L(h, k) labelings of K, — M and K, — P
for all values of h and k”

Jobby Jacob
School of Mathematical Sciences
Rochester Institute of Technology
Rochester, NY 14623.
jxjsma@rit.edu

Connor Mattes
Mathematical and Statistical Sciences
University of Colorado Denver
Denver, CO 80217.

connor .mattes@ucdenver.edu

Marika Witt

Mathematics & Computer Science Department
Whitworth University
Spokane, WA 99251.
marikatwitt@gmail.com

Abstract

An L(h,k) labeling of a graph G is an integer labeling of the
vertices where the labels of adjacent vertices differ by at least k, and
the labels of vertices that are at distance two from each other differ
by at least k. The span of an L(h,k) labeling f on a graph G is
the largest label minus the smallest label under f. The L(h, k) span
of a graph G, denoted A x(G), is the minimum span of all L(h, k)
labelings of G.
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We study L(h,k) labelings of some dense graphs obtained by
deleting either a maximum matching or the edges of an arbitrary
path from a complete graph. For all non-negative integer values of A
and k, we establish the L(h, k) spans of these graphs.

1 Introduction

4

The classic vertex labeling problem imposes % condition on labels of ad-
jacent vertices. However, motivated by channel assignment problems and
other applications, numerous generalizations and modifications have been
introduced over the years [11]. One such generalization, called an L(h, k)
labeling, imposes conditions on labels of adjacent vertices, as well as labels
of vertices that are at distance two.

The channel assignment problem, first introduced by Hale and later
modified by Roberts [4, 12], is a long standing problem that describes the
assignment of frequencies to transmitters based on their distances to neigh-
boring and nearby nodes in the same network to avoid interference. The
L(h, k) labeling problem, introduced by Griggsand Yeh forh =2 and k= 1
Was motivated by the channel assignment problem [7].

An L(h, k) labeling of a graph G is an integer labeling of the vertices
where adjacent vertices differ in label by at least h, and vertices that are
at distance two from each other differ in label by at least k. That is, an
L(h, k) labeling of G is a vertex labeling f : V(G) — {0} UZ* such that

° [f(u) = f(v)| > hif d(u,v) =1
° lf(u)*f(v)l =k if d(u,v) = 2.

Note that by d(u,v) we mean the distance between vertices u and v,
which is the number of edges in a shortest path between u and v.The span
of an L(h, k) labeling f of a graph G is the largest label minus the smallest
label. By convention, the smallest label used is 0, as all the labels could be
shifted by the same value and make the minimum label 0, while maintaining
a valid L(h, k) labeling with the same span. So throughout this paper, we
assume that the smallest label in a L(h, k) labeling is 0 and hence the span
of an L(h, k) labeling f is max f(u) for all uw € V(G). The L(h, k) span of a
graph G, denoted A\ x(G), is the minimum span of all L(h, k) labelings of G.
The decision versions of L(0, 1), L(1,1) and L(2, 1) span problems are shown
to be NP-complete, and the decision versions of L(h, k) span problems for
h > k are conjectured to be NP-complete [1, 3, 5, 7, 8, 9, 10, 13]
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A large number of classes of graphs have been investigated for their
,(h, k) spans. While most of these efforts have assumed that h > k, some
Jasses of graphs have been studied for L(h, k) colorability for all non-
egative values of h and k. See [2] for a detailed survey. Since the vertices

f a complete graph K, are pairwise adjacent, we have,
ybservation 1. A\pi(Kn) = h(n — 1).

In this paper, we investigate the L(h, k) span of some dense subgraphs of
he complete graph, obtained by removing either a maximum matching or
he edges of an arbitrary path from a complete graph. For all non-negative
alues of k and k, we establish the L(h, k) spans of these dense graphs.

)  Complete graph minus a maximum match-

ing

n this section we investigate the L(h,k) span of the graph obtained by
leleting the edges of a maximum matching from a complete graph K,
or all values of h k and n. Let K, = (V,E) with V = {w1; Vg s Un s
~onsider the maximum matching M = {v;u;4y | 7isodd and 1 < < n}.
Nelet K, = K, — M.

