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Abstract

Working on general hypergraphs requires to properly redefine the
concept of adjacency in a way that it captures the information of
the hyperedges independently of their size. Coming to represent
this information in a tensor imposes to go through a uniformisation
process of the hypergraph. Hypergraphs limit the way of achieving
it as redundancy is not permitted. Hence, our introduction of hb-
graphs, families of multisets on a common universe corresponding to
the vertex set, that we present in details in this article, allowing us to
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have a construction of adequate adjacency tensor that is interpretable
in term of m-uniformisation of a general hb-graph. As hypergraphs
appear as particular hb-graphs, we deduce two new (e-)adjacency
tensors for general hypergraphs. We conclude this article by giving
some first results on hypergraph spectral analysis of these tensors
and a comparison with the existing tensors for general hypergraphs,
before making a final choice.
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1 Introduction

Hypergraphs were introduced in [4]. Hypergraphs are defined as a family
of nonempty subsets—called hyperedges—of a set of vertices. Elements of
a set are unique. Hence elements of a given hyperedge are also unique in
a hypergraph. Hypergraphs fit to model collaboration networks—Newman
[32, 31]—, co-author networks—Grossman and Ion [16], Taramasco et al.
[53]—, chemical reactions —Temkin et al. [55]—, genome—Chauve et al,
[7]—, VLSI design—Karypis et al. [21]—and other applications. More gen-
erally, hypergraphs perfectly preserve entities grouping information, since
they succeed in capturing p-adic relationships. In Berge and Minieka [4],
Stell [50] and Bretto [6] hypergraphs are defined differently. In this arti-
cle, the definition of (6] is used, as it does not impose the union of the
hyperedges to cover the vertex set.

Multisets extend sets by allowing duplication of elements. As mentioned
in Singh et al. [49], N.G. de Bruijn proposed to Knuth the terminology mul-
tiset in replacement of a variety of existing terms, such as bag or weighted
set. Multisets are used in database modelling: in Albert [1] relational alge-
bra extension were introduced to manipulate bags—see also Klug [22)—by
studying bag algebraic properties. Queries for such bags have been largely
studied in a series of articles—see references in Grumbach et al. [17]: bags
prevent the costly operation of duplicate search. In Hernich and Kolaitis
[19], information integration under bag semantics is studied as well as the
tractability of some algorithmic problems: they showed that the GLAV
(Global—And—LocaI—As—View) mapping of two databases problem becomes
untractable over such semantic. Multisets are also used in P-computing

in the form of labelled multiset, called membrane—see Pun [41] for more
details.

Taking advantage of this duplication permissiveness, we construct an
extension of hypergraphs called hyper-bag-graphs (hb-graphs for short).
There are three main reasons to such an extension. The first one is that
multisets are extensively used in databases as they allow the presence of
duplicates—Lamperti et al. [24]—removing duplicates (and thus obtaining
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sets and hypergraphs) being a costly computing operation. The second is
that natural hb-graphs —hb-graphs based on multisets with non-negative
integer multiplicity values— allow results on the e-adjacency tensor!, not
only for hb-graphs themselves but also, as a special case, for hypergraphs,
Jllowing existing tensors—Banerjee et al. 2], Ouvrard et al. [36], Sun et al.
[51]—to have alternatives which have meaningful interpretation to the steps
taken during their constructions via the hb-graph uniformisation process.
The third reason is linked to the first: allowing vertex multiplicity to be
specific to the structure they belong is required by many applications, such
as ranking of words by random walks—Bellaachia and Al-Dhelaan [3]—
bag of words for text —Harris [18]—, bag of visual words—Peng et al.
[45]—, bag of features for image classification—Nowak et al. [33]—, bag of
patterns for finding similarities in time series—Lin et al. [26], Lin and Li
[27]—, bag of entities for ranking—Xiong et al. [56]-— We already applied
these concepts to define a diffusion by exchange inside hb-graphs to rank
not solely vertices but also hb-edges— Ouvrard et al. [39}—

Section 2 recalls the essential results needed on multisets and then in-
troduces different algebraic representations of natural multisets that will be
needed later for the algebraic description of hb-graphs. Section 3 develops
o mathematical construction of Hyper-Bag-Graphs (or hb-graphs). Section
1 gives an algebraic description of hb-graphs and draws consequences for
the e-adjacency tensor of hypergraphs. Section 5 gives results on the con-
structed tensors. Section 6 evaluates the constructed tensors and proceeds
to a final choice on the hypergraph e-adjacency tensor. Section 7 concludes
this article and provides some indications on future work.

2  On multisets

We start by reminding key points on multisets, and introduce afterward
two algebraic representations of multisets that will be used in hb-graphs.

1\We often misuse the word tensor for its hypermatrix representation in a canonical

basis in the verbatim of this article, following the abuse made in Qi and Luo [47].

Nonetheless, when writing it mathematically, we make the difference between the tensor

A of dimension 7 and rank r and its canonical hypermatrix representation, written

A = (a;, i, ) as defined in Subsection 4.2.5. For a full introduction on tensors one can

refer for instance to [25]. Only elements of LY(V)=V®..0V admits the restricted
Ny, iraempmeet?

ktimes
approach that is presented in Section 3.
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2.1 Generalities

The concept of multisets is known from ancient times. Knuth 23] men.
tioned that N.G. de Bruijn coined the word “multiset” to designate stryc.
tures that were previously called “list, bunch, bag, heap, sample, weighted
set, collection” in the litterature. In Blizard et al. (5], the concept of mul-
tiset is traced back to the very origin of numbers, when numbers Were
represented by repeating occurrences of sylbols. In Knuth [23] and ip
Patwardhan et al. [40], the first known usage of multisets is attributeq
to the Indian mathematician Bhaskaracharya around 1150 in the Lilavati
manuscript where the permutations of the multiset {4,5,5,8, 8} are listed.
Multisets were also briefly used by Dedekind in the last two paragraphs of
his essay of 1888 “Was sind und was sollen die Zahlen”—Dedekind [12]. In
Blizard et al. [5], a full historical approach of multisets is achieved: this
approach cites Knuth [23] where the algebra of multisets is put in corre.
spondance with the multiplicative theory of positive integers. Blizard et 3],
[5] also cite the usage of multisets by Weierstrass for the construction of
real numbers. The authors give interesting philosophical aspects of multi-
sets that allow multiplicity without diversity since occurrences of a single
element in a multiset cannot be distinguished; this opposes the statements
of Frege and Leibniz about the diversity associated with numbers, as exact
identity has to be unicity. This point of view can give interesting develop-
ment on multisets as introduced by Syropoulos [52].

In Blizard et al. [5], the authors start by giving the following naive
concept of multiset before building the theory MST of multisets:

“The naive concept of multiset that we now formalize has the following
properties: (i) a multiset is a collection of elements in which certain ele-
ments may occur more than once; (ii) occurrences of a particular element
in a multiset are indistinguishable; (iii) each occurrence of an element in
a multiset contributes to the cardinality of the multiset; (iv) the number
of occurrences of a particular element in a multiset is a (finite) positive
integer; (v) the number of distinguishable (distinct) elements in a multiset
need to be finite; and (vi) a multiset is completely determined if we know

which elements belong to it and the number of times each element belongs
to it.”

Nonetheless, the requirement (v) on the finitude is not necessary, and
relying on Singh et al. [49], we will give the definitions on multisets with-
out this constraint and this will hold in the remaining of this article. We
consider a countable set A of distinct objects and a subset W CRT. We

~ consider m an application from A to W. Then 2, £ (A,m)? is called a

2We systematically use fraktur font to designate multisets or mathematical objects
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multiset—or mset or bag—on A. A is called the ground or the uni-
yerse of the multiset 2,,, m is called the multiplicity function of the
multiset 2. .5 £ {x € A: m(z) # 0} is called the support of 2. The
clements of the support of a mset are called its generators. A multiset
where W € N is called a natural multiset.

We write 90 (A) the set of all multisets of universe A. Some extensions
of multisets exist where the multiplicity function can have its range in
7—called hybrid set in Loeb [28]. Some other extensions exist like fuzzy
multisets—Syropoulos [52]. Most definitions when not restricted to natural
multisets can extend to W C R.

Several notations of msets exist. One common notation which we will
use is: W = {27¥ 11 € [n] Az € A} with A = {z; : i € [n]} the universe
of the mset 2, and the notation Vi € [n] : mi=m(z:)-

Another useful notation for a natural multiset is the one similar to an

unordered list: 2, = TiyeveyZLlye o1 Tnye- 1 ¥n
A > - o
™, times Mg, times

In this last representation, we do not write the elements that are not in
the support, also the universe has to be clearly stated?.
The m-cardinality #,2» of a mset 2n corresponds to the sum of the

multiplicities of the elements of its universe: - - = 3" m(z) while the
T€A

cardinality #2,, of a mset 2, is the number of elements of its support:
HAU,, = |2A%|.

There exists only one multiset of universe A with an empty support that
is called the empty multiset or also the trivial multiset of universe A

and written Q4.

Different operations can be defined on the set of all multisets of the
same universe. We consider up to the end of this subsection two msets
A = (U, mg) and B = (U, mp) on the same universe U. We define different
operations such as inclusion, equality, union, intersection, sum,...

The inclusion of 2 in B—written A C $8—if for all z € U:
meg (x) < mp(z).
9l is then called a submset of B and said included in 8.
If2A C B and B C A, then 2 and B are said equal.

that involves multisets.
3When the universe is made clear by the context, we can abusively write: N =

{zf“':ie{[n]]/\xieA/\m.;#o}.
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The union of 2 and B is the mset € £ 2 U B of universe U and of
multiplicity function me such that for all z € U:

me(z) = max (my(z), mp (2)) .

The intersection of 2 and B is the mset ® 2 ANV of universe U/ and
of multiplicity function mg such that for all z € U:

mao(z) 2 min (ma (=), mg ()

The sum of 2 and B is the mset & = AW B of universe U and of
multiplicity function mg such that for all z € U:

me(2) £ my(z) + myp (z).

It is worth reminding that U, N and & are commutative and associative
laws on msets of the same universe. The empty mset of same universe
corresponds to the identity for these operations. @ is distributive for U and
M. U and N are distributive one for the other. U and N are idempotent.

The difference of two msets is the mset T = 9 — B of universe U and
of multiplicity function mq such that for all z € U: meg(z) 2 my (z) —
mans(x). We cannote that the classical property for sets: (A-B)NB =
O does not hold for multisets—see Singh et al. [49] for an example.

The complementation of referring to a family R of multisets (2;) I
of universe U such that 2 e G, is the multiset 2 of universe U and of
multiplicity function mag such that for all z € U: mg(z) = mealg{ (ma, (z)) —

Finally the power set of a multiset A, —written ﬁ(le)—is defined
as the set of all submsets of ]

We define thoe fusion of two msets 2 of universe U/ and B of universe V
as the multiset § = A® B of universe YUV and of multiplicity function ms

my (z) if £ € U\V
such that for all 2 € UUV : my (2) £ { my (2) +mm (2) ifzeUNV
msg () if z € V\U.

An interesting alternative approach to define multisets is the one given
in Syropoulos [52], where a natural multiset 2, = (A,m) is viewed as
a couple (Ao, p), where Ay is the set of instances of elements of A, that
includes copies of elements, and p is an equivalency relation p over Ay:

Vz € Ao,Vz' € Ag: zpz’ & ce A: zpeA2pe.
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Two elements of Ap such that: zpx’ are said copies of one another.
he unique ¢ € A is called the original element. z and z are said copies of

Also Ao/ p is isomorphic to A and:

vz € Ao/p,3lc € A |{z : z € T}| = m(c) NVz €T : ZpC.

The set Ag is then called a copy-set of the multiset 2m.

We can remark that a copy-set for a given multiset is not unique. Sets
f equivalency classes of two couples < Ag,p > and < Ap, p' > of a given
qultiset are isomorphic.

2.2 Algebraic representation of a natural multiset

n this subsection, we propose two algebraic representations of a natural
aultiset 2, = (A, m) of countable universe A= {z;: 1€ [n]} and multi-
>licity function m.

