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Abstract

Let G be a tripartite unicyclic graph with eight edges that either (i)
contains a triangle or heptagon, or (ii) contains a pentagon and is discon-
nected. We prove that G decomposes the complete graph K, whenever
the necessary conditions are satisfied. We combine this result with other
known results to prove that every unicyclic graph with eight edges other
than Cs decomposes K, if and only if n = 0,1 (mod 16).

1 Introduction

A decomposition of a graph K is a set G = {G1,Ga, ..., G} of pairwise edge-
disjoint subgraphs of K that partitions the edges of K. If each subgraph in
G is isomorphic to the same graph G, then we call the decomposition a G-
decomposition of K. If K = K,,, we call the decomposition a G-design of order
n. If we take the vertex set of K,, to be Z,, and the permutation 7 : v = v + 1
is an automorphism of the design, we say the decomposition is cyclic. If instead
we take the vertex set of K, to be Z,_1U{oo} and 7 is an automorphism of the
design (with co + 1 = co by definition), we call the decomposition 1-rotational.
A graph is unicyclic if it contains exactly one cycle. Let G be a unicyclic
graph with eight edges. If a G-decomposition of K, exists, then 8 must divide
(3)- Therefore, the necessary conditions are n = 0,1 (mod 16). The authors
and their collaborators have shown these conditions to be sufficient when G is
bipartite [6], [7], or contains a pentagon and is connected [8]. In this article, we
use p-tripartite and 1-rotational p-tripartite labelings, recently introduced by
Bunge et al. in [1] and [2], to find G-decompositions for the remaining cases,
completely classifying the complete graphs that allow a G-decomposition.

JCMCC 114 (2020), pp.113-131



2 Related results

Let G be a unicyelic graph with eight edges. The case G =~ Cj is exceptional
S0 we consider it first. Since Cy is 2-regular, it cannot decompose K, for n = 0
(mod 16), since K, is odd-regular in that case. This leaves n = 1 (mod 16) as
the only necessary condition. Rosa proved this condition is sufficient in [9].

Theorem 2.1. (9] The cycle Cg decomposes K, if and only if n = 1 (mod 16),

The next two theorems, along with the pievious theorem, completely settle
the case in which G is bipartite.

Theorem 2.2. [6] Let G be o connected unicyclic bipartite graph with eight edges
other than Cg. The graph G decomposes K, if and only if n=0,1 (mod 16).

Theorem 2.3. [7) Let G be a disconnected unicyclic bipartite graph with eight
edges. The graph G decomposes K, if and only if n=0,1 (mod 16).

If G is connected and contains a Cs, Froncek and Kingston proved the fol-
lowing in [8].

Theorem 2.4. [8] Let G be o connected unicyclic graph with eight edges which
contains a Cs. The graph G decomposes K, if and only if n=0,1 (mod 16).

The cases which remain are when @ contains a Cj, contains a Cy, or contains

a Cs and is disconnected. We settle each of these cases in separate sections in
this paper.

3 Tools

Rosa introduced a number of graph labelings (he called them valuations) as a
means to decompose complete graphs. The next two definitions were given in

[9].
Definition 3.1. Let G be a graph with » edges. A p-labeling of G is an injection

f:V(G) = {o, 1,...,2n} inducing the length function £: E(G) — {1,2, oy}
defined as

€(uv) = min{|f(u) - f(v)],2n+1 — |f(u) — F@)}
with the property that
{&(w) : uwv € E(G)} = {1,2, oy}
A more restrictive p-labeling reserved for bipartite graphs is a-labeling.

Definition 3.2. Let G bea bipartite graph with n edges and vertex bipartition
(X,Y). A p-labeling f of G is an a-labeling if there exists an mteger A such
that f(z) <A < f(y) < n for every edge zy withz € X and y € Y.
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2 3.3. BverytreeT on3 <m < 6 vertices with vertez bipartition (X,Y)
beled with labels from the set {0,1,...,m} so that the resulting edge
,mand f(z) < f(y) foreveryz € X andy €Y.

Lemml
con be 16
lengths are 1,3,4,.
One can easily check that the only tree on seven or fewer vertices that

of- o2
e fa caterpillar is the star-like tree S shown in Figure 1.

is not

Figure 1: S

We pick a diametrical path vo, v1, .-, vd with 2 € d < 5 in T and assume,
without loss of generality, that vop € X. We denote vy = z; and v1 = y1. Now
we create a new tree T” on seven vertices by adding a new vertex z} to the
partite set X’ = XU {z4} and join it to y;. Obviously, 7" 2 5, since T’ has two
vertices of degree one at distance two, while S does not. It is well known that
every caterpillar has an a-labeling g such that one of the terminal edges of the
diametrical path, vov; OF v4_1v4, obtains labels A and A+1[9]. We can assume
without losing generality that it is vovy. It is also well known that the labeling
can be chosen so that v is labeled A and v, is labeled A\ + 1. For the reader’s
convenience, we sketch a proof of this claim below, constructing a labeling f’
with the required property.

