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Abstract

A long-standing conjecture by Kotzig, Ringel, and Rosa states that
every tree admits a graceful labeling. That is, for any tree T with
n edges, it is conjectured that there exists a labeling f : V (T ) →
{0, 1, . . . , n} such that the set of induced edge labels

{
|f(u)− f(v)| :

{u, v} ∈ E(T )
}

is exactly {1, 2, . . . , n}. We extend this concept to
allow for multigraphs with edge multiplicity at most 2. A 2-fold
graceful labeling of a graph (or multigraph) G with n edges is a one-
to-one function f : V (G) → {0, 1, . . . , n} such that the multiset of
induced edge labels is comprised of two copies of each element in{
1, 2, . . . , bn/2c

}
and, if n is odd, one copy of

{
dn/2e

}
. When n

is even, this concept is similar to that of 2-equitable labelings which
were introduced by Bloom and have been studied for several classes of
graphs. We show that caterpillars, cycles of length n 6≡ 1 (mod 4),
and complete bipartite graphs admit 2-fold graceful labelings. We
also show that under certain conditions, the join of a tree and an
empty graph (i.e., a graph with vertices but no edges) is 2-fold grace-
ful.

1 Introduction

If a and b are integers we denote {a, a + 1, . . . , b} by [a, b] (if a > b,
[a, b] = ∅). Let N denote the set of nonnegative integers, Z+ the set of
positive integers, and Zt the group of integers modulo t. For a set S and
a positive integer λ, let λS denote the multiset obtained from S by re-
peating each element λ times. Thus for example, 2[1, 4] is the multiset
{1, 1, 2, 2, 3, 3, 4, 4}.
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For a graph G, let V (G) and E(G) denote the vertex set of G and the
edge set of G, respectively. The order and the size of a graph G are |V (G)|
and |E(G)|, respectively.

Let V (Kt) = [0, t−1]. The label of an edge {i, j} in Kt is |i−j| while the
length of {i, j} is min

{
|i− j|, t− |i− j|

}
. Thus if t is odd, then Kt consists

of t edges of length ` for ` ∈
[
1, (t− 1)/2

]
. If t is even, then Kt consists of

t edges of length ` for ` ∈
[
1, (t− 2)/2

]
and t/2 edges of length t/2.

1.1 Labelings of Simple Graphs

For any graph G, a one-to-one function f : V (G) → N is called a labeling
(or a valuation) of G. In [11], Rosa introduced a hierarchy of labelings. Let
G be a graph with n edges and no isolated vertices and let f be a labeling
of G. Let f(V (G)) = {f(v) : v ∈ V (G)}. Define a function f̄ : E(G)→ Z+

by f̄(e) = |f(u) − f(v)|, where e = {u, v} ∈ E(G). We will refer to f̄(e)
as the label of e. Let f̄(E(G)) = {f̄(e) : e ∈ E(G)} and call this the set of
induced edge labels. Consider the following conditions:

(`1) f(V (G)) ⊆ [0, 2n],

(`2) f(V (G)) ⊆ [0, n],

(`3) f̄(E(G)) = {x1, x2, . . . , xn}, where for each i ∈ [1, n] either xi = i or
xi = 2n+ 1− i,

(`4) f̄(E(G)) = [1, n].

Then a labeling satisfying the conditions:

(`1) and (`3) is called a ρ-labeling ;

(`1) and (`4) is called a σ-labeling ;

(`2) and (`4) is called a β-labeling.

A β-labeling is necessarily a σ-labeling which in turn is a ρ-labeling. A
β-labeling is better known as a graceful labeling. Furthermore, if G is
bipartite with vertex bipartition {A,B} and f is a β-labeling of G where
f(a) ≤ λ < f(b) for all a ∈ A and b ∈ B, then f is called an α-labeling,
and λ is called the boundary value of f . Labelings of the types above are
called Rosa-type because of Rosa’s original article [11] on the topic. (See [6]
for a survey of Rosa-type labelings.) A dynamic survey on general graph
labelings is maintained by Gallian [7].

1.2 Labelings of Multigraphs

Let G be a multigraph (or simple graph) of size n and with edge multi-
plicity (at most) 2. A 2-fold graceful labeling of G is a one-to-one function
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f : V (G)→ [0, n] such that the set of induced edge labels is

{
f̄(e) : e ∈ E(G)

}
=

{
2[1, n/2] if n is even,

2[1, (n− 1)/2] ∪ {(n+ 1)/2} if n is odd.