Vector representation of a natural multiset

A multiset 2, can be conveniently represented by a vector of length the
cardinality of the universe and where the components of the vector represent
the multiplicity of the corresponding element. We assume that the elements

of A are given in a fixed order—it is always pos_ible to index these elements
by a subset of the positive integer set. Hence 2, 8 (m(x:))z,ea 18 called a

vector representation of the multiset 2,,. This representation requires
|A| space and has |A] — |2(*,| null elements.

The sum of the elements of 51: is #mAUm.

This representation will be useful later when considering family of mul-
tisets in order to build the incident matrix of a hb-graph.

An alternative representation is obtained using a symmetric hyperma-
trix. This approach is needed to reach our goal of constructing an e-
adjacency tensor for general hb-graphs and hypergraphs.

Hypermatrix representations of a natural multiset

The unnormalized hypermatrix representation of the natural mul-

tiset 2., = (A, m) is the symmetric hypermatrix A, 2 (Quyir.in )iy ... ir€ln)
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of order » = #,2,;, and dimension n such that Oy ..i, = 1if V5 ¢ [r]
i; € [n] Az, € A}, The other elements are null.

r!
Hence the number of non-zero elements in A, is T i) out of the
m

e,
n” elements of the representation.

r!
The sum of the elements of Ay is thetide—ee
I m()
TEA*
To normalize A,,, we enforce the sum of the elements of the hypermatrix
to be the m-rank of the multiset it encodes.

The normalized hypermatrix representation of the multiset 2,
is the symmetric hypermatrix A 2 (@i, .. 4, )i1 erin€[n] of order r = 4, 9

[T m(z)
and dimension n such that Gy, 5, = we(i'i—T)'—- ifVj € [r] :4; € [n]Az,;. €
r—1)! ’
2(7,- The other elements are null.

3 Hb-graphs

In this section, we extend the work on hyper—bag—graphs—-—hb-graphs for
short—introduced in Ouvrard et al. [39]. Hb-graphs extend hypergraphs
since families of subsets of a vertex set are replaced by families of msets
on a given universe. We start by reviewing the related work that gives
a patchwork of elements that are first steps toward hb-graphs, and then
expose the concept of hb-graphs as a family of multisets on a given universe;
we tackle particularly families of natural multisets on a given universe,
where elements are seen as repetition of a given element. [15] express this
need in real datasets, where two physical objects can be seen “as the same
or equal, if they are indistinguishable, but possibly separate, and identical if
they physically coincide”. We revisit systematically the common definitions
and properties of hypergraphs given in Bretto [6] to extend them to hb-
graphs. We give some first applications.

3.1 Related work

Handling structures similar to hypergraphs but having a “hyperedge-based”
weighting of vertices occurs quite a few times in the literature, for instance
[3], where the authors show that the weighting of vertices at the level of
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the hyperedges in a hypergraph provides better information retrieval using
a modified random walk. They define a vector of weights for each vertex
making weights of vertices hyperedge-based.

In 1 5], the authors define a multiset topology considering a collection
of multisets in the power set of a given multiset. The power set of a given
multiset is defined as the support of the power mset of an m-set: the power
mset of an mset corresponds to the mset of all submsets of that multi-
set (which implies redundancy). They then study the properties of these
multiset topologies. It is a strong background for our work, but multi-
set topologies include all submset of a given collection in the collection.
Multiset topology has to be seen as foundations for potential extension of

simplicial complexes.

In [20]—at the same time we were introducing hb-graphs in [38]—the
authors consider a hypergraph where the hyperedges are multisets, trans-
forming the initial definition of hypergraphs, to extend the Cheng-Lu model
to hypergraphs, to achieve clustering via hypergraph modularity. They use
a family of multisets and define the degree of a vertex as the sum of mul-
tiplicities and the size of a hyperedge as the sum of the multiplicities of its
elements. They obtain good results with their proposed modularity getting
o smaller number of hyperedges cut compared to the one achieved with the
2-section of the hypergraph.

In [9], published after [39], a hypergraph with hyperedge-dependent
vertex weights is defined by considering a quadruple H = (V, E,w, ) where
w is the edge weight vector, and v is refined in a weight ~, (v) for every
hyperedge e € E. The authors are then using implicitly multisets, but
without considering the related algebra. In a recent paper [44], the authors
introduce a continuous incident matrix for multimedia retrieval, which is
similar to our hb-graph incident matrix.

Finaly, we discovered only recently, due to the polysemy used in the
article, that in [42] the authors introduce what they call ([Author’s note:
PZ-])n'mlti-hypergra,pl'y‘s4 using multisets, allowing repetitions of vertices in
the hyperedges, but where two hyperedges cannot be duplicates. ([Author’s
note: PZ-])Multi-hypergraphs are a particular case of hb-graphs as we de-
fine them in this section. When the hyperedges are all of same cardinality
k, the PZ-multi-hypergraph is said k-uniform, and called k-multigraph”.

4Multi-hypergraph is in fact polysemic: multi-hypergraphs originally represent hy-
pergraphs H = (V, E) where the repetition of hyperedges is authorised in E i.e. E is
considered as a family Bretto [6] or a multiset Chazelle and Friedman (8], which is the
direct extension of multi-graph.

51t is also a polysemy: in Majcher [29], k-multigraphs are multi-graphs—where mul-
tiple edges between a couple of vertices can occur—which are also k-graphs—i.e. graphs
that are k-regular.
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We think that a clear distinction should be made between hypergraphs
that are collection of subsets of a vertex set and stuctures that involyesg
either explicitly or implicitly multisets. Multisets require specific opera.
tions; moreover multisets break a certain amount of rules, like the Morgap
laws, and defining complementation in multisets is not straightforward. Ag
mentioned in [15], the Cantor’s theorem is also broken with power set of
multisets. In particular, a hyperedge-based weighting of vertices leads to
many problems when it comes to intersect or gather hyperedges. Hence, the
need of defining properly a structure with a spetific vocabulary that allows

to make a clear distinction between hypergraphs and this new structure
that involves multisets.

3.2 Generalities

Let V' = {v; : 7 € [n]} be a nonempty finite set.

A hyper-bag-graph or hb-graph for short over V is defined in Ou-
vrard et al. [39] as a family of msets over a universe V with support a

subset of V. The msets are called the hb-edges and the elements of V the
vertices.

We consider for the remainder of the article a hb-graph H = (V| €),
with V = {v; :i € [n]} and € = (¢5)eqp) the family of its hb-edges.

Each hb-edge ¢; € & is of universe V and has a multiplicity function
associated to it: Me; : V — W where WC R, When the context is clear,
the notation m; is used for me; and my; for m,, (v;).

A hb-graph is said to be with no repeated hb-edges if:
Vi1 € [p] V52 € [p] : ¢5, = ¢, = 51 = ja.

A hb-graph where each hb-edge is a natural mset is called a natural
hb-graph.

The empty hb-graph is the hb-graph with an empty set of vertices.

A trivial hb-graph is a hb-graph with a non empty set of vertices and an
empty family of hb-edges. '

For a general hb-graph, each hb-edge has to be seen as a weighted system
of vertices, where the weights of each vertex are hb-edge dependent. In a

natural hb-graph the multiplicity function can be viewed as a duplication
of the vertices.

In Pearson and Zhang [42], the authors have introduced what they call
abusively multi-hypergraphs where the hyperedge set is constituted of mul-
tisets of vertices. It corresponds to natural hb-graphs with no repeated
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_edges, name that we keep, as multi-hypergraphs are hypergraphs where
, subsets of vertices the hyperedges correspond to can be repeated, 1.e.
\stitute either a multiset of subsets of vertices—Chazelle and Friedman

_or a family of subsets of vertices—Bretto [6].

The order of a hb-graph $—written O ($)—is given by:

O($) 2 Y max(me (v:))-

i€n]

The size of a hb-graph corresponds to the number of its hb-edges.

If. |J ¢ =V then the hb-graph is said with no isolated vertices.

i€lpl
‘herwise, the elements of V\ |J ¢} are called the isolated vertices.
i€lel
ney correspond to elements of hb-edges with zero-multiplicity for all hb-

lges.

A hypergraph is a natural hb-graph where the hb-edge vertices have
1e as multiplicity for any vertex of their support—and by definition, zero
; multiplicity for the ones not in the support.

The support hypergraph of a hb-graph § = (V, €) is the hypergraph
hose vertices are the ones of the hb-graph and whose hyperedges are the
ipport of the hb-edges. We write H 2 (V,E) with E 2 () e, The
ipport hypergraph of 9.

We can remark that given a hypergraph H, an infinite set Cy of hb-
raphs can be generated that all have this hypergraph as support. A hb-
dge family is attached to each of the hb-graphs in Cyx : each hb-edge
upport corresponds at least to one hyperedge in ‘H and reciprocally each
yperedge of H is at least the support of one hb-edge per hb-graph of
'2;. The unicity of the correspondence is ensured only for hypergraphs and
b-graphs without repeated hyperedges.

The m-range of a hb-graph—written 7, ($)—is by definition:

A
na = max :
Tm () fee Fme
The range of a hb-graph f—written r (§)—is the range of its support
1ypergraph 9.

The m-co-range of a hb-graph—written ¢rm ($)—is by definition:

crm () £ gleig#me-
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The co-range of a hb-graph $i—written cr (§))—is the co-range of jtg
support hypergraph §.

The global m-cardinality of a hb-graph fi—written #,,—is the sum
of the m-cardinality of its hb-edges.

A hb-graph is said k-m-uniform if all its hb-edges have the same
cardinality k.

A hb-graph is said k-uniform if its support hypergraph is k-uniform

Proposition 1. 4 hb-graph §) is k-m-uniform if and only if:
Tm (9) = cnm (9) = k.

Proof. Immediate. a

We can still refer for vertices of a hb-graph §) = (V, €) to the degree
of v € V written deg (v) = d(v): it corresponds to the degree of the same
vertex in the support hypergraph 5. The maximal degree of a hb-graph
$) is written A and corresponds to the maximal degree of the support
hypergraph §.

Nonetheless, in hb-graphs, due to the multiplicity function attached to
each hb-edge, we can consider another kind of degree. To achieve its proper
definition, we define the hb-star b (v) of a vertex v € V as the multiset:

h(v) = {em‘(”) ceeAve e*}.

The support of b(v) is exactly the star of this vertex in the support hyper-
graph §) and the cardinality of bh*(v) is exactly the degree of v.

The m-degree of a vertex v € V of a hb-graph $) is then defined as
the m-cardinality of the hb-star attached to this vertex:

deg,,,(v) £ #,bh(v).

We also consider the maximal m-degree of a hb-graph $); we write it:

A
Am = max deg,, (v).

A hb-graph having all its hb-edges of the same m-degree k is said m-

regular or k-m-regular. A hb-graph is said regular if its support hyper-
graph is regular.

The following proposition is immediate:
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position 2. For any vertex v € V of a natural hb-graph:

d(v) € dm(v) < A

Pro

This property is not true for non-natural hb-graphs.

proposition 3. If a hb-graph with a nonnegative multiplicity function
range s such that: d(v) = dm(v) for all its vertices, then this hb-graph

+s a hypergraph.

We now define the dual of a hb-graph ) = (V,€) as the hb-graph
H 2 (V, é) such that its set of vertices V 2 {g; : j € [p]} is in bijection
fr€= V with the family of hb-edges € of £ such that:

S

vo; € V,3le; € €: u; = fe;)-

And its family of hb-edges &2 (&) icfn] is in bijection g : V — ¢ such
that g (v;) = & for all ¢ € [n]—where:

g {gjmw(”*)z j e lp] Av; =f(¢j)/\”é€9§}'

In Table 1, we present some dualities between a hb-graph and its dual.