If g(v1) = A + 1, we define f'(v) = g(v) for every vertex v in T’ and set
M =\ Thus f'(vo) = f'(z1) = N and f'(v1) = f'(y1) = N + 1.

If g(vy) = A, we define f'(v) = m — g(v) and observe that f’ is also an
a-labeling with A = m — A. Hence again f'(vo) = f'(z1) = A" and f'(v1) =
#(y1) = N + 1. (In this case, the labeling f is known as the complementary
labeling to the labeling g.)

Tt follows from Rosa’s construction that the remaining neighbors of v of
degree one are labeled M —1, X' — 2,... and we can set f'(z}) = A — 1. Then
the edge x{y; has length 2.

Removing vertex z} from 77, we obtain T with the desired labeling f defined
as f(2:) = f'(z:) and f(y;) = f'(y;) for all vertices z:,y; € T. U

We will call the labeling described in Lemina 3.3 a 2-gap a-labeling.
As a tool for decomposing complete graphs into tripartite graphs, Bunge et
al. introduced the following labeling in {2].
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Figure 2: 2-gap a-labeling

Definition 3.4. Let G be & tripartite graph with vertex tripartition (4,B,C)
and n edges. A p-tripartite labeling of G is a p-labeling f with the additional
properties:

® f(a) < f(z) for every edge ax where a € A.

e For every edge bc with b € B and ¢ ¢ C, there exists an edge ¥'¢ with
b € B and ¢ € C such that |£(8) = f(O + |f(¥') — £(¢)| = 2n.

e Forevery be B and c € C, [£(B) — F(c)| # 2n.

In Section 6, we refer to the second property in 3.4 as the complement prop-
erty of p-tripartite labeling. They went on to prove the following.

Theorem 3.5. [2] Let G be o tripartite graph with n edges. If G admits a

p-tripartite labeling, then there ezists a cyclic G-decomposition of Konky1 for
every positive integer k.

To decompose complete graphs of even order into'tripartite graphs, Bunge
introduced the following variation of p-tripartite labeling in |1).

Definition 3.6. Let G be a tripartite graph with n edges, vertex tripartition
(A, B,C), and an edge uv where the degree of vis 1. A l-rotational p-tripartite
labeling f of G is an injection f : V(G) — {0,1,...,2n — 2,00} inducing the
length function ¢ E(G) = {1,2,..,n—1, oo} defined as

Uzy) = { ;noin{lf(z) b2 —1-|f(2) - fW)I} ifzyeV(Q)\ {co);

otherwise.
with the additional properties:

o {{(zy):zy € E(GQ)} = {1,2,..,n—1,00}.
e f(v) =oo.
 f(a) < f(x) for every edge ax ¢ E(G)\{uv} where a € A.

¢ For every edge bc with b € B and ¢ € C, there exists an edge b'c’ with
b € B and ¢ € C such that |f(b) — T+ 1F) = f(<)| = 2n.
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Theorem 3.7. |1] Let G be a tripartite graph with n edges. If G admaits a 1-
,-gtatianal p-tripartite labeling, then there exists a 1-rotational G-decomposition

of Konk for every positive integer k.

When we give a p-tripartite or a 1-rotational p-tripartite labeling of a graph
G with vertex tripartition (A, B, C) in a figure, we will place the vertices be-
jonging to A in the left-most column of the figure, the vertices belonging to B
in the next column to the right, and the vertices belonging to C in the third
column (if €' 1s non-empty). In this way, we avoid unnecessary notation and
clutter, although this restriction in drawing may lead to a less natural rendition
of the graph.

To simplify the cataloging of unicyclic graphs, we use the following notation.
Let G be a unicyclic graph containing the cycle C,,. We say that G is of type
(31,520 s in) if & tree containing 7; edges is attached to vertex j of the cycle. We
will distinguish between non-isomorphic graphs of the same type by appending
a parameter t in brackets after the n-tuple.

4 Connected graphs containing a triangle

In this section, we assume G is a connected unicyclic graph with eight edges
containing a C3. We call such a graph a unicyclic triangular graph. In Subsection
4.1, we find a p-tripartite labeling of G, proving that a G-decomposition of K,
exists for every n = 1 (mod 16). In Subsection 4.2, we find a 1-rotational p-
tripartite labeling of G, proving that a G-decomposition of K, exists for every
n=0 (mod 16).

41 n=1 (mod 16)

Lemma 4.1. Bvery unicyclic triangular graph G on eight vertices of type (5,0,0)
has a p-tripartite labeling.