Ybservation 2. For all h >0 and k >0, Ay i (K1) = M i(K3) =0.
Theorem 3. For h<k andn > 2,

(n— 1)k, if k< [Z]h

An,io(Kp) =
(13] =) h+k ifk>3]n

Proof. Let k < [Z]h. Since h < k and K, is connected, any L(h, k) labeling
of K’ is an L(h, k) labeling of K, and thus the span of any L(h, k) labeling
of K/ must be at least Ap x(Kr) = (n — 1)h. Thus, Mk (KL) = (n—1)hk.

Consider the labeling f defined as follows:
HE if i odd
flu) =

| 25% R+ Ei  if i even.

Figure 1 shows this labeling scheme for K7 when h = 2 and k = 4.
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Let v; and v; be adjacent vertices. If both ¢ and j have the same parity,
then | f(v;)— f(v;)| > h. Without loss of generality, assume that ¢ is odd and
J is even. Then f(v;) > f(v2) > f(v,) + h, wherer isodd and 1 < r < n,

Thus, |f(v;) — f(v;)| > h.

Let v; and v; be vertices such that d(v;,v;) = 2. This implies that,
without loss of generality, 7 is odd and j = i + 1. Then |f(vs) — f(v5)] =
fvj)—flv) = [~””5—1Jh+h == [%]h > k. Therefore f is an L(h, k) labeling,
Note that the span of f is (n — 1)h. Thus Ank(K;) = (n — 1)h when
k< [2]h

Suppose k > [Z]h. Let g be an L(h, k) labeling of K!. Let v be a
vertex such that g(v) is the largest label. Then there exists a subgraph
Hz K 2] of K, — {v} such that every vertex in H has a distance two

neighbor in K, — H. This means g(v;) > h ([%J - 1) for some v; € H,
and |g(v;) — g(v;)| > k + h ([g] . 1) where v;v; ¢ E(K). Thus, the span
of any L(h, k) labeling of K, is at least k(3] —1) + k.

Consider the labeling f defined as follows:

Frodl— 4|5, if i odd
fvisy) + k&, ifieven.

An example of such an f for K4 when h = 4 and k& = 17 is shown in
Figure 2.

Let v; and v; be two adjacent vertices, and without loss of generality
assume that j > i. If both ¢ and 7 have the same parity, then |f(v;) —
F(v;)| > h. Without loss of generality, assume that 7 is odd and j is even.

Then f(v;) > f(ve) = k > [21h+ 1> f(v.) + h+ 1, where r is odd and
1l <r<m.

Thus |£(v;) — £(v;)] > h.

Let v; and v; be vertices such that d(v;, vj) = 2. Without loss of gen-
erality, assume that 7 is odd and j = i + 1. Then |f(vi) — fvy)] = k,
since f(v;) = f(vi—1) + k. Therefore f is an L(h, k) labeling. Note that

the span of f is h (L%J - 1) + k. Thus, A x(K.) = (I_%_} - 1) h+ k when
k> [Z]h. a

Lemma 4. [6] For h >k, Apx(P3) = h+ k.
Theorem 5. For h >k, A\ i (K},,) = m(k+ h) — h where m > 1.
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rigure 1: L(2,4) labeling of Figure 2: L(4,17) labeling of
K! as explained in the proof K} as explained in the proof
>f Theorem 3. of Theorem 3.

Proof. First, we will show that Apk(Kzm) = m(k + h) — h. To do this
assume that this is not true and let f be a labeling of K3, which produces
» minimum counter example, that is there is no counter example for smaller
~hoices of m. Denote the span of the labeling f by As, where Ay < m(k +
h) — h. Since Kf; = Cy4, and by [6], Ah,k(Ki) = )\h’k(ctl) = 2(k+ h) — h for
h > k, we can assume that m > 2. :

Let u be the vertex with the largest label, Ay, v be the vertex with

the second largest label, possibly still Ay, and w be the vertex with the
third largest label. Note that the third largest label cannot be A as the

independence number of Kj,, = 2.