H 5
Vertices v;, i € [n] v; = f(¢;),7 € [p]
Hb-edges ¢,7 € [p & =g(v),i€n]
Multiplicity v; € ¢; with my, (v;) | v; € & with m,, (v;)
m-degrees vs m-cardinality dm (¥) #mef
Hmei dm (vj)
m-uniformity vs m-regularity harubilortn k-m-tegular
k-m-regular k-m-uniform

Table 1: Dualities between a hb-graph and its dual

3.3 Additional concepts for natural hb-graphs

3.3.1 Numbered copy hypergraph of a natural hb-graph

In natural hb-graphs, the hb-edge multiplicity functions have their range
which is a subset of N. The vertices in a hb-edge with multiplicity strictly

greater than 1 can be seen as copies of the original vertex.
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Indexing the copies of the original vertex, makes them seen as “num-
bered” copies. We consider a vertex v; belonging to two hb-edges ¢j, and
¢j, of the hb-graph § = (V, &), with a multiplicity me; In e and M,
in e;,. Then e;, Ne¢;, holds min (m%.l (vi) , me,, (vi)) copies: by convention
the ones “numbered” from 1 to min (mej1 s e, ). Remaining copies will be
in the multiset with the highest multiplicity of v;.

More generally, we define the numbered-copy set of a natural multiset
Am = {z]* :i € [n]} as the copy-set A, = {[x,— Gl <8 € [[n]]} where:
[ 5], 15 a shortcut to indicate the numbered copies of the original element
Zi: Tiy 10 Tim, and j is designated as the copy number of the element z;.

We define the maximum multiplicity function of $ as the func-

tion m : V. — N such that for all v € V: m(v) = meaéxme(v) and
€

consider the numbered-copy-set ¥V 2 {[fu,- J']m(v,-) (1€ Hn]]} of the multiset
{v:n(”") i€ [[n]]}

Then each hb-edge ¢, = v, "9 je [k Ad; € [n]} is associated to
15 J o)

a copy-set / equivalency relation < eq,pr > which elements are in V
with the smallest copy numbers possible for any vertex in ex. The hyper-
graph $o 4 (V, EQ) where Ej 2 (e O)kEIP] is called the numbered-copy-
hypergraph of 5.

Proposition 4. A numbered-copy-hypergraph is unique for a gwen hb-
graph.

Proof. It is immediate by the way the numbered-copy-hypergraph is built
from the hb-graph. a

Allowing duplicates to be numbered prevent ambiguities; nonetheless it

has to be seen as a conceptual approach since duplicates are entities that
are actually not discernible.

3.3.2 Paths, distance and connected components

More precisely, a strict m-path v;, €5, %, ---¢;,v;, in a hb-graph §) from a
vertex u to a vertex v is a vertex / hb-edge alternation with s hb-edges e,
such that: Vk € [s], jk € [p] and s+1 vertices v;, with Vk € {0}U[s], ix €
[7] and such that v, = u, v;, = v, u € ¢;, and v € ¢;, and that for all
kels—1], v, €¢;, N Ciktr
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A large: m-path v; ¢;,v;, ... ¢;,v;, in a hb-graph § from a vertex u to
y vertex v 15 a vertex / hb-edge :.alternation with s hb-edges ¢;, such that:
ik € [s], 7% € [p] and s + 1 vertices v;, with Vk € {0} U [s], ik € [n] and
juch that vi, =u, V4, =7, ¥ € ¢j, and v € ¢;, and that for all k € [s — 1],
si, € Cix Ui

The length of a m-path from u to v is the number of hb-edges it
raverses; given a path &2, we write 1 (2?) its length. It holds that if & =
Vg€ Vix - - - €jaViar WE have whatever the path is strict or large: [ (&) = s.

In a path & = v;,€,Vi; -+ - €5,Viys the vertices v;,, k € [s—1] are
-alled the interior vertices of the m-path and v;, and v;, are called the
extremities of the m-path.

If the extremities are different copies of the same object, then the m-
path is said to be an almost cycle. If the extremities designate exactly
the same copy of one object, the m-path is said to be a cycle.

Proposition 5. 1. Fora strict m-path, there are:
H Meej Negp (vik)
k€fs—1]

possibilities of choosing the interior vertices along a giwen m-path
Vi€, Viy » - 5,4, and:

me,-l ('U'zo) 1—[ mzjknejk+1 ('Uzk) meja (’U%)
kefs—1]

possible strict m-paths in between the extrematies.
2. For a large m-path, there are:
H Me; Vej 1y (Uip:)
kels—1]

possibilities of choosing the interior vertices along a given m-path
Vip€j Viy - - - €5, Vi, and:

mtjl (vio) H meij¢,'k+l (v‘ik) Me;, (U‘ia)
kefs—1]

possible large m-paths in between the extrematies.

3. As large m-paths between two extremities for a given sequence of in-
terior vertices and hb-edges include strict m-paths, we often refer as
m-paths for large m-paths.
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4. When a m-path exists from u to v, it also exists from v to w.

Proof. All these results come directly of combinatorics over the multisets
involved in the different paths. O

An m-path v, ¢;,v;, ... ¢;,v;, in a hb-graph corresponds to a unique path
in the hb-graph support hypergraph called the support path.

Proposition 6. Every m-path Vi€, Viy - - - £5,V5, traversing the same hb-
edges and having similar vertices as intermediate and extremity vertices
share the same support path.

Proof. The common support path is then VigF, Vs, - .. €F ;. O

The notion of distance is similar to the one defined for hypergraphs.

The geodesic distance d (u,v) between two vertices u and v of a hb.
graph is the length of the shortest m-path between u and v, if it exists,
that can be found in the hb-graph. In the case where there is no path
between the two vertices, they are said disconnected, and we set: d (u,v) =

+00. A hb-graph is said connected if its support hypergraph is connected,
disconnected otherwise.

A connected component of a hb-graph is a maximal mset of vertices
for which there exists a m-path in between every pair of vertices of the mset
in the hb-graph.

Proposition 7. A connected component of a hb-graph is a connected com-
ponent of one of its copy hypergraph.

The diameter of a hb-graph $—written diam ($))—is defined as:

diam (5) 2 max d(u, v).

3.3.3 Adjacency

In Ouvrard et al. [35] we have introduced different concepts of adjacency
for hypergraphs. The traditional adjacency is a pairwise relationship. In
hb-graphs, hb-edges handle n-adic relationships. Hence, the concept of
adjacency in hb-graphs is more than pairwise.

We consider a hb-graph § = (V, €), a positive integer k and k vertices
not necessarily distinct belonging to V.. We write Uk, m the mset consisting
of these k vertices with multiplicity function m.
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The k vertices of Uk are said k-adjacent in ) if it exists ¢ € € such
that "nk,m g €.

Considering a hb-graph $ of m-range %k = rm (§), the hb-graph cannot
handle any k-adjacency for k strictly greater than rm (53). This maximal
k-adjacency is called the k-adjacency of 9.

We consider now a hb-edge ¢ of a hb-graph §). The vertices in the
support of ¢ are said e*-adjacent. For natural hb-graphs, we say that the
vertices with nonzero multiplicity in a hb-edge are e-adjacent.

We can remark that e*-adjacency does not support redundancy of ver-
tices while e-adjacency in natural hb-graphs allows it. e-adjacency in nat-
ural hb-graphs takes into account the multiplicity of the different vertices,
which is not the case of e*-adjacency.

In non-natural hb-graph, the vertices in the support of hb-edges with
multiplicity different from 1 cannot be seen as copies of one another, hence
only the e*-adjacency is valid for this kind of hb-graphs.

Two hb-edges are said incident if their support intersection is not
empty.

3.3.4 Sum of two hb-graphs

Let $; = (V4, €;) and $2 = (V2, €2) be two hb-graphs.

The sum of two hb-graphs £, and )3 is the hb-graph, written 1492,
that has:

e ViUV, as vertex set

e &; + €, as hb-edge family: hb-edges are obtained from the hb-edges
of &;—respectively €—with same multiplicity for vertices of Vi—
respectively Va—but such that for each hyperedge in €;—Trespectively
¢,—the universe is extended to V3 UV2 and the multiplicity function
is extended such that Yo € Vo\V; : m(v) = O (respectively Vv €
Vi\Vz : m(v) =0)

A
o H +H2 = (ViU Ve, €+ &)
This sum is said direct if &; + &2 does not contain any new pair of repeated
hb-edge other than the ones already existing in €; and in &,, and that &;

and €, do not have any common hb-edges. In this case, the sum is written
$; ® H2 and called the direct sum of the two hb-graphs $; and 2.
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3.4 An example

Example 3.1. Considering ) = (V, €), with V = {v1,v2, v3, v4, V5, v6, v7}
and ¢ = {31,32, e, 34} with: ¢; = {v%,vz,vé}, ep = {vg,vé}, g == {vé,vg},
ey = {ve}. It holds:

e1 | ex [ e3 [ eq | dm(vi) | max{m., (vi)}
vy 2 0 0 0 2 < 2
Vo 0! 8| o] o0 g = 3
Vg 0 1 1 0 2 1
vy 210101 0 2 1
Vs i 0 2 0 3 2
Vg 00|01 1 1 1
vr 0 0 0 0 0 0
#mej 5| 4 81 1

Therefore the order of $ is O () = 2+3+1414+241+0 = 10 and its
size 13 |€| = 4. vy is an isolated vertez. ¢1 and e3 are incident as well as
e3 and e3. ¢4 is not incident to any hb-edge. vy, v4 and vs are e*-adjacent
as they hold in e}, while v2, v} and vé are e-adjacent as they hold in e¢;.

The dual of $ is the hb-graph § = (¥, €) with V = {51 ] € [4])
where T; corresponds to ¢; of the original hb-graph, with j € [4] and € =
{€: i€ [7]} where & =& = {32}, & = {£°}, & = {B 5"}, & =
{5511, 3332} y 86 = {1541} and ¢ = . The &; corresponds to v; of the original
hb-graph, with i € 7] 5 has duplicated hb-edges and one empty hb-edge.

3.5 Hb-graph representations

Representing hb-graphs can be thought along the two main standards found
for hypergraphs —Maikinen [30]—: the subset standard and the edge stan-
dard. But both representations have to be adapted to fit to multisets.

3.5.1 Subset standard

In the subset standard for hypergraphs, a contour line is drawn to surround
the vertices of a hyperedge. Each hyperedge is then represented using these
contour lines. Depending on how their intersection is represented, we obtain
a Venn diagram or an Euler diagram representation of the hypergraph. A
Venn diagram systematically represents each possible intersection between
hyperedges, while an Euler diagram addresses only the intersections that are
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needed for the representation. Hence, the Euler diagram is often preferred
as this representation scales up a bit better than the Venn diagram; but
neither representations scale up to large hypergraphs.

When moving to multisets, a contour line is also drawn around the ver-
tices that are now duplicated. In Radoaca [48], two Venn diagram represen-
tations of multisets are proposed for the representation of 2 and 3 multisets:
a simplified representation where the parts are not disjoint and a complex
representation where the parts are disjoint. Scaling up the number of mul-
tisets seems to be hard to achieve. Euler representation of multisets can
be based on this work: a simplified and a complex representation can be
drawn to depict only the parts needed to be represented. It simplifies the
Venn representation and helps to scale up to somewhat larger hb-graphs.

3.5.2 Edge standard

For hypergraphs, there are two main representations in the edge standard:
the clique representation and the extra-node representation. The clique rep-
resentation transforms the hypergraph in its 2-section graph joining every
pair of vertices of a hyperedge by an edge, while the extra-node representa-
tion is the graph obtained by representing each hyperedge as an extra-vertex
and joining it to each vertex of the corresponding hyperedge.

For hb-graphs, the 2-section graph is always representable by consid-
ering each hb-edge support: but the quantity of information to display as
well as its quality is not optimal in this representation.

Hence, we propose other alternatives based on the extra-node represen-
tation. Each hb-edge is represented by an extra-node. For natural hb-graph
a first representation called the extra-node multipartite representa-
tion is achieved by joining each vertex of the hb-edge to the extra node
with a number of edges that corresponds to the vertex multiplicity. This
representation does not fit for hb-graphs that are not natural; moreover, it
is hard to scale up when the values of multiplicities increase.

For hb-graphs with non-negative multiplicity ranges, we propose a sec-
ond representation based on the extra-node representation of the support
hypergraph, but where the thickness of the edges linking the vertices of the
hb-edge with its extra-node are proportional either directly to the multi-
plicity (absolute version) or to the relative multiplicity of the vertex in the
hb-edge (unnormalised version).