Proof. Label the vertices of the triangle of G with 0,7, and 15, and set 0 € A,
7€ B,and 15€ C. Wehavec=c =15,b= b =17,50[15-7|+|15-7| =28,
and the edge lengths used in the triangle are 2,7, and 8. Let T' be the tree with
vertex bipartition (X,Y") attached to the triangle at vertex yo. Without loss of
generality, we may assume that yo € Y. Find a 2-gap o-labeling f of T such
that f(yo) > A. Such a labcling exists by Lemma 3.3. Now increase all labels
in T by 7 — f(yo). This preserves all edge lengths, namely 1,3,4,5, 6, and since
1 < f{yo) < 6, the labels of T' do not conflict with the labels of the triangle. By
placing X C Aand Y C B, we obtain the desired p-tripartite labeling of G. U

Lemma 4.2. Every unicyclic triengular graph G on eight vertices of type (4,1,0)
has a p-tripartite labeling.

Proof. Label the vertices of the triangle of G with 0,7, and 15, and set 0 € A,
7¢ B,and 16 € C. Wehavec=¢ =15,b= ¥ =17, |15-7}+|156-7} =28,
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and the edge lengths used in the triangle are 2,7, and 8. Join vertices 0 and I
to obtain an edge of length 1 and place 16 € B.

Let T be the tree on five vertices with vertex bipartition (X,Y) attached t,
the triangle at vertex yp € Y. Find an a-labeling f of T such that f(yo) > A
Now increase all labels in Y by 7 — f(y) and in X by 5— f(yo) . This provide
edge lengths 3,4,5, and 6, and by placing X C A and Y C B, we obtain the
desired p-tripartite labeling of G. C

Lemma 4.3. Every unicyclic triangular graph G on eight vertices of type (3, 2,0
has a p-tripartite labeling.

B3

Proof. Label the vertices of the triangle of G with 0,7, and 15, and set 0 € 4
7€B,and15€ C. Wehavec=c =15,b=b =7, s0 [15—7]+]15—-7| =28
and the edge lengths used in the triangle are 2,7, and 8.

Let R be the tree with two edges, and T the tree with three edges. Then F
is the path 7y, 7y, 7,. First identify rq with 0 and label r; with 12 and o wit}
1, and set 72 € 4 and r; € B. In this way we obtain edges of lengths 5 and 6.

Now T' with vertex bipartition (X,Y) is attached to the triangle at vertes
7 which we identify with yo € Y. We find a 2-gap a-labeling f of T suct
that f(yo) > A. Now we increase all labels in T' by 7 — f(y). This provides
edge lengths 1,3,4 and by placing X C A and Y C B, we obtain the desirec
p-tripartite labeling of G. Notice that the lowest label used in T is at least :
and the highest label used in T" does not exceed 10, so we do not have a conflict
between vertex labels of R and T'.

Second, identify ; with 0 and label 7o by 16 and r; by 14 and place ro, 75 €
B. This way we obtain edges of lengths 1 and 3. Again, T is the tree on fow
vertices with vertex bipartition (X,Y) attached to the triangle at vertex 7 whickt
we identify with yo € Y. We find an a-labeling f of T such that f(yg) > A and
increase all labels in ¥ by 7 — f(yo) and all labels in X by 4 — f(yp). This

provides edge lengths 4,5, 6 and by placing X C A and Y C B, we obtain the
desired p-tripartite labeling of G. C

Lemma 4.4. BEvery unicyclic triangular graph G on eight vertices of type (3,1,1
has a p-tripartite labeling.

Proof. Label the vertices of the triangle of G with 0,7, 15 andset 0 € A, 7 € B,
and 15€ C. Wehave c=¢ =15, b= b =7, and the edge lengths used in the
triangle are 2,7, and 8. Join vertices 0 and 16 to obtain an edge of length 1 and
place 16 € B. Also, join vertices 15 and 12 to obtain an edge of length 3 and
place 12 € A.

Let T be the tree on four vertices with vertex bipartition (X,Y) attached to
the triangle at vertex yo € Y. Find an a-labeling f of T such that f(yo) > A.
Now increase all labels in ¥ by 7 — f(yo) and in X by 4 — f(yo) . This provides
edge lengths 4,5, and 6, and by placing X C A and Y C B, we obtain the
desired p-tripartite labeling of G. I

Lemma 4.5. Every unicyclic triangular graph G on eight vertices of type (22,1
has a p-tripartite labeling.
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Pproof. Label the vertices of the triangle of G with 0,7,15and set 0 € A4, 7 € B.
and 15 € C. We have ¢ = ¢/ = 15, b = ¥ = 7, and the edge lengths used in the
triangle are 2,7, and 8. Join vertices 0 and 16 to obtain an edge of length 1 and
place 16€ B. ‘ .

Let R and T be trees with two edges. Let T' be the tree on three vertices
with vertex bipartition (X,Y) attached to the triangle at vertex 7 which we
identify with yo € Y. We find an a-labeling f of T such that f(yo) > A and
increase all labels in ¥ by 7 — f(yo) and increase all labels in X by 5 — f(yo)-
This provides edge lengths 3 and 4.