A graph G is said to be 2-fold graceful if it admits a 2-fold graceful labeling.
A similar concept was introduced by Bloom [4] in 1994 in the context

of k-equitable labelings and investigated further by Barrientos, Dejter, and
Hevia [3] and by Mitsou [9]. (We note that Mitsou used the term “k-fold
graceful”, but the definition presented in [9] aligns with the more restrictive
definition of “k-equitable”.) A labeling of the vertices of a graph G of
size kt with vertex labels from [0, kt] is k-equitable if the set of induced
edge labels has k edges labeled ` for each ` ∈ [1, t]. Thus if k = 2, then
a 2-equitable labeling is also a 2-fold graceful labeling. However, a graph
with a 2-equitable labeling necessarily has even size. The 2-fold graceful
concept as defined above allows for an odd number of edges. It can be
shown (see [5]) that if G with n edges is 2-fold graceful, then there exists a
cyclic G-decomposition of 2Kn+1.

2 Main Results

We investigate 2-fold graceful labelings of several classes of graphs including
complete graphs, caterpillars, cycles, and complete bipartite graphs. It is
known that caterpillars of even size (see [3]) and cycles of even size (see
[12]) are 2-equitable and are hence 2-fold graceful. Odd cycles of length
n ≡ 1 (mod 4) cannot be 2-fold graceful. We show that all caterpillars, all
complete bipartite graphs, and all cycles of length n ≡ 3 (mod 4) are 2-fold
graceful. We also show that under certain conditions, the join of a tree T
and Km is 2-fold graceful, where Km is the empty graph on m vertices.

2.1 Complete Graphs

While it easy to see that K2 and K3 are 2-fold graceful, we find that these
are actually the exception in that all other non-empty complete graphs are
not 2-fold graceful.

Theorem 1. The complete graph Kv is 2-fold graceful if and only if v ∈
{1, 2, 3}.

Proof. The sufficiency of v ∈ {1, 2, 3} is clear from labeling the vertex
of K1 with label 0; labeling the vertices of K2 with labels 0 and 1; and
labeling the vertices of K3 with labels 0, 1, and 2. To show necessity, we let
v ≥ 4 and assume there exists a 2-fold graceful labeling, say f , of Kv. Let
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V (Kv) = {u1, u2, . . . , uv} and let n = v(v− 1)/2, i.e., the size of Kv, which
is even for v ≡ 0, 1 (mod 4) and odd otherwise. Without loss of generality,
we may assume that the minimum vertex label is f(u1) = 0. Since each
vertex is adjacent to u1, the maximum vertex label is thus no more than
dn/2e, i.e., the largest possible edge label. If n is even, then there must
be two edges with label n/2; however, this is impossible since at most one
vertex can have label n/2 and all other vertex labels are between 0 and
n/2− 1, inclusively.

Next, we consider when n odd. Note that in this case v ≥ 6, and thus
n ≥ 15. In this case, there is exactly one edge with label (n+ 1)/2 and two
edges of each (unique) label in the set

{
(n− 1)/2, (n− 3)/2, 1

}
. We may

again assume, without loss of generality, that the maximum vertex label is
f(u2) = (n+ 1)/2. (In fact, because Kv is vertex transitive, we continue to
assume without loss of generality that any given vertex has a required vertex
label.) Now, in order to achieve two edges with label (n−1)/2, we must have
vertices, say u3 and u4, with labels 1 and (n − 1)/2. Then, the multiset
of labels on the edges in the set

{
{u1, u2}, {u1, u3}, {u2, u4}, {u2, u3},

{u1, u4}, {u3, u4}
}

is
{

(n + 1)/2, 1, 1, (n − 1)/2, (n − 1)/2, (n − 3)/2
}

.
Note that we still need another edge with label (n − 3)/2, and the only
possible values for f(u5) are between 1 and (n − 1)/2, exclusively. This
forces f(u5) to be either (n− 3)/2 or 2 so that either edge {u1, u5} or edge
{u2, u5}, respectively, has edge label (n−3)/2. However, in both situations,
we end up with another edge (either {u2, u5} or {u1, u5}, respectively) with
edge label 1. This contradiction concludes the proof. �

2.2 Trees and Caterpillars

El-Zanati has conjectured that all trees are 2-fold graceful. We have ver-
ified this conjecture for all trees on up to 11 vertices. Because of space
constraints, we will not list those labelings here. Next we show that all
caterpillars are 2-fold graceful. As stated previously, this result is known
for even size caterpillars [3], a special case of the results of this paper.

A tree is a called a caterpillar if the subgraph induced by the non-
degree 1 vertices is either empty or a path. In the latter case, the induced
path is called the spine of the caterpillar (where we are allowing a path to
be of length 0). We call an α-labeling of a caterpillar standard if it is of
the form described in [11], which has the following properties:

• 0 and 1 are the vertex labels if the caterpillar is a K2,
• 0 is the label of an endpoint of the spine otherwise, and
• the largest vertex label is not on the spine.