The relative multiplicity of a vertex v; in a hb-edge ¢; is defined as:

A Mg, ('Uz)
Mrey (00) S 1
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We introduce the normalised relative multiplicity of a vertex v; € ¢ ;
in the hb-graph as:

A me; (v) W (v;)
Mar e (’Uz) - #me] M

where 77 (v;) 2 max (me (v;)) and M = max (7 (v)) . This provides another

extra-node representation where the edge thickness is proportional to the
normalised relative multiplicity. This representition allows to have a direct

view of the importance of each vertex contribution to a hb-edge compared
to other hb-edges.

If the hb-graph has some multiplicity function with both negative and
positive values, the former representations can be adapted by using different
shapes for the edges linking the extra-node to the vertices of the hb-edges.

3.6 Some applications

3.6.1 Prime decomposition representation and elementary op-
erations on hb-graphs

In Corso [11], a natural number network based on common divisors of two
vertices is proposed to replace the search for real scale-free networks by
the generation of a deterministic network that is also scale-free. Degrees
of vertices are studied, as well as the clustering coefficient and the average
distance of vertices in the graph. Some topological properties of such net-
works are tackled in Zhou et al. [57]. In Frahm et al. [13], the authors study
the page rank of an integer network built using a directed graph where the
vertices are labelled by nonnegative integers; an edge links two vertices m
and n if m divides n, m being different of 1 and n, with a weight k corre-
sponding to the maximal k such that m* divides n, i.e. the valuation of m
in n. All these approaches are built using graphs and pairwise relationships.

As already mentioned, multisets can be used for prime decomposition—
Blizard et al. [5]. In particular, multisets are intensively used in Tarau
[54] to achieve primality decomposition of numbers and to achieve product,
division, ged and led of numbers. Using hb-graphs, we can revisit some of
the results of Tarau [54] and have a visual representation of simultaneous
decomposition of numbers interpretable in terms of elementary operations
that transform a hb-graph representation into another one. It should also
allow to refine results obtained with graph since multisets handle not solely
the n-adicity that could be achieved by sets, but also the hb-edge based
weighting of the divisors.
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We focus on the prime decomposition of numbers. Considering the set
» of prime numbers, any positive integer n greater or equal to 2 can be
lecomposed in a product of prime numbers: p; with multiplicity m, (¢1)
o p;, with multiplicity mp (,). This decomposition is then uniquely de-
cribed by the multiset: e, = {p;"*,...,p;." } . The prime decomposition

21
ib-graph $p £ (P, €)—where & 2 (en) nem {0'1}——15 the hb-graph of uni-
erse P and of hb-edges the prime decomposition of the integers greater
han 2. It contains all the possible natural multisets composed of elements
f P. To represent this hb-graph, each extra-node is labeled by the corre-
ponding number n which decomposition in prime numbers constitutes the

nultiset e, = {p'::r:ﬂ ’ ‘__’p;:m} _

We consider a subset A of the hb-edges of fp and write 4 2 (P, A) the
;ub-hb-graph of Hp associated to A. We also consider elementary opera-
ions on the multipartite extra-node representation of the natural hb-graphs
.onstructed to switch between the decomposition involved by the two inte-
rers and the prime decomposition of the results. We observed that these
Jlementary operations are similar to the elementary operations involved in
he graph edit distance Gao et al. [14], albeit the fact that with extra-nodes
supplementary operations are possible: deletion of an edge, relabeling of
win extra-node, deletion of an extra-node, merging two extra-nodes.

The decomposition in prime of the product mn of two integers m and
2 is represented by a hb-edge e, of $p which is such that e,,, = ¢,, We,.
The multi-partite extra-node representation of He,..y is obtained from the
>ne of Hi .} by merging the two extra-nodes n and m of the e, and
.. representations, while keeping all the existing edges of their respective
-epresentation. It is illustrated with an example in Figure 1.

9

645 i s00 | oo — e 945 x 900

e e e R o e e ey

Figure 1: Finding the prime decomposition of mn from the decomposition
of m and n with m = 900 and n = 945.
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If we suppose that m divides n, then the decomposition of n + m, in
primes is stored in a hb-edge ¢n..m such that e,.,, = ¢,\em. The multi.
partite extra-node representation of fi¢, . 1 is obtained from the one of
H{e,m,en} DYy deleting all edges in the representation of ¢,, and in the same
quantities the corresponding edges in the representation of ¢,, and relabeling
the extra-node of ¢,, to be the one of enm-

The decomposition in primes of the greater common divider of two
integers m and n is stored in €gcd(m,n) = «€m ) en. The representation
of § fegeitnon} is obtained from the one of N{em,eny bY deleting any edge
from one vertex in e;, to the extra-node representing e,, that is greater in
quantity than the one linking this vertex to the extra-node representing e,,
and reciprocally. The final representation is obtained by deleting one of
the remaining extra-node vertex and its connected edges and relabeling the
other extra-vertex with ged (m,n). It is illustrated in Figure 2.

[ P— R e —

]

7 § 3 3

1
i
945 § %00 | W fewd (045, 000)

'

Figure 2: Finding the prime decomposition of ged (m, n) from the decom-
position of m and n with m = 900 and n = 945,

The decomposition in primes of the least common multiple of two in-
tegers m and n is stored in Clem(m,n) = &m U e,. The representation of
H {ctem@miny } is obtained from the one of (e, e} DY deleting any edge from
one vertex in ey, to the extra-node representing e,, that is greater in quan-
tity than the one linking this vertex to the extra-node representing e,, and
reciprocally. The final representation is obtained by deleting one of the re-
maining extra-node vertex and its connected edges and relabeling the other
extra-vertex with ged (m, n). It is illustrated in Figure 3.
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945

{ s00 ' . | 1o m (945, 000)

Figure 3: Finding the prime decomposition of lem (m,n) from the decom-
position of m and n with m = 900 and n = 945.

We can then formulate the property
mn = ged(m,n) x lem (m, n)

by using the hb-graphs S, ..} and ﬁ{cgcd(m,n);elcm(m,n)}

It holds: €mn = €ged(m,n) ¥ Clem(m,n), Which can be written: emn =
(em N en) W (em U ey), Which can be easily observed in the results shown in
Figure 1 and Figure 4.

i_ !

e (045, 500)

oo (945, 000) red (945, 900)

x
ged (945,000)

P

Figure 4: Illustrating the property lem (m,n) x ged (m, n) = mn with m =
900 and n = 945.

It follows that any connected natural hb-graph can be attached to a
number by labeling vertices with prime numbers and multiplying succes-
sively the hb-edges by this number: in some way it makes a summary of
this hb-graph. Finding the prime labeling such that the number the natural
hb-graph represents is minimal is a NP-hard problem.
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Reciprocally, being given a number we can use its decomposition to
create a bunch of hb-graphs that have this number as overall representation,

3.6.2 Some applications to the modeling and visualisation of tex-
tual datasets

In Ouvrard et al. [34], we developed a hypergraph framework for the visual-
isation of textual datasets. Textual datasets have metadata that describes
data instances; these metadata are of various types, and provide differ-
ent facets of the information space of the textual dataset. For instance, a
publication is stored in a database with some metadata giving information
not only about it, but also on key features of this publication: it often
includes not only authors but also their affiliation that gives access to or-
ganisations, some keywords, the abstract, subject categories, and so on.
The data instances attached to a publication allow to build a network of
those instances. To extract information, we choose one of the types, and
build co-occurrences of another type, called facet type. We illustrate this
in Figure 5. These co-occurrences can either be modeled as multisets or
reduced to the support of these multisets.

So far, we have used hypergraphs in a framework with an extra-node
representation—Quvrard et al. [34]—, which allow to diminish the cogni-
tive load of traditional approaches such as the visualisation of 2-section of
hypergraphs —Ouvrard et al. [37]. Using hb-graphs, the representation of
the data instances for the visualisation part of the framework can be re-
fined. We illustrate this in Figure 5 with instances of a publication dataset,
focusing on keywords and organisations.

Gryl ﬂ
ﬂ 30
|
BUGNENted realty” s ¢ .
X, il " a2
~3 Ceomputer waon® ¢ \ n. = ¢ N ,/
s £. ";“ conegmm N S
A - s artrd aky| “e (s w0}
a e b s / [RZ Mm‘\ /
g s s “SLeNne racunsruCInn”
Fal "n‘ AN
B N

(a) (b) (c)

Figure 5: Building co-occurrences: the reference chosen is “keywords”, the
facet considered is “organisations”. From left to right: (a) original network,
(b) co-occurrence network using hb-graph, (¢) co-occurrence network using
the support hypergraph.
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In textual analysis, a text is often presented in a first analysis as a
»ag of words, wherein word multiplicities correspond to the number of
,ccurrences of the word. A dataset of texts can then be represented by a
\b-graph where the hb-edges are the bags of words modeling each text, the
rertex set being the dictionary of all words occuring in the dataset. The
nultiplicity functions can either represent the number of occurrences or the
-erm frequencies or even the TF-IDF of each term in the dataset.

3.7 Brief conclusion on hb-graphs

Shifting to hb-graphs is not only a change in modeling for visualisation: it
also allows to refine any network where hb-edge-based individual weighting

of vertices is required.
We have already shown in Ouvrard et al. [39] that diffusion by exchange
in hb-graphs provides a fine ranking not only of vertices but also of hb-edges.

We think that extending the definitions of hb-graphs to support negative
multiplicities or even complex values could open the door to a wider variety
of applications.

We can foresee many applications of hb-graphs; they give the best of
several worlds: multisets, sets, graphs, and, also, as we will see in the next
section, algebraic and polynomial approaches. Natural hb-graphs support
the duplication of elements, while general hb-graphs allow the weighting of
elements in a refined manner with respect to hypergraphs.

4 Algebraic representation of a hb-graph

In this section, we consider only hb-graphs with no repeated hb-edge.

4.1 Incidence matrix of a hb-graph

A multiset is well defined by its universe and its multiplicity function. It
can be represented by the multiset vector representation.

Hb-edges of a given hb-graph have the same universe. Let n and p be
two positive integers and a non-empty hb-graph $ = (V, €) with vertex set
V = {v;: i€ [n]} and € = (&) ;- We define the incidence matrix of

the hb-graph $) as the matrix H :

H 2 [m; (vi)]ieun] .
j€lp)
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This incidence matrix is intensively used in Quvrard et al. [39] to for.
malize the diffusion by exchanges in hb-graphs.

Proposition 8. Any nonnegative matriz with real coefficients is the inc;.
dent matriz of an hb-graph.

Any nonnegative matriz with integer coefficients is the incident matriy
of a natural hb-graph.

Using a matrix to store the information Implies a 2-adic relationships:
between vertex and hb-edge. The multi-adic relationship involved by hb-
edges has to be reconstructed from the columns of the incident matrix. The
same occurs with HHT which is sometimes taken in the litterature as an
adjacency matrix: it is pairwise relationships between vertices.

4.2 e-adjacency tensor of a natural hb-graph

To build the e-adjacency tensor A($) of a general natural hb-graph § =
(V, €) without repeated hb-edge—with vertex set V = {v;:i ¢ [»]} and
hb-edge set ¢ = (ej)jem——we take an approach similar to Ouvrard et al.

[36, 35] using the strong link between cubical symmetric tensors and ho.
mogeneous polynomials.

4.2.1 Related work

In [43], that we mentioned in the former section, the ([Author’s note]: k)-
adjacency tensor for k-PZ-multigraphs—i.e. k-m-uniform natural hb-
graph with no repeated hb-edge—is defined as following:

Definition 1. Let #{x = (V,E) be a k-PZ-multigraph on a finite set of
vertices V = {v; : 1 € [n]} and a set of edges E = (ej)jelpﬁ'

The ([Author’s note: k)-adjacency tensor of a k-PZ-multigraph is

the symmetric tensor Ay € Ten of CHR Ay = (as,.4 )ix,---,ikGQny stich
that:
| 1
M) . o, | ‘ s, s
1 ’U',... U = V. sows Tha EE
a’il,“_,ik —_— (m_-‘ 1)! bl f {{ (21 7 tm}} { N Y Js }
0, otherwise.