Let R be the tree on three vertices attached to the triangle at vertex 15.
Then R is the path ro, 71, 73. If 7o is identified with vertex 15, we label the path
15,9,14 and place 7y € A and r, € B. If r; is identified with vertex 15, we
label the path 10, 15,9 and place o, 72 € A. This produces edge lengths 5 and
6, and since the largest label used in T is at most 8, there is no conflict between
the labels of T and R. By placing X C A and Y C B, we obtain the desired
p-tripartite labeling of G. O

4.2 n=0 (mod 16)

First we choose the edge of length co. To minimize the number of different
cases, we select it so that we reduce the cases of type (5,0,0) or type (4,1,0) to
type (4,0,0); type (3,2,0) and type (3,1,1) to type (3,1,0); and type (2,2,1)
to type (2,1,1).

Lemma 4.6. Every unicyclic triangular graph G on eight vertices of type (5, 0,0)
or type (4, 1,0) has a 1-rotational p-tripartite labeling.

Proof. First label a vertex of degree one oo so that the graph reduces to type
(4,0,0). Then label the vertices of the triangle of G by 0,6,14 and set 0 € A,
6 € B, and 14 € C. We have c= ¢’ = 14, b = b’ = 6, and the edge lengths used
in the triangle are 1, 6, and 7.

Let T be the tree on five vertices with vertex bipartition (X,Y’) attached to
the triangle at vertex yo € Y. Find an a-labeling f of T such that f(yg) > A.
Now increase all labels in in Y by 6 — f(yo) and in X by 5— f(yo) . This provides
edge lengths 2, 3,4, and 5, and by placing X C A and Y C B, we obtain the
desired 1-rotational p-tripartite labeling of G. O

Lemma 4.7. Every unicyclic triangular graph G on eight vertices of type (3, 2,0)
or type (3, 1,1) has a l-rotational p-tripartite labeling.

Proof. First label a vertex of degree one oo so that the graph reduces to type
(3,1,0). Then label the vertices of the triangle of G by 0,6,14 and set 0 € A,
6 € B,and 14 € C. We have c=¢ = 14, b = b’ = 6, and the edge lengths used
in the triangle are 1,6, and 7. Join vertex 0 to 13 to obtain an edge of length 2
and place 13 € B. -

Let T be the tree on four vertices with vertex bipartition (X, Y) attached to
the triangle at vertex yo € ¥. Find an a-labeling f of T such that f(yo) > A.
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Now increase all labels in Y by 6 — f(y) and in X by 4 — f(yo) . This provi des
edge lengths 3,4, and 5, and by placing X C A and Y C B, we obtain the

desired 1-rotational p-tripartite labeling of G. |

Lemma 4.8. Every unicyclic triangular graph G on eight vertices of type (2, 2,1)
has a 1-rotational p-tripartite labeling.

Proof. First label a vertex of degree one co so that the graph reduces to type
(2,1,1). Then label the vertices of the triangle of G by 0, 6,14 and set 0 ¢ A,
6€B,and 14 € C. We have c = ¢ — 14, b=¢' = 6, and the edge lengths used
in the triangle are 1, 6, and 7. Join vertex 0 to 13 to obtain an edge of length
2, and 14 to 11 to obtain an edge of length 3 and place 11 € 4 and 13 ¢ B.
Let T be the tree on three vertices with vertex bipartition (X,Y) attached
to the triangle at vertex Yo €Y. Find an a-labeling f of T such that flyw) > A
Now increase all labels in vV by 6 — f(yo) and in X by 3 — f(yo) . This provides
edge lengths 4 and 5, and by placing X ¢ A and ¥ C B, we obtain the desired
L-rotational p-tripartite labeling of G. 0

Theorem 4.9. Let G be g connected unicyclic graph with eight edges that con-
tains a C3. The graph G decomposes K, if and only if n=0,1 (mod 16).

Proof. The proof is by Lemmas 4.1 through 4.8 and Theorems 3.5 and 3.7. O

write G = Hj; + F where Hj is the component containing a Cy and F is a
forest. From here on, "+" denotes the vertex-disjoint union of two graphs. We
categorize the graphs in this section by the number of edges in H.

5.1 n=1 (mod 16)
We aim to show that @ has a p-tripartite labeling.

We have Hj = C3 and F is a forest with 5 edges. We may write F =
N+ T3+ ...+ T: where T: is a tree and the trees are indexed in non-decreasing
order by size. Apply the labels 0,7, and 15 to the vertices of the triangle, and
set0€ A4, 7eB and15¢C. Wehavec=¢' =15 ph = =T, and the edge

lengths used in the triangle are 2,7 and 8. We establish five subcases based on
k.

Subcase 1.1. k= 1.