Hence for a nontrivial caterpillar the largest vertex label is on a degree 1
vertex that is adjacent to the endpoint of the spine with label 0.

80



Let f be a β-labeling of a graph G with n edges. The labeling f ′ of
G defined by f ′(v) = n − f(v) is called the complementary labeling of f .
Note that a complementary labeling of a β- or α-labeling is necessarily also
a β- or α-labeling, respectively. Furthermore, the complementary labeling
of a standard α-labeling of a caterpillar has the largest vertex label on an
endpoint of the spine.

Theorem 2. All caterpillars are 2-fold graceful.

Proof. Let G be a caterpillar of size n. If n = 1 (i.e., G ∼= K2), then the
standard α-labeling of G is also a 2-fold graceful labeling. For the remainder
of the proof, we assume n ≥ 2 (hence, there exists a spine with at least one
vertex). Let G1 and G2 be edge-disjoint subgraphs of G such that

• G1 and G2 are caterpillars,

• |E(G1)| = dn/2e and |E(G2)| = bn/2c,
• V (G1) ∩ V (G2) = {v}.

Since G1 and G2 are edge-disjoint, the common vertex v must be on the
spine of G. Furthermore, for each i ∈ {1, 2}, vertex v is either an endpoint
of the spine of Gi or a degree 1 vertex in Gi adjacent to an endpoint of the
spine (if it exists) of Gi.

If v is not an endpoint of the spine of G1, then let f1 be a standard
α-labeling of G1 such that f1(v) = |E(G1)|. Otherwise, let f1 be the
complementary labeling of a standard α-labeling of G1 such that f1(v) =
|E(G1)|.

On the other hand, if v is not an endpoint of the spine of G2, then
let f2 be the complementary labeling of a standard α-labeling of G2 such
that f2(v) = 0. Otherwise, let f2 be a standard α-labeling of G2 such that
f2(v) = 0.

Now, define a labeling f : V (G)→ [0, n] by

f(x) =

{
f1(x) if x ∈ V (G1) \ {v},
f2(x) + dn/2e if x ∈ V (G2).

An example of a caterpillar with the described labeling f can be seen in
Figure 1. The minimum and maximum of f(V (G)) respectively are

min f1(V (G1)) = 0, max f2(V (G2)) + dn/2e = bn/2c+ dn/2e = n.

Note that f(V (G1)) is disjoint from f(V (G2)) except f(v) = f2(v) +
dn/2e = 0 + dn/2e = f1(v).

Finally, the set of induced edge labels are

f̄(E(G1)) = f̄1(E(G1)) =
[
1, dn/2e

]
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Figure 1: A caterpillar with the 2-fold graceful labeling described in the
proof for Theorem 2. Subgraphs G1 and G2, as defined in the proof, are
shown with thin and thick lines, respectively, and v is the vertex with the
square shape.

and

f̄(E(G2)) = f̄2(E(G2)) =
[
1, bn/2c

]
.

Therefore, by definition, f is a 2-fold graceful labeling of G. �

These results provide further evidence in support of the following con-
jecture by El-Zanati.

Conjecture 1. Every tree is 2-fold graceful.

2.3 Cycles

If every vertex in a graph G has even degree, then it is known that in
any Rosa-type labeling of G the number of edges with odd labels must be
even. This is known as the parity condition (see [6]). Thus cycles of the
form C4r+1 cannot be graceful or 2-fold graceful. As stated previously, even
cycles are 2-equitable [12] and hence 2-fold graceful. It remains to be shown
that C4r+3 is 2-fold graceful.

First, we note the following result by Abrham and Kotzig [1] regarding
α-labelings of paths.

Lemma 3. Let k be a positive integer and let f be an α-labeling of a path
of length n with the endvertices w and z such that f(w) < f(z). Then the
following relations hold:

I. f(w) + f(z) = k if n = 2k and f(w) ≤ k − 1,

II. f(w) + f(z) = 3k if n = 2k and f(w) ≥ k,

III. f(z)− f(w) = k if n = 2k − 1.

The removal of any edge in C4r+3 yields a path of length 4r + 2, which
is necessarily a caterpillar. Applying the results from the previous theorem
and lemma, we can show the following.
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Figure 2: A C11 with the 2-fold graceful labeling described in the proof for
Theorem 4. Subgraphs G1 and G2, as defined in the proof, are shown with
thin and thick lines, respectively, v is the vertex with the square shape, and
edge {w, z} is shown with a dashed line.

Theorem 4. For all r ∈ N, the cycle C4r+3 is 2-fold graceful.

