0). NOthG that there is o

nly one graph of each type (1,1,1,0) and
(1,0,0,0,0,0) (see Figure 4); two graphs of cach type (2,1,0,0) and (2,0,1 ,0) (see
Figure 5); and four graphs of type (3,0,0,0) (sec Figure 6). Since the forest F
is the edge P, we count 10 non-isomorphic graphs in this case.

(a) (1,1,1,0)

(b) (1,0,0,0,0, 0)
Figure 4: |E(C)| =7, C type (1,1,1,0) or (1,0,0,0 0,0)

(2) (2,1,0,0) 1] (b) (2,1,0,0) [2]

(¢) (2,0,1,0) [1]

(d) (2,0,1,0) [2]
Figure 5: |[E(C)| =7, C type (2,1,0,0) or (2,0

1,0)

T i

(2) 3.0,00 1] () (3,000 [ (¢ (3,0,0,0) [3]

(d) (3,0,0,0) [4)
Figure 6: |E(C)| = 7; C type (3, 0,0,0)
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4 Labelings

1f |[B(C)| = 4, then C = Cy. Apply the labels {0,2, 1,4} consecutively around
the cycle- This uses lengths 1,2,3,and 4. T hen we label F' as shown in Figure 7,
which induces edge lengths 5, 6,7, and 8, completing the desired ot~ -labeling

fG=C+F.

7 12 6 11 13 10 5
o—e
6/ 13 5,/ 12 5/ 12 12 6
e—@
b 13 11 14 7 15
10 e—e—9@
14 6 10 3 5 10 15 7
—@ —=e e—&
13/ 11 14 6 6 12 13 6

o—e 8
13 11 @
14 e—8 3

Figure 7: Labels of F' when |E(C)| =4

[u—
B
-3

5:10

If |[E(C)| = 5, then C is the unique graph of type (1,0,0,0). We apply the
labels {0,2,1,4} consecutively around the 4-cycle so that the vertex adjacent
to the vertex of degree 1 is labeled 0 and the vertex of degree 1 reccives the
label 8. This uses lengths 1,2,3,4 (on the cycle), and 8 (on the pendant edge).
Then we label F as shown in Figure 8, which induces edge lengths 5,6 and 7,
completing the desired o+~ -labeling of G = C + F.

-5 10 6 12
6 I: 11 12 11 e—© e—@ I 14
| i’ " 5 10
12 5 5 10 .__Hﬁ 13 e—© 7
(a) Py (b) K13 (c) R+ P d) P+ P+ P

Figure 8: Labels of F' when |E(C)| =5

For the case |E(C)| = 6 or 7, Figures 9 through 14 show a ot~ -labeling for
each of the 20 non-isomorphic graphs G = C' + F.
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0 4 3 6 3 3
6 3 4Ho 2 5 2 5
1 5 2 5
4 0 6 4 0 6
9 76— 14 S X 7—@ 14
élo le—e9 148 3e—ae11
(a) (1,1,0,0) (b) (1,1,0,0) (c) (1,0,1,0) (d) (1,0,1,0)

Figure 9: |E(C)| = 6; C type (1, 1,0, 0) or (1,0,1,0)

6 5 6 5 6 0 6 0

1 2 1 2 3 5 3 5
11 3o—ell 9 78—8 14
3410 7T—@ 14 2410 26—810
(2) (2,0,0,0) 1] (b) (2,0,0,0) 1) (c) (2,0,0,0) 2] (d) (2,0,0,0) [2]

Figure 10: |[E(C)| = 6; C type (2,0,0, 0)

te—e12

86— 10
Figure 11: |E(C)| = 6; C type (0,0,0,0,0,0)
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T 0
4
6 2 8
16—89 5 &—® 13
(&) (111)0\ 0) (b) (11070)0: 0= 0)

Figure 12: |E(C)| =T; C type (1,1,1,0) or (1,0,0,0,0,0)

4 i@ 4 3
0 8 6 0
3 6 3 6 3 0 4 6
5 1 7 2 5 @7
1 7 5 1 7

5
20—® 10 20—810 26—810 1e—89

(2) (2,0,1,0) (1} (b) (2,0,1,0) [2] (c) (2,1,0,0) 1] (d) (2,1,0,0) [2]

Figure 13: |E(C)| =T; C type (2,0,1,0) or (2,1,0,0)

5 0 6 7 6 V{ 0 7
1 5 1 1
4 6 2 0 4 8 4 6
3 5 3 1 3 5 3 5

26—910 46—8 12 20—810 26—® 10
(a) (3,0,0,0) [1] (b) (3,0,0,0) [2] (c) (3,0,0,0) [3] (d) (3,0,0,0) [4]

Figure 14: |E(C)| = T; C type (3,0,0,0)

5 Main result

We seek to classify integers n such that a G-decomposition of K, exists for
a unicyclic bipartite graph G with eight edges. We conclude with the main
theorem.

Theorem 5.1. Let G be a bipartite unicyclic graph with eight edges which 1s
not Cgs. Then there exists a G-decomposilion of Kn if and only if n = 0,1
(mod 16).
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Proof. The necessary conditions are obvious since 8 divides |E(K,)| = (3) if
and only if » > 16 and » = 0,1 (mod 16). If G is connected, we are done by
Theorem 2.2. So assume from now on that G is disconnected. Then G is one
of the 32 graphs cataloged in Section 3. Observe that Section 4 provides a ot~
labeling of G' with the property that the edge of length 8 is a pendant edge. If
n =1 (mod 16), then a G-decomposition of K, exists by Theorem 2.12, since a

ot ~-labeling is a p*-labeling. If n = 0 (mod 16), then the result follows from
Theorem 2.16. a

®
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