Now the subgraph H induced by {u,v,w} is either a K3 or a Ps. If
H is a K, then f(w) < A\f —2h < Ay —h—k. If H is a P3, then, by
Lemma 4, f(w) < A\ —h — k. Now, the labeling f restricted to K5, —
{u,v} is an L(h, k) labeling of a Ky, with span less than or equal to
Af—h—k<m(k+h)—h—k—h= (m — 1)(k + h) — h a contradiction
to m being the smallest value that produces of a counter example. Thus,
Mok (KYm) > m(k + h) — h when m > 1.

Consider the labeling f defined as follows. f(v1) =0 and

flv) = {f(”i—l) + K, 1f1 even
f(vie1) + h, if¢ odd.

Let v; and v; be adjacent vertices. Without loss of generality assume ¢ <
j. Note that since v; and v; are adjacent, j # i+ 1if i is odd. Then
|f(vz-) - f(vj)l > h. Let v;,v; be vertices such that d(vs,v;) = 2. Then 2
must be odd and j =i + 1. This gives that [f(v,') - f(vj)l ==k

171



Therefore f is an L(h, k) labeling. Note that the span of f is m(k+h)—p,
Thus Ap k(K3,,) < m(k+ h) — h when h > k. O

An example of an optimal L(5, 3) labeling of K is shown in Figure 3.

The join of Gy and Gy, denoted by G; V Gs, is the graph G with
V(G) = V(Gl)UV(GQ) and E(G) = E(G])UE(Gz)U{UU u€EGL,ve GZ}

Lemma 6. Suppose h > k and diam(G) <*®2. Let H = GV K. Then
Ak (G) 2 Ak (G) + h. :

Proof. Let V(K;) = {v}. Let f be an optimal L(h, k) labeling of H.
Consider the labeling g of G as follows.

fvi), if f(vi) < f(v)
o) {f(vi) k() > 1)

We will show that g is an L(h, k) labeling of G. Let z, y € V(G). Since
diam(G) < 2, do(z,y) = du(z,y). If f(z) < f(v) and f(3) < F(v), or
if f(z) > f(v) and f(y) > f(v) then |g(z) — g(y)| = |f(z) — F@W)|. So,
without loss of generality, assume that f(z) < f(v) and f (y) > f(v). Since
v is adjacent to both z and y, f(v) — f(z) > h and f(y) — f(v) > h, and
thus f(y) — f(z) = 2h. Thus g(y) — g(z) = flv) ~h— f(z) > h > k.
Therefore, g is an L(h, k) labeling of G. Note that Ag = Ay — h. Thus
)\hJC(H)=)\f:,\g+h_>;)\h,k(G)+h. |

Theorem 7. For h >k, Ak (K1) = m(k + k) where m > 0.

PT‘OOf. Kém+1 = Kém v {v2m+1}1 and by Lemma 61 )\h,k(Kém+1) 2
Mk (K5) + k. Now by Theorem 5, Mk(Kopmyr) 2 m{k+h) —h+h =
m(k + h).

Consider the same labeling f used in the proof of Theorem 5. f is an
L(h, k) labeling of Kjmyy1- Note that the span of f is m(k + k). Thus,
Ak (Komiq) < m(k +B) . O

An example of an optimal L(5,3) labeling of K7, is shown in Figure 4.
3 Complete graph minus a path

In this section, we establish the L(h, k) span of the graph obtained by
removing the edges of an arbitrary path from a complete graph, K,,, for all
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Figure 3: L(5,3) labeling of K& pigyre 4: L(5,3) labeling of K7

values of h,k and n. Let K, — P,, = (V, E) with V = {v1,v9,...,vn} and
P,,, consists of vertices {v1,v2,...,Vm} and edges v;viy1 foralll<z<m.