Proof. Let r be a nonnegative integer and let G be a path of length 4r+ 2
with end vertices w and z. Since G is a caterpillar, we define G1, G2, v,
f1, f2, and f as in the proof for Theorem 2. Note the following 3 items:
(i) v is distinct from both w and z, (ii) both G1 and G2 are paths of length
2r + 1, and (iii) v is an end vertex of both G1 and G2. Without loss of
generality, we assume that w is an end vertex of G1, which implies that
f1(w) < f1(v) = 2r + 1 and f2(z) > f2(v) = 0. Thus, by Lemma 3,
we have that f1(v) − f1(w) = r + 1 = f2(z) − f2(v), which implies that
f1(w) = f1(v)− r − 1 = r and f2(z) = f2(v) + r + 1 = r + 1.

Finally, consider the graph G′ with vertex set V (G) and edge set E(G)∪{
{w, z}

}
. Clearly, G′ is a cycle of length 4r+3 with f

(
V (G′)

)
⊆ [0, 4r+3].

An example of C11 with the described labeling f can be seen in Figure 2.
The set of edge labels of G′ induced by f include f̄(E(G1)) = [1, 2r + 1]
and f̄(E(G2)) = [1, 2r+ 1]. Furthermore, the induced edge label on {w, z}
is

f(z)− f(w) =
(
f2(z) + 2r + 1

)
− f1(w) = (r + 1) + 2r + 1− (r) = 2r + 2.

Therefore, by definition, f is a 2-fold graceful labeling of G′. �

2.4 Complete Bipartite Graphs

Next we show that complete bipartite graphs are 2-fold graceful.

Theorem 5. All complete bipartite graphs are 2-fold graceful.

Proof. Let G be the complete bipartite graph Km,n with vertex bipartition
{U, V } where U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn}. If either m
or n is 1, then Km,n is a caterpillar, and the result follows from Theorem 2.
Thus, we assume both m and n are at least 2.
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Figure 3: A K4,5 with the 2-fold graceful labeling described in Case 1 of
the proof for Theorem 5. Vertex sets A1, A2, and V , as defined in the
proof, are shown with differing vertex shapes: black circles, white circles,
and black squares, respectively.

Case 1: m is even.
Let m = 2k where k ≥ 1, let A1 denote the vertex set {u1, u2, . . . , uk},
and let A2 denote the vertex set of {uk+1, uk+2, . . . , u2k}. Now, define a
labeling f : V (G)→ [0, 2kn] by

f(x) =


(i− 1)n if x = ui ∈ A1,

(i− 1)n+ 1 if x = ui ∈ A2,

(k − 1)n+ i if x = vi ∈ V .

An example of K4,5 with the described labeling f can be seen in Figure 3.
The minimum value in f(A1) is 0, and the maximum value is (k−1)n. The
minimum value in f(A2) is kn+1, and the maximum value is (2k−1)n+1.
The minimum value of f(V ) is (k− 1)n+ 1, and the maximum value is kn.
Thus, the vertex labels are all unique because

f(A1) < f(V ) < f(A2).

Consider the edge labeling induced by f . By the division algorithm,
there exist unique integers q and r such that ` = qn + r with 0 ≤ q ≤
k − 1 and 1 ≤ r ≤ n. Then ` is the induced edge label on {uk−q, vr} and
{uk+1+q, vn+1−r} because

f(vr)− f(uk−q) =
(
(k − 1)n+ r

)
−
(
(k − q − 1)n

)
= kn− n+ r − kn+ qn+ n

= qn+ r

and

f(uk+1+q)− f(vn+1−r) =
(
(k + 1 + q − 1)n+ 1

)
−
(
(k − 1)n+ n+ 1− r

)
= kn+ n+ qn− n+ 1− kn+ n− n− 1 + r

= qn+ r.
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Figure 4: A K7,5 with the 2-fold graceful labeling described in Case 2 of
the proof for Theorem 5. Vertex sets A1, A2, B1, and B2, as defined in the
proof, are shown with differing vertex shapes: black circles, white circles,
black squares, and white squares, respectively.

Therefore, by definition, f is a 2-fold graceful labeling of K2k,n.

Case 2: m and n are odd.
Let m = 2k + 1 and let n = 2s + 1 where k, s ∈ N. We also define the
following vertex sets:

A1 = {u1, u2, . . . , uk+1}, B1 = {v1, v3, v5, . . . , v2s+1},
A2 = {uk+2, uk+3, . . . , u2k+1}, B2 = {v2, v4, v6, . . . , v2s}.

Now, define a labeling f : V (G)→
[
0, (2k + 1)(2s+ 1)

]
by

f(x) =


i− 1 if x = ui ∈ A1,

(2k + 1)s+ i if x = ui ∈ A2,
i+1
2 · (2k + 1)− k if x = vi ∈ B1,
i
2 · (2k + 1) if x = vi ∈ B2.