Let T1 be the tree with vertex bipartition (X,Y). Find a 2-gap a-labeling
J of Ty such that f(¥) > A with y € Y. Now increase all labels in T} by 8. This
breserves all edge lengths, namely 1,3,4,5, and 6, and by placing X ¢ 4 and
Y C B, we obtain the desired p-tripartite labeling of G.
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Gubcase 1.2. k=2.

Suppose T, = P, and T3 is a tree with four edges. Give to the vertices of T}
the labels 8 and 14 and set 8 € 4 and 14 € B. This edge has length 6. Let T3 be
the tree with four edges with vertex bipartition (X,Y’). Find a 2-gap o-labeling
f of Tz such that f(y) > A. Now increase all labels in T by 1. This preserves
all edge lengths, namely 1,3,4, and 5, and by placing X C A and Y C B, we
obtain the desired p-tripartite labeling of G.

On the other hand, suppose 71 = Ps. Label the vertices of the path 11, 6,12,
copsecutively, setting 6 € A and {11, 12} C B. This induces lengths 5 and 6.
Let T, be the tree with three edges with vertex bipartition (X, Y"). Find a 2-gap
o-labeling f of T» such that f(y) > A fory € Y. Now increase all labels in T2
by 1. This preserves all edge lengths, namely 1,3, and 4, and by placing XCA
and ¥ C B, we obtain the desired p-tripartite labeling of G.

Subcase 1.3. k= 3.

If Ty = Ty = P,, label the vertices of T, with 6 and 11 and label the vertices
of T, with 8 and 14, setting {6,8} C A and {11,14} C B. This induces lengths 5
and 6. Let T3 be the tree with three edges with vertex bipartition (X,Y). Find
a 2-gap o-labeling f of T3 such that f (y) > A for y € Y. Now increase all labels
in T3 by 1. This preserves all edge lengths, namely 1,3, and 4, and by placing
X C Aand Y C B, we obtain the desired p-tripartite labeling of G.

if rather T} = P, and Tp = T3 = P3, label the vertices of Ty with 5 and
16, setting 5 € A and 16 € B. The length of this edge is 6. Consecutively label
the vertices along each path with 1,4, 3, and 9,13, 8, respectively. This induces
lengths 1,3,4, and 5. By placing {1,3,8,9} C A, and {4,13} C B, we obtain
the desired p-tripartite labeling of G. ‘

Subcase 1.4. k=4.

We have F = Py+ Py + P+ P3. Label the vertices of the three isolated edges
1 and 4; 2 and 6; 3 and 8, respectively, setting the smaller number of each pair
in A and the larger number in each pair in B. This induces lengths 3,4, and
5. Then label the vertices of P3 sequentially 11,10 and 16, setting 10 € A and
{11,16} C B. This induces lengths 1 and 6, so we have described a p-tripartite
labeling of G.

Subcase 1.5. k = 5.

In this case F = P, + Py + P, + P> + P;. Label the vertices of the five
isolated edges 1 and 4; 2 and 6; 3 and 8; 12 and 13; and 5 and 11, respectively,
setting the smaller number in each pair in A and the larger number in each pair
in B. This induces lengths 3,4,5,1, and 6, respectively, so we have obtained a
p-tripartite labeling of G.

Case 2. lE(H;;)I =4.

If |E(Hs)| = 4, then Hj is congruent to Cs with a hanging edge. Apply the
labels 0,7, 15 to the vertices of the cycle so that the vertex of degree 3 receives
the label 0. Apply the label 16 to the vertex of degree 1. Place 0 € A, 15€C,
and {7,16} C B. Wehave b = b =7, c = ¢ = 15, and lengths 2,7,8, (on
the cycle) and 1 (on the hanging edge). Then we label F as shown in Figure
3, which induces edge lengths 3,4, 5, and 6, completing the desired p-tripartite
labeling of G = Hz + F. .
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Figure 3: Labels of F' when |E(H3)| =4

Case 3. |[E(H3)| =5.

If [E(H3)| = 5, then Hs is either type (2,0,0) or (1,1,0). Label H; as shown
in Figure 4. We have b = ¥/ =7, ¢ = ¢/ = 15, and the edge lengths used are
1,2,3,7, and 8. Then label F as shown in Figure 5 which induces lengths 4, 5,
and 6, giving a p-tripartite labeling of G =2 H; + F.

7 7
0 15 (%——w— i e 15
E\- 3 \> 3 \>(16
\ 16 26 4 /

(a) (2,0,0) [1] (b) (2,0,0) [2] (c) (1,1,0)

Figure 4: |E(H3)| =5

60— —e10 9 6 0—~70 10 _»9
5e——=e11 56~ e19 5 e —e 10
8o——013 Go——e]2 5-4—0 11 Se 11
(8) P+ P, + P, (b) P; +Ps (c) Py (d) K1

Figure 5: All forests with 3 edges
Case 4. |E(H3)| = 6.