Theorem 8. Ay k(Kn — Pp) = h(n —1) when h<k<(n- [%‘-]) h and
n> 3.

Proof. Since k > h, any L(h, k) labeling of K, — Pp, is an L(h,k) labeling
of K,,. Thus )\h,k(Kn - Pp) > )\h,k(Kn) = h(n—1).

Consider the labeling f where f(vz) =0 and

ff(v¢_2)+h, ifievenand 4 <:<m
f(vig) +h, ifi=m+1andm+1iseven
Fvi_y) +h, ifi=m+1andm+1isodd
floi_1)+h, ifm+1l<ign

flop)+h, ifi=1

Lf(vi_z)—i-h, if 2 odd and 3 <2 § m.

f(v;) =

An example of such an L(3,11) labeling of K7 — P is shown in Figure
5.

The largest label under f is f(v,) = (n — 1)h where 7 is the largest odd
integer such that 1 < 7 < m. Thus the span of f is (n — 1)A.

Since labels used are distinct multiples of h, we have| Flu) — f(fuj)| >h
for any two adjacent vertices v; and v;. Suppose d(v;,v;) = 2. Then
1<4,j7 <mand |i—j| =1. Without loss of generality, assume that 7 is
odd, and let i = 2r 4+ 1. Then 7 = 2r, or 5 = 2r + 2.
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[ £(v) — f(v;)] f(vi) — fvy)

vV i

f(vzri1) — f(vars2), because f(varyo) = h 4 f (V2r)
= ((L—?J — l) h+ (n—m)h+h+""h) —
- no [y
> k.

Therefore, f is an L(h, k) labeling with span h{n—1). Thus Ml
Pr) =h(n-1). Q

Theorem 9. ), (K, — Pl ) = ([%1 = 1) h+k when k > (”"‘ I—%‘]) h
and n > 3.

Proof. Consider the labeling f defined as follows, where f(v2) =0 and

(&, ifi=1

flvia) + A, ifioddand1<i<m+1
flw) = ¢ flvicg)+h, ifievenand2<i<m
f(Vm—1)+h, ifisi even and i =m+1
| f(viz1) + A, ifm+1<i<n.

An example of such an L(3,13) labeling of K7 — Ps is shown in Figure
6.

Let v;,v; be adjacent vertices. To show that If(vi) — f(vj)] > h, it
suffices to show that | f(1) — f(v;)] = h, as f(vy) is the only value in the
recursive definition that does not increase by h from the previous step. If
f(v;) > f(v1), then j is odd and j < m + 1. So let j =204 1. Then
!ﬂwun—ﬂmﬂ:k+a—1m—k:a-1m2thwﬁf@g<f@¢
then

[f(1) = f@)| = Flo1) — f(y)
2 fv1) = f(vn)

i (G
-+ ((+-[51)#) +»

> h.
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Let vi,vj De vertices such that d(v;,v;) = 2. Without loss of generality
Jet i = 20 and 7 = 20 +1 for some j < m. Then |f(va) — flvag1)] =
fmrt) — o) =k (= Dh— (= Dh=F.

Thus A k(Kn — Pm) < (f—';“—] —1)h+Ek.

Let Gy = K[, /21 With vertex set {vy, v3, v, ...,V } wheret =morm—1
and let G2 = Klm/gj with vertex set {vg,va, ..., vy } Where t =m-—1orm.