An example of K7,5 with the described labeling f can be seen in Figure 4.
The minimum value of f(A1) is 0, and the maximum value is k. The
minimum value of f(A2) is (2k + 1)s + k + 2, and the maximum value is
(2k+1)s+2k+1. The minimum value of f(B1) is k+1, and the maximum
value is (2s+ 2)/2 · (2k + 1)− k = (2k + 1)s+ k + 1. The minimum value
of f(B2) is 2k + 1, and the maximum value is (2k + 1)s. Also,

f(B1) = {t · (2k + 1)− k : 0 ≤ t ≤ s+ 1},
f(B2) = {t · (2k + 1) : 0 ≤ t ≤ s},

and since t1 · (2k+ 1)− k = t2 · (2k+ 1) has no solution with t1 and t2 both
integers, f(B1) and f(B2) are disjoint. Hence, the minimum value of f(V )
is k+ 1 and the maximum value is (2k+ 1)s+ k+ 1, and the vertex labels
are all unique because

f(A1) < f(V ) < f(A2).

9
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Next, suppose we look for the largest edge label
⌈
(2k+ 1)(2s+ 1)/2

⌉
=

(2k + 1)s+ k + 1. This is the induced edge label on {u1, v2s+1} because

f(v2s+1)− f(u1) =
(
(2s+ 2)/2 · (2k + 1)− k

)
− (0)

= (2k + 1)s+ k + 1.

Suppose we look for an edge label among the next largest edge labels:
` ∈

[
(2k + 1)s + 1, (2k + 1)s + k

]
. That is, suppose ` = (2k + 1)s + r

where 1 ≤ r ≤ k. Then ` is the induced edge label on {uk+2−r, v2s+1} and
{uk+1+r, v1} because

f(v2s+1)− f(uk+2−r) =
(
(2s+ 2)/2 · (2k + 1)− k

)
− (k + 2− r − 1)

= (2k + 1)s+ k + 1− k − 2 + r + 1

= (2k + 1)s+ r

and

f(uk+1+r)− f(v1) =
(
(2k + 1)s+ k + 1 + r

)
−
(
1 · (2k + 1)− k

)
= (2k + 1)s+ k + 1 + r − 2k − 1 + k

= (2k + 1)s+ r.

Finally, suppose we look for an edge label ` ∈
[
1, (2k+1)s

]
. By the division

algorithm, there exist unique integers q and r such that ` = (2k + 1)q + r
with 0 ≤ q ≤ s − 1 and 1 ≤ r ≤ 2k + 1. If 1 ≤ r < k + 1, then ` is the
induced edge label on {uk+2−r, v2q+1} and {uk+1+r, v2s+1−2q} because

f(v2q+1)− f(uk+2−r) =
(
(2q + 2)/2 · (2k + 1)− k

)
− (k + 2− r − 1)

= (2k + 1)q + k + 1− k − 2 + r + 1

= (2k + 1)q + r

and

f(uk+1+r)− f(v2s+1−2q) =
(
(2k + 1)s+ k + 1 + r

)
−
(
(2s+ 2− 2q)/2 · (2k + 1)− k

)
= (2k + 1)s+ k + 1 + r

− (2k + 1)s+ (2k + 1)q − k − 1

= (2k + 1)q + r.

If r = k+1, then ` is the induced edge label on {u1, v2q+1} and {uk+1, v2q+2}
because

f(v2q+1)− f(u1) =
(
(2q + 2)/2 · (2k + 1)− k

)
− (0)

= (2k + 1)q + k + 1

= (2k + 1)q + r
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and

f(v2q+2)− f(uk+1) =
(
(2q + 2)/2 · (2k + 1)

)
− (k + 1− 1)

= (2k + 1)q + 2k + 1− k
= (2k + 1)q + r.

If k + 1 < r ≤ 2k + 1, then ` is the induced edge label on {u2k+2−r, v2q+2}
and {ur, v2s−2q} because

f(v2q+2)− f(u2k+2−r) =
(
(2q + 2)/2 · (2k + 1)

)
− (2k + 2− r − 1)

= (2k + 1)q + 2k + 1− 2k − 2 + r + 1

= (2k + 1)q + r

and

f(ur)− f(v2s−2q) =
(
(2k + 1)s+ r

)
−
(
(2s− 2q)/2 · (2k + 1)

)
= (2k + 1)s+ r − (2k + 1)s+ (2k + 1)q

= (2k + 1)q + r.