The author then study some spectral properties of k-PZ-multigraph.
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As we need further refinements and interpretability of our process in
term of m-uniformisation and polynomial homogeneisation, and having de-
veloped it independently, we start after having given the expectations of
such a tensor to first introduce a tensor for elementary hb-graphs, before
retrieving a tensor for k-m-uniform natural hb-graph with no repeated hb-
edge that corresponds to the ([Author’s note]: k)-adjacency tensor of a
k-PZ-multigraph and handling the case of general hb-graphs.

4.2.2 Expectations for the e-adjacency tensor

We formulate the expectations for the e-adjacency tensor of a natural hb-
graph we want to construct. For general hypergraphs, we have insisted
on the interpretability of the construction using a hypergraph uniformisa-
tion process: it has imposed the filling of the hyperedges with additional
and two-by-two different vertices since hyperedges cannot have duplicated
elements.

As natural hb-graphs allow “naturally” vertices to be duplicated, we
can think on different ways of filling the hb-edges with additional vertices.
We have chosen three different ways: the straightforward approach, the silo
approach and the layered approach—as it was already done for the latter
for general hypergraphs in Ouvrard et al. [35, 36].

We first give some expected properties of such a tensor, some of them
being more qualitative than quantifiable.

Expectation 4.1. The e-adjacency tensor should be nonnegative, symmet-
ric and its generation should be as simple as possible.

The motivation behind is that nonnegative symmetric hypermatrices
have nice properties: they can be described with a small number of values.
A hb-edge can be described with only one tuple of indices and their corre-
sponding coefficient, the other coefficients of the tensor being obtained by
permuting the indices of the first one while the same value is kept. More-
over, in the spectral theory, symmetric nonnegative tensors ensure interest-
ing properties as their spectral radius is positive for a nonzero tensor—Qi
and Luo [47]—; furthermore there is at most one H-eigenvalue that corre-
sponds to the spectral radius with a positive Perron H-eigenvector.

Expectation 4.2. The tensor should be globally invariant to vertex per-
mutation in the original hb-graph.

By globally invariant we mean that a permutation of rows on each face
of the hypermatrix follows the same permutation than the one involved in
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the vertex permutation. We do not expect the special vertices added for
the filling of the hb-edges to follow the same rule.

Expectation 4.3. The e-adjacency tensor should allow the unique recon.
struction of the hb-graph it is originated from.

The e-adjacency tensor should describe the hb-graph in a unique way
up to a permutation of indices, so that no two hb-graphs have the same e-
adjacency tensor unless they are isomorphic. sThis is a strong requirement a5
it enforces the addition of special vertices even for k-m-uniform hb-graphs,
where the E—adjacency corresponds to the k-adjacency. Hence, the specia]
vertices will be systematically generated and added to the final tensor in
order to meet this expectation.

Expectation 4.4. Given the choice of two representations, the one that
can be described with the least elements possible should be chosen, Then the
sparsest e-adjacency tensor should be chosen,

It forces the hypermatrix to be easily describable before ensuring the

lowest sparsity possible. The fact that the hypermatrix is symmetric wil]
help.

Expectation 4.5. The e-adjacency tensor should allow direct retrieval of
the vertex degrees.

It is a requirement made for all k-adjacency tensors of uniform hy-
pergraphs. It is also the case for the e-adjacency tensors of Sun et al.

[51], Banerjee et al. [2] and for the first e-adjacency tensor we built for
general hypergraphs.

4.2.3 Elementary hb-graph

A hb-graph that has only one non repeated hb-edge in its hb-edge family
is called an elementary hb-graph.

Claim 4.1. Let § = (V, €) be a hb-graph with no repeated hb-edge. Then:

= @-ﬁc
ece

where $. = (V, (¢)) is the elementary hb-graph associated to the hb-edge .
Proof. Let ¢, € & and e2 € €. As £ is with no repeated hb-edge, ¢; + ¢,

does not contain any new pairs of repeated elements. Thus ey + e, isa
direct sum and can be written e, B He,.

A straightforward iteration over elements ofe € €leads tothe result. [
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We need first to define the k-adjacency hypermatrices for an elementary
hb-graph and for a m-uniform hb-graph.

4.2.4 Normalised k-adjacency tensor of an elementary hb-graph

We consider an elementary hb-graph ), = (V, (¢)) where V' = {v; : 3 € [n]}
and ¢ is a multiset of universe V' and multiplicity function m. The support
of ¢ is ¢* = {vj,,...,v;, } by considering, without loss of generality: 1 <
j1<...<]’ké’n.

¢ is the multiset: ¢ = {v;:” yoen ,v;:j“ } where m; = m (v;).

The normalised hypermatrix representation of e, written Q., describes
uniquely the mset e. Thus the elementary hb-graph $). is also uniquely

k
described by @, as ¢ is its unique hb-edge. Q. is of rank r = # e = Y. my
j=1

and dimension n.

Hence, the definition:

Definition 2. Let $§ = (V,(e)) be an elementary hb-graph with V. =
{vi:i € [n]} and e the multiset {v;:j‘ ' ...,v;zj"} of m-range T = #me,
universe V and multiplicity function m.

The normalised k-adjacency hypermatriz of an elementary hb-
graph §). is the normalised representation of the multiset e, 1.e. the sym-

metric hypermatric Q. 2 (gj,...5.) of rank r and dimension n where the
only nonzero elements are:

. __-'l"l"lut_.h‘7’)’1,,'.”:T
Loj)™ o o) o) (r—1)!

where o € SﬂTBG’

In a elementary hb-graph, the k-adjacency corresponds to #,,¢-adjacency.
This hypermatrix encodes the k-adjacency of the elementary hb-graph.

4.2.5 Hb-graph polynomial

Homogeneous polynomial associated to a hypermatrix: With an
approach similar to Ouvrard et al. [36] where full details are given, let
e1,...,en be the canonical basis of R".

85[,) designates the set of permutations on (]
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(es, ®...® €ir)i ... inc[n} 1S @ basis of £ (K"), where ® is the Segre
outer product.

A covariant tensor Q € L9 (K") is associated to an hypermatrix o 1
(Qil...i,)il,_,,,ireﬁnﬂ by writting O as:

Q= Z qiy..5,€4,59 ... R €y

il,...,ireﬂn] 2

Q is called the canonical hypermatrix representation (CHR for short)

of O.

Considering n variables z; attached to the n vertices v; and z = > ze;,
i€ln
the multilinear matrix product (2,...,2).Q = (2))- Q is a polygnlomial
P (z9):
P(z9) = Z 9iy...i. %4y -+ %5,
'il,...,i,-EH‘n.]
of degree r.

Elementary hb-graph polynomial: Let ., = (V,(¢)) be a hb-graph
with V' = {v; :i € [n]} and ¢ the multiset {v}?’",...,v}t’"} of m-range
7 = #, e, universe V and multiplicity function m.

Using the normalised ‘E-adjacency hypermatrix Q. = (g, ---ir)z'l,...,z',-e n]»

which is symmetric, we can write the reduced version of its attached ho-
mogeneous polynomial P,:

T! m; ™m;
i1 Tk
P, (zp) = = . lqjm"l...jm"kzjl 2y
my,i...my k
— i Mk
#me zj] %y T

Hb-graph polynomial: Considering a hb-graph $ = (V, €¢) with no-
repeated hb-edge, with V = {v; : i € [7]} and € = (ei)ieﬂp}g .

"Where: zo = (215 sl )
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This hb-graph is summarized by a polynomial of degree 7y = meaéc#m (e):
€

P (zo) £ Z ce; Pe: (Z0)

€[pl
c T’l' zméjl mijk,‘_
- z ; €: 1 |q,mijl ik; “4h C ke
M4, - m Ti “ i

icp] i]1 Ik
_ LT Meijy
= E Ce; #mei Zj, n

i€fp}

where ce, is a technical coefficient. P (z0) is called the hb-graph poly-
nomial. The choice of c., will be further made in order to retrieve the
m-degree of the vertices from the e-adjacency tensor.

4.2.6 k-adjacency hypermatrix of a m-uniform natural hb-graph

We now extend to m-uniform hb-graphs the k-adjacency hypermatrix ob-
tained in the case of an elementary hb-graph.

In the case of a r-m-uniform natural hb-graph with no repeated hb-
edge, each hb-edge has the same m-cardinality r. Hence the k-adjacency of
a r-m-uniform hb-graph corresponds to r-adjacency where r is the m-rank
of the hb-graph. The k-adjacency tensor of the hb-graph has rank r and
dimension n. The elements of the k-adjacency hypermatrix are:

Qi .0,
With ?:1, ve e ,z'r e “nﬂ-
The associated hb-graph polynomial is homogeneous of degree 7.

We obtain the definition of the k-adjacency tensor of a r-m-uniform hb-
graph by summing the k-adjacency tensor attached to each hyperedge with
a coefficient ¢; equals to 1 for each hyperedge.

Definition 3. Let § = (V, €) be a hb-graph. V ={v; 11 € In]}.

The k-adjacency hypermatriz of a r-m~uniform hb-graph $ =
(V, €) is the hypermatriz Ag = (@irein )iy ...i,e[n) Qefined by:

A
Ay =) Q.
i€fpl
where Q.. s the k-adjacency hypermatriz of the elementary hb-graph asso-

- Mg, .
ciated to the hb_edgg e; = {v;":'wl e ,'ujki’kt } = ¢.
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The only non-zero elements of Q.. are the elements with indices ob-
i Mg, .
tained by permutation of the multiset {j;n'“ T ks } and are all equal

162 T i
mij, L m,-jki :

(r —1)!

This definition corresponds to the definition’given by Pearson and Zhang

[43], which is a symmetrized version of the one’given in Pearson and Zhang
[42].

We can remark that when a r-m-uniform hb-graph has 1 as vertex mul-
tiplicity for any vertices in each hb-edge support of all hb-edges, then this
hb-graph is a r-uniform hypergraph: in this case, we retrieve the result of
the degree-normalized tensor defined in Cooper and Dutle [10].

Claim 4.2. The m-degree of a vertex v; wn a r-m-uniform hb-graph § of
the k-adjacency hypermatriz is:

degm (UJ) = Z a’ij---jr'

§2,--rdr Eln]

Proof. 3 @jj...j, has non-zero terms only for the corresponding hb-
jza"-$jreﬁnn
edges ¢; that have v; in it. Such a hb-edge contains v; and is described by
_ mij M4, Ml . . .
% =Y Y, o--oavy, ¢ It means that the multiset {{j2,...,5 }}

. My,
corresponds exactly to the multiset {jm"fﬂl Ao 2, U, s } . For each ¢;

(r—1) ) ,
possible permutations
(m.,;j — 1)!m,-¢2! $ % g mizki!

m,-j!muz! - m“kz_

such that v; € e;, there are

.—

of the indices j; to j; and Ajjy.. G =

Also: 30 ajjgo = Y my; =deg, (v;). O
2y, J-€[n] i€p] i vi€es

4.2.7 Elementary operations on hb-graphs
In Ouvrard et al. [36], we describe two elementary operations that are used

in the hypergraph uniformisation process. We describe here two similar
operations and some additional operations for hb-graphs.
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@ration 4.1. Let 5= (V,€) be a hb-graph.

Let wy be a constant weighted function on hb-edges with constant value 1.
The weighted hb-graph $1 2 (V, €, w,) is called the canonical weighted
hb-graph of ).

The application ¢y : 5+ 91 is called the canonical weighting oper-
ation.

Operation 4.2. Let 1 = (V, €, w) be a canonical weighted hb-graph.
Let ¢ € RTt. Let w, be a constant weighted function on hb-edges with
constant value c.

The weighted hb-graph $, 2 (V, €, w,) is called the c-dilated hb-graph
of 9.

The application ¢e.q: H1 > He is called the c-dilatation operation.

Operation 4.3. Let §, = (V, €, w) be a weighted hb-graph. Lety ¢ V
be a new vertex. B s
The y-complemented hb-graph of £, is the hb-graph $g = (V, ¢, 12))

where:

o VEVU{y}

o &2 (€ (e)) ce where the map £ : € = M (V) is such that for all
e€ € £(e) 2 {xmﬂf)(“) Lz € f/} €M (17) with:

A mc(m) 'Zf z e

mMe(e) (m) = i )
ro— #me 2=y

e the weight function w is such that Ve € &: w (€(e)) 2 w(e).