If min{ f(vs), f(i42)} < f(vip1) < max{f(vi), f(vis2)} for any 1 <2 <
m — 2, then, we have

max{f(vi), f(vir2)} > 2k+ min{f(vs), fwir2)}y
. since d(vi, U,‘_+1) = d(vi+2, U,;_H_) =2

k+ (n - [—gi]) h, because k > (n—— [%‘—]) h
([ﬂ;—] . 1) h+ k.

v

v

Suppose max{f(vs), f(vit2)} < f(@ir1) or f(vir1) < min{f(vs), f(vit2)}
for all 1 < 7 < m — 2. Then either f(v) < f(u) for all v € V(G1) and
u € V(Gy), or f(v) > f(u) for all v € V(G1) and u € V(G2). In the first
case, the span of f must be at least ([2] — 1) h+ k. In the second case,
the smallest label for a vertex in G'; must be at least k, and thus there must
be a label in G, that is at least ([Z2] —1) h+ k. |

Thus in any case, span of f is at least ([2]—1) A+ k.
Therefore )\h,k(Kn — Pm) = (I-"—g’-] — 1) h+k. |

Figure 5: L(3, 11) labeling of K7 — P5 Figure 6: L(3, 13) labeling of K7 — Fs

Lemma 10. )\, x (K, — P2) = h(n —2) + k for k < h.
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Proof. By Lemma 4, A\, x(K3 — Py) = Ani(P3) = h+ k. Assume that
A llol o = Py) = (n—3)h+ k. Now, since Kn—Py= (K, ) VK,
and diam(K,,_{ — P,) = 2, by Lemma 6, Ark(Kn — Py) > h(n — 2) + k.

Consider the labeling f defined as follows, with f(v1) =0and f () =
k+h(i—2) for all 2 < i < n. Let v;,v; be adjacent vertices. Without loss
of generality, let ¢ > j. If j > 2, then ‘f(vi) - f(vj)l =(@—20h+k~((j -
2)h+ k) 2 h 1 j=1orj =2, then|f(vi)— f(v;)| > flvs) — f(vg) = b
If v;,v; are vertices where d(v;,v;) =2,thgni=1,7=2o0r i = Zi=1

and | f(v;) — f(v;)| = k. Thus, Ay x(Kn — P,) < h(n—2) +k. 0
Theorem 11. Ank(Kn — Pp) = (m — 1)k + (n—m)h for k < h < 2k and
n > 3.

Proof. We first show that Anie(En —Pp) > (m—1)k+ (n—m)h. Note that
we know this holds for the case of m = 2 from Lemma 10. Now assume
that Apix(Kn — Pp) < (m — 1)k + (n — m)h, and m > 2 is the smallest
such m. Now consider the L(h, k) span of K,, — P,,,. Let g be a labeling of
H = K, — P,,_; defined as follows:

Bl = f(v), if f(v;) < Fvpm)
i fw) + (h—k), if f(v:) > f(vm)

Let v;,v; be adjacent vertices in H. If F(vi), f(v;) < f(um), or if
f(@i), f(vj) = f(vm), then lg(vs) —g(vj)| = |f(v;) - f@)| > h. With-
out loss of generality, let f(vi) < f(vm) < f(v;). Ifi=m —1 and j=m,
then dg (v, v;) = 2 and |g(vs) — g(v;)| = f(v;) + (A — k) — f(v;) = (f(vj) -
fvi)+h—k > k+h—k > h. Ifs # m—1, or j # m, then dg(vi,vj) = 1 and
|9(v) — g(vy)| = Fi)+(h=k)=f(vi) = (f(v5)— f(v:))+h—k > 2h—k > k.

Now, let V3, v; be vertices such that di(vi,v;) = 2. Note that in this
case, 4,5 # m. If f(v;), f(vj) < f(vm), or if f(vi), f(vj) > f(vm), then
[g(vi) - g(vj)| ::|f(v1-) — f(vj)| = k. Without loss of generality, let flv) <
f(vm) < f(v;). Since, 7 # m, we have lg(vs) — 9(vs)| = f(v;) + (h— k) -
F(oi) 2 fv;) = f(vs) + (h—k) > k+(h—k)=h > k.

Thus, Ak (Kn — Pp) > (m — 1)k + (n — m)h.