Hence, the set of induced edge labels contains 2[1, (2k + 1)s + k] ∪
{

(2k +

1)s + k + 1
}

, and by the counting principle, this must be the entire set
of edge labels. Therefore, by definition, f is a 2-fold graceful labeling of
K2k+1,2s+1. �

2.5 Joins of Trees and Empty Graphs

The join of graphs G and H, denoted G ∨H, is the graph obtained from
the vertex-disjoint union of G and H together with all edges joining the
vertices of G with the vertices of H. That is, G∨H has vertex set V (G)∪
V (H) and edge set E(G) ∪ E(H) ∪ { {u, v} : u ∈ V (G), v ∈ V (H)}, where
V (G) ∩ V (H) = ∅. In [8], Koh, Rogers, and Lim proved that T ∨Km is
graceful if T is a graceful tree. We prove an analogous result.

Theorem 6. Let T be a tree and let m be a positive integer.

• If T is graceful and m is odd, then T ∨Km is 2-fold graceful.

• If T is 2-fold graceful and m is even, then T ∨Km is 2-fold graceful.

As a corollary of this result, several classes of graphs are proven to be
2-fold graceful. For example, paths are both graceful and 2-fold graceful,
and so the fan graph Pn ∨Km is 2-fold graceful for any positive integers n
and m. If the conjectures that every tree is graceful and that every tree is
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Figure 5: The join of P6 and K5 with the 2-fold graceful labeling described
in the proof for the first statement in Theorem 6, where the standard α-
labeling is used as the initial graceful labeling of the P6 shown here with
dashed lines for edges. Vertex sets V (P6), A, and B, as defined in the
proof, are shown with differing vertex shapes: black squares, black circles,
and white circles, respectively.

2-fold graceful hold, this theorem shows T ∨Km is 2-fold graceful for any
tree T and positive integer m.

The result here can be extended to greater generality. If we replace
in the above statement the tree T with any graph G such that |V (G)| −
|E(G)| = 1 (such a graph that is not a tree is necessarily disconnected),
then the proof below still applies. In [2], Acharya shows how such a graph
can be constructed by adding disconnected vertices to any graceful graph.
Using a similar construction and the above theorem implies that, given any
graceful or 2-fold graceful graph H, infinitely many 2-fold graceful graphs
exists with H as a subgraph.

Proof of Theorem 6, first statement. Suppose m is odd and T is a graceful
tree with n vertices. Let m = 2k + 1 where k ≥ 0 and let G = T ∨
K2k+1. Then G has n − 1 + (2k + 1)n = 2kn + 2n − 1 edges. Let g be
a graceful labeling of T with ḡ the edge labeling induced by g. Note in
particular that g(V (T )) = [0, n − 1] and that the size of G is odd. If
k = 0, let V (K2k+1) = {v1} = B; otherwise, let {A,B} be a partition
of V (K2k+1) with A = {u1, u2, . . . , uk} and B = {v1, v2, . . . , vk+1}. Now,
define a labeling f : V (G)→ [0, 2kn+ 2n− 1] by

f(x) =


g(x) + kn if x ∈ V (T ),

(k − i)n if x = ui ∈ A,
(k + i)n if x = vi ∈ B.

An example of the described labeling f can be seen in Figure 5. The
minimum value of f(V (T )) is kn, and the maximum value is n − 1 + kn.
The minimum value of f(A) is 0, and the maximum value is (k− 1)n. The
minimum value of f(B) is (k + 1)n, and the maximum value is (2k + 1)n.
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Thus, the vertex labels are all unique because

f(A) < f(V (T )) < f(B).

Consider the edge labeling f̄ induced by f . First, for e = {x1, x2} ∈
E(T ), we have

f̄(e) = |f(x1)− f(x2)|
= |(g(x1) + kn)− (g(x2) + kn)|
= |g(x1)− g(x2)|
= ḡ(e).

Hence f̄(E(T )) = ḡ(E(T )) = [1, n− 1]. Second, for an edge e incident with
ui ∈ A, we have

f̄(e) = f(x)− f(ui)

= (g(x) + kn)− ((k − i)n)

= g(x) + i · n.

Since g(V (T )) = [0, n−1], the set of labels on all edges incident with ui ∈ A
is thus [i · n, (i + 1)n − 1]. Hence, the set of edge labels on all such edges
incident with a vertex in A is

k⋃
i=1

[i · n, (i+ 1)n− 1] = [n, kn+ n− 1].

Third, for an edge e incident with vi ∈ B, we have

f̄(e) = f(vi)− f(x)

= ((k + i)n)− (g(x) + kn)

= i · n− g(x).

Since g(V (T )) = [0, n−1], the set of labels on all edges incident with vi ∈ B
is thus [(i − 1)n + 1, i · n]. Hence, the set of edge labels on all such edges
incident with a vertex in B is

k+1⋃
i=1

[(i− 1)n+ 1, i · n] = [1, kn+ n].