If |[E(H3)| = 6, then Hj is either of type (3,0,0), type (2,1,0), or type
(1,1,1). Label H3 as shown in Figure 6. We have b = b — 7, o= =15, and
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the edge lengths used are 1,2,3,4,7, and 8. Then label F, which is either P3 or
P, + P a3 shown in Figure 7 which induces lengths 5 and 6, giving a p-tripartite
jabeling Of G=H3+F.

7 7

0 15 0 T—.———e 15
E% 4 > 16

16 e16 36 —e6
(a) (3,0,0) (1] (b) (3,0,0) [2]

;

0 15

§§3 0.<—4—0>7.4 15

4 10—
\'16 3¢

(¢) (3,0,0) (3] (d) (3,0,0) [4]
7 7

7
0 V———C 15 0 X——‘ 15 0 W 15
3 4 16 3
6 /\ 4 3¢ 1 -)<o 16
(e) (2,1,0) [1] (f) (2,1,0) [2] (g) 1,1,1)
Figure 6: |E(H3)| =6

2¢——=e8 5 0<~° 10
5 0——= 10 \ 11
(&) P+ Py (b) Py

Figure 7: All forests with 2 edges

Case 5. |[E(H3)|=17.

Arbitrarily add a vertex u and edge uv to the graph H3 where v € V(H3) and
call this new graph Hi. Find a p-tripartite labeling f of Hy, which exists by
Lemmas 4.1 - 4.8, and say £(uwv) = I. Removing uv from H 3 leaves the graph Hs
with all necessary lengths except [. Notice that the forest, F is simply an edge
in this subcase. Amongst the 10 remaining numbers in the set {0,1,...,16},
we need to find two labels a,b such that £(a,b) = 1. To see that such a pair
exists, let m; < mg < ... < myo be the unused numbers in {0,1,..., 16} and set
n; = my + 1 for i = 1,2,...,10, where the arithmetic is performed modulo 17.
Let M ={m;:i=12, .., 10} and N = {n;: e =12, ...,10}. Then we have 20
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elements of MU N in {0, 1, ..., 16}. By the Pigeonhole Principle. two elements of
MUN are equal. But m; 5 m; and ny # n;/. Therefore, m; = n; for some i, ;.
50 we have found the desired pair a. b with difference i. Label the two vertices
of F' with this pair, setting the smaller label in A and the larger label in B. We
have described a p-tripartite labeling of G = H3 + F.

The next theorem follows directly from the labelings provided in this sub-
section and Theorem 3.5.

Theorem 5.1. Let G be q disconnected unicydic graph with eight edges that
contains a C3. The graph G decomposes K, if =1 (mod 16).

9.2 n=0 (mod 16)

We proceed by looking for a 1-rotational p-tripartite labeling of G. First we
choose the edge of length co. To minimize the number of different cases, we select
it so that we reduce the cases |E(Hs)| = 3 and |E(Hs)| = 4 to |E(H3)|) = 3;
and |E(H3)| = 5 and |E(H3)| = 6 to |E(H3)| = 5. For the case |E(H3)| = 7,
we choose the isolated edge to be the edge of length co.

Case 1. |E(H;)| =3 or 4.

Label a vertex of degree one with oo so that only a triangle and a forest with
4 edges remains to be labeled. Apply the labels 0,6, and 14 to the vertices of
the triangle, and set 0 ¢ A,6 € B,and 14 € C. We have c = ¢ — 14,b=b" = ¢,
and the edge lengths used in the triangle are 1,6, and 7. Label F as shown in
Figure §, inducing lengths 2, 3, 4, and 5, and completing the desired 1-rotational

p-tripartite labeling of G = H3; + F.
/ 10 7 \
9 8 o—§- 12

90—-—7911 10&-7 12 /o

8 7012 8<—011 o&——e3§ 9e——e 11

7./ \13 \7 10 e——e 13

30—75 Je—e 3§ Je——e5j le—eo 3

2 /08 20—74 4s——07 20—9035

16— 9 16— 5 8 40——038
\ 9 70— 12
Figure 8: Labels of F' when |[E(H3)| =3 or 4

Case 2. |E(H3)| = 5 or 6.
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Label a vertex of degree one with oo so that the subgraph of H3 which
nains to be labeled is of type (2,0,0) or type (1,1,0). Label the remaining
tices as shown in Figure 9. We have b = ¥ =6, ¢ = ¢ = 14, and the
ge lengths used are 1,2,3,6, and 7. Then label F as shown in Figure 10 which
juces lengths 4 and 5, giving a 1-rotational p-tripartite labeling of G = H3+F.

6 6 6

0 V‘. 14 0 Q<——°——’° 14 0 14
e3 =3 ;Z: 2
\o 9 16 3 /
(@) (2,0,0) [1) (b) (2,0,0) [2 (@ (1,1,0)

Figure 9: |E(Hs)| =5 or 6

40——e38 | 5«<——-10

5 o——a 10 \9

(a) P2 + P, (b) Ps

Figure 10: All forests with 2 edges

Case 3. |E(H3)|=T.