The application ¢y_c @ Hoy Hg is called the y-complemented opera-
tion.
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Operation 4.4. Let §, = (V, &, w) be a weighted hb-graph. Let ye&v
be a new vertex. Let o € R+,

The y*-vertexz-increased hb-graph of $), is the hb-graph ,fj*“ &
(V+, &+, wt) where:

o V*EVU{y}
o ¢t 2 (¢(e))ece where the map ¢ : € -+ M (V1) such that for all
€€ € $(e) 2 {z™0@  z e V) € M(VF) with:

A |me(z) ifzee*
my(e)(z) = &
@ =19
® the weight function is wt is such that Ve € €: wt ($(e)) E w(e).

The application ¢ya_, : Hy + H, is called the y*-vertez-increasing
operation.

Operation 4.5. The merged hb-graph 5\ 2 (‘7 @ ) of a family
(Vi

($:);c; of weighted hb-graphs with Vi € I :
weighted hb-graph where:

y & w;) is the
« VE UV
i€l
o C 2 (zp(e))eez ¢,” where the map ¢ : Y, €; — M(?) such
i€l i€l
that for all ¢ € S &, v(c) € M(?) and is the multiset
i€l
{mm'b(')(m) rT € \7}, with:

me(z) ifzeer
0 otherwise ’

May(e) (I) é {

o Ve € &, W(e) 2 wyle).

The application ¢,, (8:)ic; — }J\ 1s called the merging operation.

@3> €; is the family obtained with all elements of each family &,.
el
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Operation 4.6. Decomposing a hb-graph $ = (V, ¢) into a family of

hb-graphs (5)i);cp, where $; = (V,€&;) such that H = P H; is called a
el

decomposition operation ¢q: H — (9:);c;-

The direct sum of two hb-graphs appears as a merging operation in one
way and as a decomposition operation in the opposite way. For a given
hb-graph, different decomposition operations exist. Nonetheless, the de-
composition in elementary hb-graphs is unique as well as the decomposition
in m-uniform hb-graphs representing the different levels of m-uniformity in
that hb-graph.

We now focus on the preservation of e-adjacency through these different
operations, as it is fundamental to ensure the soundness of the constructed
hypermatrix.

Definition 4. Let § = (V, €) and ' = (V', €') be two hb-graphs.

Let ¢ : § + $' be an elementary operation between a hb-graph and
another one.

¢ is said preserving e-adjacency if vertices of V' that are e-adjacent
in §) and also in V are e-adjacent in ).

& is said preserving exactly e-adjacency if vertices that are e-adjacent
in § are e-adjacent in §) and reciprocally.

We can extend these definitions to ¥ : (£i),c; = 9
Definition 5. Let (£;);c; be a family of hb-graphs with Y1 € I, $); =
(Vi, &) and & = (V', €') a hb-graph.

Let i = (9i);ep ++ H' be an elementary operation between a family of
hb-graphs and a hb-graph.

Y is said preserving e-adjacency if vertices that are e-adjacent in §)’
and also in V = | V; are e-adjacent vertices in ezactly one of the f;,1 € I.
i€l
2 is said preserving exactly e-adjacency if vertices that are e-adjacent
in § are e-adjacent in exactly one of the $);,1 € I and reciprocally.

We can extend these definitions to v : ) = (9:);¢; -

Definition 6. Let (£););c; be a family of hb-graphs with ¥i € I, §; =
(Vir &) and $) = (V, €) a hb-graph.

Let v : §) > (9:);c; be an elementary operation between a hb-graph and
a family of hb-graphs.
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v 18 said preserving e-adjacency if vertices that are e-adjacent in one
of the $;,1 € I and also in V are e-adjacent in $.

v 18 said preserving exactly e-adjacency if vertices that are e-adjacent
in one of the $);,i € I are e-adjacent in § and reciprocally.

Claim 4.3. Let § = (V, €) be a hb-graph.

The canonical weighting operation, the c-dilatation operation, the merg-
ing operation, and the decomposition operation breserve exactly e-adjacency,

The y-complemented operation and the y%*-vertez-increasing operation
preserve e-adjacency.

Proof. Immediate. a

Claim 4.4. The composition of two operations which preserve (respectively
exactly) e-adjacency preserves (respectively exactly) e-adjacency.

The composition of two operations where one preserves ezactly e-adjacency
and the other preserves e-adjacency preserves e-adjacency.

Proof. Immediate. a

4.2.8 Processes involved for building the e-adjacency tensor

In a general natural hb-graph §j, hb-edges do not have the same m-cardinality:
the rank of the k-adjacency tensor of the elementary hb-graph associated
to each hb-edge depends on the m-cardinality of the hb-edge. As a con-
sequence, the hb-graph polynomial is no more homogeneous. Nonetheless,
techniques to homogenize such a polynomial are well known.

We introduce here the hb-graph m-uniformisation process (Hm-UP for
short) which transforms a given hb-graph of m-range rg into a 7g-m-
uniform hb-graph written 7{: this uniformisation can be mapped to the
homogenization of the attached polynomial of the original hb-graph, called
the polynomial homogenization process (PHP).

The Hm-UP can be achieved by different means of filling the not-at-
the-level hb-edges so they reach a m-range of rg: |

o straightforward m-uniformisation levels directly all hb-edges by
adding a Null vertex Y; with a multiplicity being the difference be-
tween the hb-graph m-rank and the hb-edge m-cardinality. It is
achieved by considering the Y;-complemented hb-graph of §j.
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silo m-uniformisation processes each of the m-uniform sub-hb-
graphs obtained by gathering all hb-edges of a given m-cardinality
r in a single sub-hb-graph, which is then ¥;7» ~"-vertex-increased. A
single r5-m-uniformized hb-graph is then obtained by merging them.

e layered m-uniformisation processes m-uniform sub-hb-graphs of
increasing m-cardinality by successively adding a vertex and merging
it to the sub-hb-graph of the above layer. The layered homogeniza-
tion process applied to hypergraphs was explained with full details
in Ouvrard et al. [36]; it involves two-phase step iterations based on
successive {Y}! }-vertex-increased hb-graphs and merging with the di-
lated weighted hb-graph of the next layer.

1.2.9 On the choice of the technical coefficient c.,

To comply to the expectations, the technical coefficient c., has to be cho-
sen such that by using the elements of the e-adjacency hypermatrix i =
:ail...ir)il,___,ireﬁn] , one can retrieve:

1. the m-degree of the vertices: Z B it = QO (vs).
ig,...,ireﬂnl

2. the number of hb-edges |€| .

Similarly to Quvrard et al. [35], we consider a hb-graph $ = (V, €) that
ve decompose in a family of r-m-uniform hb-graphs (f—)‘”)TGIITn]]'

We consider R the equivalency relation defined on the family of hb-edges
Eof § eRe ol = fqe

& /R is the set of classes of hb-edges of same m-cardinality. The elements
f €/R are the sets: €, = {e € €: #e=r}.

Considering R = {r : €, € €/R}, we set € =0 for all r € [rg] \R.
For all 7 € [rg], H- = (V, &) is r-m-uniform.

Itholds: €= |J €,and &, NE,, =0forallry # ry, hence (er)re[[rﬁll
r€lrs]
ronstitutes a partition of € which is unique from the way it has been defined.

9= P %

r€lrs]

Hence:

Each of these r-m-uniform hb-graph )., where the k-adjacency is achieved
oy r-adjacency, can be associated to a k-adjacency tensor A, viewed as a
aypermatrix Ag = (a(r)il.__ir) of order r, hyper-cubic and symmetric of
limension |V| = n.
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We write (ai - ) the e-adjacency hypermatrix associated
f i],...,irﬂeﬂnlﬁ

to ) where nqy = n+ny4, na corresponds to the number of different special
vertices added in the hb-edges. n4 depends on the way the hypermatrix is
built:

® ny =1 for the straightforward process;

® n4q =15 — 1 for the two silo and layered, processes.

For a given r € [rg], the number of hb-edges in §), is given by summing
the elements of Ag_:

n
Z Bty = Z Z Q(r)iig...ir

4y €[] i=115,...,i, €[n]
= > deg, (v)

=1

= F|E,

In the m-uniformized hb-graph of $), the number of hb-edges can also
be calculated using:

DY G, = 75€.

) )--'17:1"5 Eﬂnln

As
T
& = 3 le
r=]
1";)1 -
= Z; Z A(ryiy...ip
r=1 21,030 €[R]
It follows:
Y e, = 22 Y e
- . Leolr g r ; Lyssite
zl,...,zrne[nll] r=1 i1,..ir€[n]
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specific

P ¢d “ 5, ¢cw ﬁr,l ¢c—d ﬁr,c.- .) ¢’m Sj‘w,d ¢Y1-c gsu
£ / orery

Figure 6: Operations on the original hb-graph to m-uniformize it in the
straightforward approach. Parenthesis with vertical dots indicate parallel
operations.

Also, choosing for all 7 € [p]: ¢, = % where r = #,,¢;, We write for
all r € [rg]:
aTH
==
¢, is the technical coefficient for the corresponding layer of level r of the
hb-graph 5.

Hence, the Hm-UP is initiated by applying the canonical weighting to
each m-uniform hb-graph §, that transforms it into $,;. Then the c.-
dilatation operation is applied to each weighted m-uniform hb-graph -
to obtain its c,-dilated hb-graph ., . '

Cr

4.2.10 Straightforward approach

Straightforward m-uniformisation: We first decompose ) = b H
re(rsl
as seen in sub-section 4.2.9.

We then transform each §),,r € [rg] into a canonical weighted hb-graph
$r,1 that is dilated with the help of the dilatation coefficient ¢, to obtain
the c,-dilated hb-graph 9, ., .

This family (8., ) is then merged into the hb-graph: ,4 = @ Hre,-
refrs)
To get a m-uniform hb-graph we finally generate a vertex Y; ¢ V and

- a
apply to $)y ¢ the Yi-complemented operation to obtain iy, 4 = Hsit the

O
Y;-complemented hb-graph of $)..4. Hstr I8 called the straightforward
m-uniformized hb-graph of §).
The different steps are summarized in Figure 6.

£
Claim 4.5. The transformation ¢, : §) > - preserves e-adjacency.
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Proof. ¢ = ®yy-c © Pm © (gqsc—d o ¢cw) 0 ¢g."

All these operations either preserve e-adjacency or preserve exactly .
adjacency. Also, by composition, ¢, preserves e-adj acency. 0

Straightforward homogenization: In ord:,er to homogenize the hb-graph
polynomial we introduce an additional variable y1 that corresponds to the
additional vertex Y; used during the Hm-UP.

The normalised k-adjacency hypermatrix of the elementary hb-graph
g% Mg, . p
corresponding to the hb-edge ¢, = {v;_’:m yeeea Vg "‘} is Q. of rank p; =
#me; and dimension n. The corresponding reduced polynomial is P, (z9) =
o Mg, .

PiZ;l 23 ) jkiJk‘ )

To transform this polynomial of degree pi into a polynomial of degree
75 We have to multiply it by y"*"*+' where m; nt1 =T — p;. It corresponds
to adding the vertex ¥; with multiplicity m; -

The term P, (zo) with the attached tensor Pe, of rank p; and dimension
n is transformed in:

Misida mij; Mgy Min+41
M (zl) = P, (ZU) Yy = PiZj, IEEE . Y

? with the attached tensor R., of rank ry and dimension n + 1.

The CHR of the tensor R, is the hypermatrix R,, = (Til'”i"!)) . The
elements that are non-zero in R, have all the same value:

mijl! sx7g) % mijki !m,— n—i—l!
?‘5! ’

‘The indices of the non-zero elements of R, are obtained by permutation
of the elements of the multiset:

Ty 'mi'i Min !
{.71 317~"7]ki3ka(n+1) +1}'

Pstrie; = P4

The number of possible permutations is:
T‘ﬁ!
mijl! p— mijki ‘mz n+1!