Therefore, the set of all edge labels is 2[1, kn+ n− 1] ∪ {kn+ n}, and f is
a 2-fold graceful labeling of G. �

The proof for the latter statement in Theorem 6 is similar to that of the
former, but covered in two cases depending on the parity of the size/order
of the tree T .
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Figure 6: The join of P5 and K4 with the 2-fold graceful labeling described
in Case 1 of the proof for the second statement in Theorem 6, where the
2-fold graceful labeling described in the proof for Theorem 2 is used as the
initial 2-fold graceful labeling of the P5 shown here with dashed lines for
edges. Vertex sets V (P5), A, and B, as defined in the proof, are shown
with differing vertex shapes: black squares, black circles, and white circles,
respectively.

Proof of Theorem 6, second statement. Suppose m is even and T is a 2-
fold graceful tree with n vertices. Let m = 2k where k ≥ 1, let G =
T ∨ K2k, and let g be a 2-fold graceful labeling of T with ḡ the edge
labeling induced by g. We partition V (K2k) into sets A = {u1, u2, . . . , uk}
and B = {v1, v2, . . . , vk}.
Case 1: n is odd.
Let n = 2r+1 where r ≥ 0. Then G has 2r+2k(2r+1) = 4kr+2k+2r edges.
Note in particular that g(V (T )) = [0, 2r] and that the size of G is even.
Now, define a labeling f : V (G)→ [0, 4kr + 2k + 2r] by

f(x) =


g(x) + k(2r + 1)− r if x ∈ V (T ),

(k − i)(2r + 1) if x = ui ∈ A,
(k + i)(2r + 1) if x = vi ∈ B.

An example of the described labeling f can be seen in Figure 6. The
minimum value of f(V (T )) is k(2r + 1) − r, and the maximum value is
k(2r + 1) + r. The minimum value of f(A) is 0, and the maximum value
is (k − 1)(2r + 1). The minimum value of f(B) is (k + 1)(2r + 1), and
the maximum value is 2k(2r + 1). Thus, the vertex labels are all unique
because

f(A) < f(V (T )) < f(B).

Consider the edge labeling f̄ induced by f . First, for e = {x1, x2} ∈
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E(T ), we have

f̄(e) = |f(x1)− f(x2)|
= |(g(x1) + k(2r + 1)− r)− (g(x2) + k(2r + 1)− r)|
= |g(x1)− g(x2)|
= ḡ(e).

Hence f̄(E(T )) = ḡ(E(T )) = 2[1, r]. Second, for an edge e incident with
ui ∈ A, we have

f̄(e) = f(x)− f(ui)

= (g(x) + k(2r + 1)− r)− ((k − i)(2r + 1))

= g(x) + i(2r + 1)− r.

Since g(V (T )) = [0, 2r], the set of labels on all edges incident with ui ∈ A
is thus [i(2r+ 1)− r, i(2r+ 1) + r] = [(i− 1)(2r+ 1) + r+ 1, i(2r+ 1) + r].
Hence, the set of edge labels on all such edges incident with a vertex in A
is

k⋃
i=1

[(i− 1)(2r + 1) + r + 1, i(2r + 1) + r] = [r + 1, 2kr + k + r].

Third, for an edge e incident with vi ∈ B, we have

f̄(e) = f(vi)− f(x)

= ((k + i)(2r + 1))− (g(x) + k(2r + 1)− r)
= i(2r + 1) + r − g(x).

Since g(V (T )) = [0, 2r], the set of labels on all edges incident with vi ∈ B
is thus [i(2r+ 1)− r, i(2r+ 1) + r] = [(i− 1)(2r+ 1) + r+ 1, i(2r+ 1) + r].
Hence, the set of edge labels on all such edges incident with a vertex in B
is

k⋃
i=1

[(i− 1)(2r + 1) + r + 1, i(2r + 1) + r] = [r + 1, 2kr + k + r].

Therefore, the set of all edge labels is 2[1, 2kr + k + r], and f is a 2-fold
graceful labeling of G.

Case 2: n is even.
Let n = 2r where r ≥ 1. Then G has 2r− 1 + 2k(2r) = 4kr+ 2r− 1 edges.
Note in particular that g(V (T )) = [0, 2r− 1] and that the size of G is odd.
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Figure 7: The join of P6 and K4 with the 2-fold graceful labeling described
in Case 2 of the proof for the second statement in Theorem 6, where the
2-fold graceful labeling described in the proof for Theorem 2 is used as the
initial 2-fold graceful labeling of the P5 shown here with dashed lines for
edges. Vertex sets V (P5), A, and B, as defined in the proof, are shown
with differing vertex shapes: black squares, black circles, and white circles,
respectively.