Consider the labeling f of K, — P, recursively defined as follows, where
f(v1) =0 and

_ flom1) +k, ifi<m
il = fwi1) +h, ifi>m.
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Note that the span of f is (m — 1)k + (n — m)h. Let v;,v; be adjacent
vertices. 1f @ = m or j = m, then ‘f(vz-) - f(vj)| > h. Without loss of
generality, let m > i > j. Then i and j must differ by at least two to be
adjacent, so]f(vi) - f(vj)[ =({(—1k—(—-1k>2k>h

Let vi,vj be vertices such that d(v;,v;) = 2. Without loss of generality,
.= j+1,50|f(v;) — f(v;)| = k. Therefore, f is an L(h, k) labeling with
span (m—1)k+ (n—m)h and hence A k(K —Pm) < (m— 1)k+ (n—m)h.

O
Theorem 12. For h > 2k and n >3,
| = BEELY B if m is odd
)\h,k(Kn - Pm) = (n m2 ) ?’f :
(n—— B — l)h-l-k if m s even.
Proof. Suppose m is odd. Then vy, v3, ..., Ym) Vm+1, Ym+2; - > Un is a com-

plete graph of order n — m=1 which means the Mok(Kn— Pm) 2
(2l 1) b= (- = 8

Suppose m is even, and let f be an L(h, k) labeling of K,, — Pp, such
that |f] < (n— B 1)h+k—1. Letg be a labeling of H = K, — P 1,
where m — 1 is odd, defined as follows:

oo = | 5 if f(0) < F(vm)
DT Fwo+ (=), i F(0) > fom)

Using similar arguments as in the case of the proof of Theorem 11, g is
an L(h, k) labeling of K, — Py with |g| = [f|+h—k < (n—2—-1)h+
k—1+h—k < (n — Lm———",zllﬂ) h—1, a contradiction. Thus M(Kn—Prm) =

(n—%—-l)thkwhenmiseven.

Now, consider the labeling f defined as follows:
(’-72—1-) h, ifiisodd and i <m
flvg) = f(vi1)+k, ifiisevenandi<m
f(vi_l) + h, ifz>m.

Note that f(v;) > h+ f(v;) for j > i+2or if m <1 < 7 < n. Therefore
|f(v;) — f{v;)| = h for adjacent vertices v; and v;. Suppose d(vi,v;) = 2.
Then | — j| = 1, and if j =i+ 1 then |f(v;) — f(vj)| =k andifi=75+1
then |f(vi) — f(v;)| = h —k > 2k — k > k. Thus f is an L(h, k) labeling
of K,, — Py,. The span of fis (Z51) h+ (n —m)h = (n— ) hif mis
odd, and (B —1)h+k+ (n—m)h= (n—2—1)h+kif miseven. O
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An example of an optimal L(9,4) labeling of K7 — P5 shown in Figure
7 and an L(9, 4) labeling of K7 — Ps are shown in Figure 8.

Figure 7: 1(9,4) labeling of K7 — P5 Figure 8: L(9,4) labeling of K, — Ps.

4 Conclusion

In this paper we established the L(h, k) span of all subgraphs of complete
graphs obtained by either removing a maximum matching, or by removing
the edges of an arbitrary path, for all non-negative integer values of h and
k. In both of these classes of graphs, and especially in the case of K,—-P,,
we carefully partitioned the values of A and k to establish the L(h, k) spans

of graphs as the Spans turned out to be significantly different for different
ranges of values of h and k.

These results lead us to believe that finding the L(A, k) span of most
other subgraph classes of complete graphs might be challenging for all non-
negative values of A and k. However, it would be interesting to study the
L(h, k) labelings of more subgraphs of complete graphs for at least some
values of A and k. The graph obtained by removing the edges of a regular
subgraph from a complete graph may be of particular interest.

In [7], the authors showed that L(2r,r) labelings, where r is a positive
real number, are equivalent to L(2,1) labelings for a given graph. Since
then, various classes of graphs have been studied for their L(r,1) span
Where r is a positive real number. One interesting direction would be to
study the L(r, 1) span of the classes of graphs we considered, for any positive
real number r.
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