8 indicates parallel operations on each member of the family as spec-

: L i € e
ified in index of the right parenthesis.
gzk = (21, ey 2y YLy ey yk)
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The hb-graph polynomial P (zg) = }_ ¢iP, (zg) is transformed into a

i€fp]
lomogeneous polynomial:
mij Mg, in
R(z1)= ) ciRe (1) = D eiz,™ gty
i€[p] i€fp]

0
epresenting the straightforward m-uniformized hb-graph Hsr of $ with at-

) i ¥ 5 . .
ached hypermatrix R = ) c., R, where ¢, = ™S — 2 This provides

i m&i

i=1
_ direct homogenization of the whole hb-graph polynomial.

Definition 7. The straightforward e-adjacency tensor Agirs 0f @
hb-graph §H = (V, €) is the tensor of CHR A5 defined by:

A
Astr,f_) = Z Ce,-Re.--

i€(p]
where for ¢; = ’U;-r:”l yor 1 Vg e } €€, c = ﬁe is the dilatation coef-
2 mbi
ficient and R, = Til--'ir_n) is the hypermatriz whose elements have only

two possible values: 0 and:

mih! e mijkifmin+1!

Pstre; = 7
T$-

#mez‘

—with Mint1 = Tp — F#mes. The indices of the non-zero elements of R,
are obtained by permutation of the elements of the multiset:

o Ty ,
[, g™, (et )™

Remark 4.1. In practice, writing Astr,s = (all...trﬁ), the element of
Asirg of indices li,-++ 1y, such that:

M4 TRigy . Min
{{ll:"' )lrﬁ}}={,7;n“1'"79ki k;)[n+1] +1}1
g Meiji. ;o
corresponding to a hb-edge ¢; = {v;’l‘ul N o } of the original hb-graph
£, is: ,
|

“ mz_“' o mz‘jk‘ !min+1.
by ilr . =
ey s = 1))
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; . ;. byru—, ) dm
5 &-( Hr ﬁ:‘—"’ 57‘,1 2 d* 5"7% e - ﬁr—t“" gsil
/ rerg

Figure 7: Operations on the original hb-graph to m-uniformize it in the silo
approach. Parenthesis with vertical dots indiate parallel operations.

4.2.11 Silo approach

Silo m-uniformisation: The first steps are similar to the straightforward
approach.

The hb-graph $ is decomposed in layers § = P 9. as described in
r€lrs]
sub-section 4.2.9. Each §,,r € [rs] is canonically weighted and c,-dilated
to obtain £, . .

We generate rg — 1 new vertices YigV,iery —1].

We then apply to each $,, ,r € [rg — 1] the Y;T»~"-vertex-increasing
operation to obtain 9}, the Y»~"_complemented hb-graph for each ), . ,r €

[rs — 1] . The family iy ). e, is then merged using the merging opera-
L )

tion to obtain the rs-m-uniform hb-graph $5 = Hai1. He is called the silo
m-uniformized hb-graph of §.

The different steps are summarized in Figure 7.

O
Claim 4.6. The transformation G5 : 5 > Ny preserves e-adjacency.

Prodf. $s = Pm © (§¢y:n—r_v 0 ¢e.q © ¢cw) o ¢Pq.

The operations involved in ¢s either preserve e-adjacency or preserve
exactly e-adjacency: also, by composition, ¢s preserves e-adjacency. a

Silo homogenization: In this homogenization process we suppose that
the hb-edges are sorted by m-cardinality.

During the silo uniformisation, we added reg — 1 vertices Y; to b A
into the universe, i.e. the vertex set. These vertices correspond to Ty — 1
additional variables—respectively y; to Yr,—1—that we introduce to ho-
mogenize the hb-graph polynomial.
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The normalised k-adjacency hypermatrix of the elementary hb-graph
corresponding to the hb-edge ¢; = { ;Tijl e, ;’::k } is Q. of rank p; =
#mzi and dimension n. The corresponding reduced polynomial is P, (20) =

piZ;, . z:: ¢ of P has for degree the m-cardinality of the hb-edge ¢;, i.e.
#mei- To transform it into a polynomial of degree 75, we use the additional

variable yz ., with multiplicity m; 4 ., =75 — #mé:-

The term P, (zo) with attached tensor P,, of rank #,,¢; and dimension
n is transformed in Re, (Z4t,.es) = Pe; (20) v #‘"+#”‘“ with attached tensor
R., of rank rg and dimension n + 1.

The CHR of the tensor R,, is the hypermatrix R., = (r,-l.__,-,ﬁ) . All
the non-zero elements of R, have the same value:

. Mg M. mijk‘_ !mz- nt#m ei!
psil,c,— s Pt Tﬁ!

—with mM;pyg.ec = 7 — #me;. The indices of the non-zero elements of
R, are obtained by permutation of the multiset:

LY Ty i .
{];n s 1 Ji; Jktr [n+#mei]m n+#mh}‘

P is transformed into a homogeneous polynomial

— E — § : Mijy Midk;  Mintdme;
R (21-%._1) == CiRci (Z#mei) == Cizjl e zjk,i y#mei i
i€(p] 1€(p]

representing the silo m-uniformized hb-graph ﬁs,l of $5 with attached hy-

permatrix R= > c., R., where: c,, = o .

i€[p] Pi #mei
Definition 8. The silo e-adjacency tensor A of a hb-graph ) =
(V, €) is the tensor of CHR A5 = (ail---irﬂ) - defined by:
i ,i,ne T

Agg = Z Ce; Fe;
i€[p]

myj Mijy, T . : ;
and where for ¢; = {vjl‘“ LY k‘} € €, ¢, = D s the dilatation
2 m&;

coefficient and R,, = (Til_,.irﬁ) is the hypermatriz whose elements have

only two possible values, 0 and:

mij b ia mijk‘_ !m,- nt#mei
Paile; = ] #mei
GE
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—with: Mipyy o = 14 — #me;. The indices of the non-zero elements of
R., are obtained by permutation of the elements of the multiset:

. myq . ms 0.
{J'Inz”a---jk,- Jk‘v[n'i'#mei] v #n“}'
Remark 4.2, In th,zs case,

Asﬂ,_f) = Z Cr Z Rei
refrs] eiE{e:#tht:T}

r
where ¢, = 2.
r

Remark 4.3. In practice, writing Ay g = (alr--lr,))a the element of
A, of indices Iy, - - - yUry, such that:

. iq m"J ; in ey
R i iy B

corresponding to a hb-edge ¢; — {v?:ij‘ s ey v;:jk‘} of the original hb-graph
5, i8;

. m,;jl ! oy mijki !min+#m¢i!

e (rs — 1)!

4.2.12 Layered approach

Layered uniformisation: The first steps are similar to the straightfor-
ward approach.

The hb-graph § is decomposed in layers § = P 9, as described in
r€frs]
sub-section 4.2.9. Each §,,r ¢ [r5] is canonically weighted and c,-dilated
to obtain .

We generate r;; — 1 new vertices Y;¢V,ie[rg—1] and write V, =
{Yi:iEﬂTﬁ—lﬂ}

A two-phase step iteration is considered: the inflation phase (IP) and
the merging phase (MP). At step k = 0, Ky = $1,¢, and no further action
is made but increasing k by 1. At step k > 0, the input is the k-m-uniform
weighted hb-graph IC; obtained from the previous iteration. In the IP, K,

is transformed into X'} the ¥;!-vertex-increased hb- graph, which is (k + 1)-
m-uniform.

The MP merges the hypergraphs K and ke+1,e,4, into a single (k +1)-
m-uniform hb-graph }’C-;g
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5 2 Long, fedg b
2 orErg

yes

bm

]
ﬁk+1,ck+1 k< 7‘55? -ilg ﬁlay

Iterative phase

SR > R =ﬁ1,cl J

Initialisation specific

Figure 8: Operations on the original hb-graph to m-uniformize it in the lay-
ered approach. Parenthesis with vertical dots indicate parallel operations.

We iterate while k < rg, increasing in between each step k by 1. When
0

k reaches 7y, we stop iterating and the last IE:;; obtained, written ),y is
called the layered m-uniformized hb-graph of §.

The different steps are summarized in Figure 8.

O
Claim 4.7. The transformation ¢, : ) > iy preserves e-adjacency.

Proof. ¢s =19 o0 (%q&c_d o q&cw;) o ¢pq, where 7 is called the iterative layered

operation that converts the family obtained by gc;bc_d oqﬁcw; o ¢g and

transform it into the Vg-layered m-uniform hb—graph of 9.

All the operations ¢¢4, ¢cw and ¢q either preserve e-adjacency or pre-
serve exactly e-adjacency, and so forth by composition.

The iterative layered operation preserves e-adjacency as the operations
involved are preserving e-adjacency and that the family of hb-graphs at the
input contains hb-edge families that are totally distinct.

Also by composition ¢s preserves e-adjacency. d
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Layered homogenization: The idea is to sort the hb-edges as in the silo
homogenization and consider as well 5 — 1 additional vertices ¥; to Vsl
into the universe, corresponding to r¢ — 1 additional variables respectively

Y1 toyr, .

But in this case, these vertices are added successively to each hb-edge
to fill the hb-edges so they reach all the same m-cardinality rs: a hb-edge
of initial cardinality #,,e will be filled with elements Yy . to ¥, ;. It
corresponds to adding the k-m-uniform sub-hb-graph % with the & +1-m-
uniform sub-hb-graph $, ;; by filling the hb—e‘dge of H with the additiona}
vertex Y to get a homogenized k + 1-m-uniform sub-hb-graph of the ho-
mogenized hb-graph .

The normalised k-adjacency hypermatrix of the elementary hb-graph
corresponding to the hb-edge ¢; = {v;:z""’ i ,v;::j"" } is Q., of rank p; =
#me; and dimension n. The corresponding reduced polynomial is:

Pe, (z0) = p,-z;:"" A e z;::’k"
of degree #,,¢;.
All the hb-edges of same m-cardinality m belongs to the same layer of

level m. To transform the hb-edge of m-cardinality #,,¢; -1 we fill it with
the element Y ...

In this case, the polynomial P,, (zo) is transformed into:
R(l)z,- (z#mc,') = Pe,- (ZO) y:}%mei
of degree #,,¢; + 1.
Iterating over the layers, the polynomial P, (zg) is transformed into the
polynomial:
R(r!)_#mei)ei (z"‘f,—l) = P, (2z0) y:}#mei A @ g yiﬁ—l
of degree rg.

The polynomial P, (z9) with attached tensor Pe, of rank #,,e; and
dimension n is transformed in:

' 1
R(r-ﬁ—'#mei)ei (z"'ij—l) = Rei (ZO) ygll;éme,; s yr,,—l
with attached tensor Riry—stmes)e; Of rank rg and dimension n + rg — 1.

The CHR of the tensor R(rp—fmes)e, 15 the hypermatrix Ry, e e Yeg ™

(r(r 5= Fmes) itoing ) . The elements of R(,, 4. e:)e; have only two possible
values, 0 and:
mijl o mijk,- !

Play,(rp—#mei)e. — Pi Tﬁ!
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The indices of the non-zero elements of Ry, —4tei)es BT€ obtained by
permutation of the elements of the multiset:

-TMj 'mi‘.i_ 1
7 ln ot #tme] o [+ s = b

And P is transformed in a homogeneous polynomial:

R(‘z"'-ﬁ—l) = Z CiR(rﬁ"#mei)ei (zf.h—l)
i€(p]
15 ij i 1
= Z Cipiz.;? . e ij:k y#mci o w y'r;_-,—l
i€p]

O
representing the layered m-uniformized hb-graph $jay with attached hyper-
matrix:
R Z Ce,-R(r_ﬁ—#mc;)qa
i€pl
where: - -
o = Pi #mei.