We establish three subcases by the type of Hs. In each subcase, we reserve
he isolated edge for the edge of length oo. It remains to find a labeling of H3
vhich uses lengths {1,2,...,7}.

Subcase 3.1. Hs is of type (4,0,0)

Label the vertices of the triangle of with 0,6, 14 and set 0 € A, 6 € B, and
4eC. Wehavec=¢ =14, b =¥ =6, and the edge lengths used in the
riangle are 1,6, and 7. Let T be the tree with 4 edges and vertex bipartition
'X,Y) attached to the triangle at vertex 6 which we identify with yo € Y. Find
\n a-labeling f of T such that f(yo) > ) and increase all labelsin Y by 6—f (vo)
ynd increase all labels in X by 5— f(yo). This provides edge lengths 2, 3,4 and 5.
Find a label I € {0, 1,..., 14} such that { has not been used thus far. By applying
‘he labels oo and { to the isolated edge and placing X U{l} CA, Y C B, we
have found the desired 1-rotational p-tripartite labeling of G = H3 + F.

Subcase 3.2. Ha is of type (3,1,0)

Label the vertices of the triangle of by 0,6, 14, so that the vertex labeled
14 is associated with the hanging edge, and set 0c A, 6¢c B,and 14 € C.
Label the vertex of degree 1 on the hanging edge 12 and place it in A. We have
c=c = 14, b = b = 6, and the edge lengths used so far are 1,2,6, and 7.
Let T be the tree with 3 edges and vertex bipartition (X, Y) attached to the
triangle at vertex 6 which we identify with yo € Y. Find an o-labeling f of T
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Such that f(y) > A and increase aj labels in ¥ by 6 — f (v0) and increase al
labels in X by 4 — f(yo). This Provides edge lengths 3,4, and 5. Find a label
L€ {0,1,...,14} such that { has not been used thus far. By applying the labels
co and ! to the isolated edge and placing X U {l} C A, Y C B. we have found
the desired 1-rotational p-tripartite labeling of G = Hy + F

6 § 6
0 4 9 4 9 14
9 2 2& 2 1 ://
- o213 013
() (2,2,0) [1 (b) (2,2,0) (2] (9) (2,2,0) [3
0 : 14 0 - 14
1] e—r
10 ;i 5 2 12
1 3
(@ (2,1,1) [ (&) (2,1,1) [2

Figure 11: Type (2,2,0) or (2,1, 1)

Subcase 3.3 Hj is of type (2,2,0) or type (2,1, 1)
In this subcase, Hj is one of the five graphs shown in Figure 11. Label the

We conclude thig section with the following theorem which follows directly
from the labelings provided in this subsection and Theorems 3.7 and 5.1.

Theorem 5.2, et ¢ be a disconnected unicyclic graph with eight edges that
contains a Cy. The graph G decomposes K, if and only if n = 0,1 (mod 186).

and similar to the Previous section, we will write (¢ & Hs + F where Hy is the
component containing the pentagon and F is a forest. Then |E(Hs)| € {5, 6, 7}.

6.1 n=1 (mod 16)

We aim to find a p-tripartite labeling of . If |E(Hs)| = 5, then Hy = Cs and
Fe{P,K 1,3, P2+ P, P2+P2+P2}, the set of forests containing 3 edges. Label
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he vertices of Hs with 0,2,13,5, and 10 around the cycle with 0 € 4, {2, 5y C B,
.nd {10 13} ¢ C. This induces edge lengths 2,6, 8,5, and 7, respectively. Notice
hab |18 2| + 10 — 5| = 16 and 2|13 — 5] = 16, so the edges between partite
ets B and C satisfy the complement property of a p-tripartite labeling. Then
abel F as shown in Figure 12 which induces the remaining lengths 1,3, and 4,
.nd completes the desired p-tripartite labeling of G = Hs + F.

/ng /-11 3e——=o4
7
3.—)7 8-<——-11 8»4—_012 6eo———=29

604—09 Ne12 3e——=e4 Te——=oll
(a) Py : (b) K3 (C) P+ P (d) P+ P + P

Figure 12: Labels of F when Hs = Cs

If |E(Hs)| = 6, then Hs is congruent to Cs with a hanging edge and F'is
sither Pz+ Pz or P3. Label Hs as shown in Figure 13. This induces edge lengths
1,2,5,6,7, and 8. Notice that |13 — 2| +[10 — 5| =16 and 2|13 — 5| = 16, s0
the edges between partite sets B and C satisfy the complement property of a
p-tripartite labeling. If F = P, + Ps, then label one edge with 3 and 6, and the
other edge with 4 and 8, setting (3,4} C 4, and {5, 8} C B. On the other hand,
if F = P3, label the vertices 7,4,8 consecutively along the path and set 4e€ A
and {7,8} C B. This induces the remaining lengths 3 and 4, and completes the