Now, define a labeling f : V (G)→ [0, 4kr + 2r − 1] by

f(x) =


g(x) + 2kr − r if x ∈ V (T ),

(k − i) · 2r if x = ui ∈ A,
(k + i) · 2r if x = vi ∈ B.

An example of the described labeling f can be seen in Figure 7. The
minimum value of f(V (T )) is 2kr−r, and the maximum value is 2kr+r−1.
The minimum value of f(A) is 0, and the maximum value is 2kr− 2r. The
minimum value of f(B) is 2kr+ 2r, and the maximum value is 4kr. Thus,
the vertex labels are all unique because

f(A) < f(V (T )) < f(B).

Consider the edge labeling f̄ induced by f . First, for e = {x1, x2} ∈
E(T ), we have

f̄(e) = |f(x1)− f(x2)|
= |(g(x1) + 2kr − r)− (g(x2) + 2kr − r)|
= |g(x1)− g(x2)|
= ḡ(e).

Hence f̄(E(T )) = ḡ(E(T )) = 2[1, r−1]∪{r}. Second, for an edge e incident
with ui ∈ A, we have

f̄(e) = f(x)− f(ui)

= (g(x) + 2kr − r)− ((k − i) · 2r)
= g(x) + i · 2r − r.
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Since g(V (T )) = [0, 2r − 1], the set of labels on all edges incident with
ui ∈ A is thus [i · 2r − r, (i+ 1) · 2r − r − 1]. Hence, the set of edge labels
on all such edges incident with a vertex in A is

k⋃
i=1

[i · 2r − r, (i+ 1) · 2r − r − 1] = [r, 2kr + r − 1].

Third, for an edge e incident with vi ∈ B, we have

f̄(e) = f(vi)− f(x)

= ((k + i) · 2r)− (g(x) + 2kr − r)
= i · 2r + r − g(x).

Since g(V (T )) = [0, 2r − 1], the set of labels on all edges incident with
vi ∈ B is thus [(i− 1) · 2r + r + 1, i · 2r + r]. Hence, the set of edge labels
on all such edges incident with a vertex in B is

k⋃
i=1

[(i− 1) · 2r + r + 1, i · 2r + r] = [r + 1, 2kr + r].

Therefore, the set of all edge labels is 2[1, 2kr + r − 1] ∪ {2kr + r}, and f
is a 2-fold graceful labeling of G. �

3 Labelings of Cubic Multigraphs

Next we investigate 2-fold graceful labelings of cubic graphs and cubic
multigraphs, which necessarily must have edge multiplicity at most 2 in
order to be 2-fold graceful. We specifically focus on the cubic graphs and
multigraphs of order at most 8. There are 9 such simple graphs, only one
of which is disconnected, and 22 multigraphs, only two of which are discon-
nected. We show that every cubic graph and multigraph of order at most 8
is 2-fold graceful except for K4. We list all such multigraphs along with
2-fold graceful labelings in Tables 1–4, and we employ a naming scheme
inspired by that found in [10] for the connected cubic graphs.
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Table 1: Connected cubic simple graphs of order at most 8 shown with a
2-fold graceful labeling where possible.

C1 C2

0

3

2

4

1

5

C3

0

2

1

3

6

5

C4

0 3 4

26

5

1

7

C5

0
3

2

71

4

6

5

C6

0 4

6
5

2
1

3 7

C7

0
1

4

27

3

6

5

C8

0 2

36

5 4

71

Table 2: Connected cubic multigraphs of order at most 6 shown with a
2-fold graceful labeling.

CM1

0 2

13

CM2

0

5

1

4

2

3

CM3

0

2

3

5

1

4

CM4

0

1 3

5

26

CM5

0

5

1

2

4

3
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Table 3: Connected cubic multigraphs of order 8 shown with a 2-fold grace-
ful labeling.

CM6

4

1

2

5

3

7
0 6

CM7

0 3 4 2

6 5

1 7

CM8

1
7

4

53

0

6

2

CM9

0

1

7

4

5 3

2 6

CM10

1

0 6

5
2

47

3

CM11

3
4

7

16

2

0

5

CM12

5
1

4

27

6

0

3

CM13

4

5

3

61

7

2

0

CM14

6

3

5

17

2

4

0

CM15

1

0 6

4
2

73

5

CM16

0

6

2

74

3

5

1

CM17

0

2

5

7

1

4
6

3

CM18

0

4 5

2
6

31

7

CM19

5

0 6

3

7
2

14

CM20

5

4

6

27

1

3

0
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Table 4: All disconnected cubic graphs and multigraphs of order 8 shown
with a 2-fold graceful labeling.

DC1

0 1

46

3 5

89

DCM1

1 2

35

0 4

96

DCM2

0 2

16

3 8

57
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