desired p-tripartite labeling of G= Hs+ F.
2
/.—_7 o
— 1

3 10

0

Figure 13: Labels of Hs when |E(Hs)} =6

If |E(Hs)| = 7, then F = P, and Hs is of type (2,0,0,0,0), type (1,1,0,0,0),
or type (1,0,1,0,0). Note that there are two non-isomorphic graphs Hs which
are of the first type, but only one each of the latter two types. Label G & Hs+F
as shown in Figures 14 and 15. Notice that all edge lengths are present and the
the edges between partite sets B and C in Figurc 14 satisfy the complement
property of a p-tripartite labeling since |13 —2|+|10—5] = 16 and 2[13—5| = 16.
Similarly, |15 — 5| + {15 — 9] = 16 and |13— 9]+ (13— 1| =16, 50 this property
is also present in the labeling of Figure 15. Therefore, we have provided the
desired p-tripartite labeling of the graph G.
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N el ey
<L L

5 5
46——o38 fer——ao7
(a) (2,0,0,0,0) [1] (b) (2,0,0,0,0) [2]

Figure 14: Labels of G; Hs of type (2,0,0,0,0)

1
/3 0.'\
1 /S/
0< 5 15
—5%15 9o 13
9-4 13

26e——o10 Je——o1l
(a) (1,1,0,0,0) (b) (1,0,1,0,0)

Figure 15: Labels of G; Hj of type (1,1,0,0,0) or type (1,0, 1,0,0)

We have found a p-tripartite labeling of every disconnected unicyclic graph

with eight edges which contains Cs. Therefore, the next theorem follows directly
from Theorem 3.5.

Theorem 8.1. Let G be a disconnected unicyclic graph with eight edges that
contains a Cs. The graph G decomposes K,, if n =1 (mod 16).

6.2 n=0 (mod 16)

We proceed by finding a 1-rotational p-tripartite labeling of G. If |E(Hg)| = 5,
label the vertices of Hs = Cs with 0, 1, 12,4, and 9 around the cycle with 0 € A,
{1,4} C B, and {9,12} C C. This induces lengths 1,4,7,5, and 6, respectively.
Then label F as shown in Figure 16.
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o0,
34——06 SN0 28—0—80 3e—oo—8 0
(a) Pa (b) K13 (c) o+ P2 d) P+ P2+ Py

Figure 16: Labels of F when |E(Hs)| =5

If |E(Hs)| =601 7, label a vertex of degree one with 0o s0 that the unlabeled
rtices of G and the edges incident with them form a graph of type (1,0,0,0,0)
us an isolated edge. Apply the labels as shown in Figure 17. If |[E(Hs)| =T,

F = P3 we are done. If F 22 Py+ P2, let 5 be the vertex incident with o0 and
t 5 € A. We have described a l-rotational p-tripartite labeling of the graph

= Hg + F.
/ 2
1
/-——7 12
vd
S
3e——®6
Figwe 17: Edges with finite lengths; |E(Hs)| =6 or 7
We have found a 1-totational p-tripartite labeling of every disconnected uni-

syclic graph with eight edges that contains a Cs. Therefore, the next theorem
‘ollows directly from Theorems 3.7 and 6.1.

Theorem 6.2. Let G be a disconnected unicyclic graph with eight edges that
contains a Cs. The graph G decomposes K, if and only if n=0,1 (mod 16).

7 Graphs containing a heptagon

Let G be a unicyclic graph with eight edges that contains a C7. Then G is either
the disjoint or non-disjoint union of C7 with an edge.

Theorem 7.1. Let G be a unicyclic graph with eight edges that contains a Coq.
The graph G decomposes K,, if and only if n=0,1 (mod 16).

Proof. Figures 18 and 19 provide p-tripartite and 1-rotational p-tripartite label-
ings, respectively, of G. The result follows now from Theorems 3.5 and 3.7. O
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1:;712 3 1 3
10%//::7 0> 12 7
LT e

Figure 18: p-tripartite labelings of unicyclic graphs with eight edges that contain
a heptagon

8

36 6 3'4 6

Figure 19: 1-rotational p-tripartite labelings of unicyclic graphs with eight edges
that contain a heptagon

m/c’-°714 le—oo— e 14
0?4 Oj4
2 78 2

8 Main result

We have completely classified the integers n such that K, allows a G-decomposition
where G is a unicyclic graph with eight edges. We conclude with our main result.

Theorem 8.1. Let G be unicyclic graph with eight edges other than Cs. The
graph G decomposes Ky if and only if n = 0,1 (mod 16).

Proof. If G is bipartite, the conclusion follows from Theorems 2.2 and 2.3. If @
is not bipartite, Theorems 24,4252 62 and 7.1 give the result. a
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