Definition 9. The layered e-adjacency tensor Auays of a hb-graph

§ = (V, &) is the tensor of CHR Aiay,» & (ail___i, ) ‘  defined by:
s @;,,...,z,ﬁe[[n]]
A
Ala'y,ﬁ'ﬂ = Z c¢sR(T.ﬁ—#mei)€i
i€[pl
where for e¢; = {v;‘ii; - ,fuzﬁk"} €€ ¢, = S _ s the dilatation coef-
£ m&i

ficient and Ry —#,.e)ec = (T(Tn"#mei)il---irb) is the hypermatriz whose
elements have only two possible values 0, and:

mz-jl!.. .

s |
Mijy,
Play,(rg —#mei)es — i H#Hmbi.

rg:

The indices of the non-zero elements of R(ry —# .. e:)e; are obtained by per-
mutation of the elements of the multiset:

AR TGy 1
{g?",...,]kiJk‘,[n—!—#mei]l,...,[n—l-rﬁ-—1] }

Remark 4.4. Ay, can also be written:

Ala’y,ﬁ:' Z Cr Z Re.-a

r€frs] esE{e:#me=r)
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i
where ¢, = —.
»

Remark 4.5. In practice, writing A, q = (all'“lrn)’ the element of
Ay 5 of indices ly, - - s bry, such that:

My LTI 1
{{11,-‘-Jrn}}z{ﬁmﬂwwik«i ot #melt, g — 1) }’

£

g Mijy -
corresponding to a hb-edge ¢; = {v;’:‘“ iy j:_Jk‘} of the original hb-graph
5, ws:

TR Y
Hmih (rg — 1)!

9 Results on the constructed tensors

We remind that each of the tensors obtained is of rank T and of dimension
n + n4 where n 4 is:

e in the straightforward approach: n4 = 1.

° in the silo approach and the layered approach: ng =rg — 1.

5.1 Fulfillment of the expectations

We revisit the expectations and prove they are all met.

Expectation 5.1. The e-adjacency tensor should be nonnegative, symmet-
ric and its generation should be as simple as possible.

Proof. The tensors that have been built are all nonnegative and symmet-
ric. Their generation mostly depends on the content of the hb-edges. Only
the layered approach has a less simple generation process: it is nonethe-
less retained as it is the only possible approach that keeps hypergraph
interpretability via Hm-UP without needing hb-graphs for general hyper-
graphs. a

Expectation 5.2. The tensor should be globally invariant to vertex per-
mutation in the original hb-graph.
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Proof. Let $ = (V, €) be a hb-graph with vertex set V = {v; : i € [n]} and
¢ = () ;e We do the proof only for the straightforward tensor, since
the other proofs are similar.

Let © € S, be a permutation, that corresponds to a relabeling of the
vertices from the universe of the original hb-graph. Applying this relabeling

to the content of the hb-edge e; = {vr.n""‘ v:j 4 } transforms it into

1y ) b

& = {Umjil vy o } The original hb-edge was stored in the elements

(i)’ w(i;)
of the form: a m;,, ™4 (np 1)y n—#mes” It follows that the relabeled hb-
'il 4..2:- ks L i)

graph will have its elements stored in a_.; ymj« (i)™ % (n41)7n ~#m 5 It
corresponds to a permutation of the elements in the tensor corresponding
to the relabeling: the two tensors differ only by a reshuffling of the indices
corresponding to m, which means that the tensor constructed is globally
invariant to a relabeling in the original hb-graph. d

Expectation 5.3. The e-adjacency tensor should allow the unique recon-
struction of the hb-graph it is originated from.

Proof. In the way the elements have been constructed, there is a one-to-one
mapping between the hb-edge and the ordered indices of the coefficient in
the tensor. From these indices, the hb-graph can be reconstructed with no
ambiguity. O

Expectation 5.4. Given the choice of lwo representations, the one that
can be described with the least elements possible should be chosen. Then the
sparsest e-adjacency tensor should be chosen.

Proof. The straightforward tensor requires only one additional element to
capture the information. The three representations are anyway economic as
only one element each time needs to be described in the hypermatrix for a
given hb-edge, the others being obtained by permutation of its indices. O

Expectation 5.5. The e-adjacency tensor should allow direct retrieval of
the vertex degrees.

Proof. The proof will be given in the next subsection. O
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9.2 Information on hb-graph
5.2.1 m-degree of vertices

We built the different tensors so that the retrieval of the vertex m-degree is
possible; the null vertex(-ices) added during the Hm-UP give(s) additiona]
information on the structure of the hb-graph.

Claim 5.1. Let us consider for j € [n] a vertga: v; €V.
Then for each of the e-adjacency tensors built, it holds:
>, Ujjorfey = 3 Mij = deg, (v;)
jg,..‘,jrﬁEE'n-}-n_A]] 11v; €04
Proof. For j € [n]:

> Q.. e has non-zero terms only for the correspond-
j21-"|jr'n E{”+”A]

ing hb-edges of the original hb-graph ¢; containing v;. Such a hb-edge is

described by e; = {v’.""",vm“z o } This means that the multiset
J ly i 7
{{J2, .-, Jry }} corresponds exactly to the multiset {jm"i“l, l;n“’ . l;n“k }

In the straightforward approach, for each ¢; such that vj € ¢;, there are:

(rg —1)!

possible permutations of the indices J2 to jr, and

— . . m,-j!m,-lzl...muk!min_,.l?
JJQ"']rﬁ = (Tﬁ s 1)!

In the silo approach, for each e; such that v; € e;, there are

(rs = 1)!
(mz’j — ]_)Im“z! .. .milk!min-i-#mH!

possible permutations of the indices 7, to j, 5 and

s - . m,;j!m,;lz!...milk!min+#mci1
J132--Jrg T ('rf) _ 1)!

In the layered approach, for each e; such that v; € ¢;, there are:

(rs —1)!
(mz-j = 1)!1’)’2“2! %5 .m“k!
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ossible permutations of the indices j2 to j, which have all the same value

qual to:
mij!m“z! . s .m“k!

JJ?--'Jrn (Tﬁ o 1)!

Also, whatever the approach taken:

Z Ajja...iry = Z m;; = deg, (v5) -

j2:“-3jr_ﬁ Eﬁ'nﬁ 'i:vjeei

1.2.2 Additional vertex information

Che additional vertices carry information on the hb-graph hb-edges that
lepends on the approach taken.

Jlaim 5.2. The layered e-adjacency tensor allows the retrieval of the dis-
Tibution of the hb-edges.

Proof. For j € [nal:

Antjjp.. jrg has non-zero terms only for the correspond-

jz,‘..,j,-ﬁ Eﬂn—l—'nAB
ng hb-edges of the m-uniformized hb-graph %; containing v;. Such a hb-edge

s described by'":

G={v*:1<k<n+tna}.

T'his means that the multiset:

{72, - 3rn 3}

sorresponds exactly to the multiset:

{(n+j)m‘““_1} 4 {k™k 1< k< nt+ng k# 5}

The number of possible permutations of elements in this multiset is:

(’l"f) — 1)'
(min+j = 1)' ]_—I mik! H m:’k!
k€n] ké[{n-;];irfﬁnA]
J

10With the convention, that for j € [nA]: Vntj = Uj
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and the elements corresponding to one hb-edge are all equal to:

H mik!

k€[n.4]
(Ty) e ].)T -
Thus:
> Untjfgivg = D, % Ming; =deg,, (¥;).
jZ’---yjrﬂ eun+nAH jz,...,jr})EE’nB

The interpretation differs between the different approaches.

For the silo approach: There is one added vertex in each hb-edge. The
silo of hb-edges of m-cardinality m, (m, € [rg — 1]) is associated to the

null vertex Y,,,. The multiplicity of Y,,, in each hb-edge of the silo is
Ty — my,.

Hence:

degm (1) _ {e : #me = my}|.

Tf}"‘"ms

The number of hb-edges in the silo m; is then deduced by the following
formula:

{e: fme=m}=lg|— 3 L&y

T —m
m_.,Eﬂr;)—l] .ﬁ g

For the layered approach: The vertex Y; corresponds to the layer of

level j added to each hb-edge with m-cardinality less or equal to 7 with a
multiplicity of 1.

Also:
deg,, (¥;) = e #me < 3}

Hence, for j € [2; 5 — 1]:
e : #me =j} = deg,, (Y;) — deg,, (Y;_1)

and:
e : #me = 1} = deg,, (Y1)
[{e: #me=rg}| = |€] - deg,,, (Y5, _1)
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For the straightforward approach: In a hb-edge of m-cardinality 7 €
[ro — 1], the vertex Y; is added with multiplicity 75 — j. The number of
hb-edges with m-cardinality j can be retrieved by considering the elements
of Agir, of index (n + 1)i1...%,—1 Where 1 < 43 < ... < 5 <70 and
g = e = bry—1 = M+ 1 and the elements with indices obtained by
permutation.

It follows for j € [rs — 1]:

{e: #me=3} = |{e: Y1 €enm(Y1)=r5—7}l
= Z a’n+1i1...irﬂ~—l
ila---,irn-l c [[n+1]]

Hik=n+1}=7r5 -7 —1

The terms O liy.ir g -1 of this sum are non-zero only for the corre-
sponding hb-edges  of the m-uniformized hb-graph having Y; with multi-
plicity 74 — j in it. Such a hb-edge is described by:

G == Ly 1€k<n}+{Yf”_j},

It means that the multiset:

{{i1, - yirg—1}}

corresponds exactly to the multiset:

{k™ik: ke [n]}+ {n+ et

The number of possible permutations in this multiset is:

(rg —1)!

H mik! ('f‘f_, ——-j SR 1)'
ken]

and the elements corresponding to one hb-edge are all equal to:

[T max! x (rs — N
kefn]

(rs — 1)

Hence:

1 ‘ '
r 7 Z Qntlig..ir, = He: #me =7}
fj"'_ & ‘

12,5 lry E'Iﬂ‘}‘lﬂ
|{ik=n+1:2$kgrﬁ}|=rﬁ_j__]_
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The number of hb-edges of m-cardinality rg can be retrieved by:

He: #tme=rs}l=1€l— 3 [{e:#me=j}.

J€lrs—-1]

4

9.3 Some first results on spectral analysis

Let $ = (V,€) be a general hb-graph of e-adjacency tensor Ag of CHR
Ag = (a,-l___ikmx) of order k. and dimension n + n 4.

We write d, ; = deg,, (v;) if ¢ € [n] and dmnts = deg,, (N;) if i =
n+7,3 € [n4f.

In the e-adjacency hypermatrix Ag, the diagonal entries are no longer
equal to zero. As all elements of Ay are non-negative real numbers and as
we have shown in the previous subsection that:

Z aiiz...i,b =

i2yeenrim €[n+na] dnnyi Hi=n+j,j€[na].

It follows:

Claim 5.3. The e-adjacency tensor Ag of a general hb-graph £ = (V, €)
has eigenvalues \ of its CHR Ag such that:

|A| € max (A,,, AX) (1)
where A, = max (d,, ;) and A, = max (dm,nti)
i€[n] i€na4]
Proof. From:
Vi€ [1,n], (Az™71), = Az, (2)
since ai,...;,, are non-negative real numbers, it holds for all ) that:
A—ai 4l < . Z Qiiy...i (3)

ig,...,imeﬂn—i—nAB
Hiig...im =0

Considering the triangular inequality:

Al < X = a;.4| + |as.. 4] (4)

278



Combining (3) and (4) yield:

NS D i Fleil. (5)

i2, 1 imEfntna]

iig ... im =0

But, irrespective of the approach taken, if {i"#} is an hb-edge of the
hb-graph then:

lai | =75

otherwise:
la;..;| =0
and thus writing A, = IIelﬁ (deg,, (v;)) and A}, = .gﬁa.xn (deg,, (N:))
i€fn 1€[[n .4
and using (5) and d,, ; = > Qiig. i + @i.i Yield:
iyt €n+nal

iin. .. Em =0

M < max (Am, A7) -

Remark 5.1. In the straightforward approach:

Ar = deg,, (N1)
= > (=) {e: #me=3}
i€lrs -1}

In the silo approach:

B = m d N;
m jeﬁri‘xlﬁ( egm( J))
= max re —7){e: #Fne=72
i€lry IB((ﬁ J)!{ IH)

In the layered approach:

A = max _(deg,, (IV;
o= e (deg, ()
= max (|{e:#me<jH)
. Jeﬂ'rﬁ—-lh

= {e: Hme <rn— 1)

The values of A\, are independent of the approach taken.
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9.4 Categorisation of the constructed tensors
5.4.1 On classification of hypermatrices

Most of the definitions and results of this subsubsection are taken directly
from Qi and Luo [47], which is the first book on tensor spectral analysis.

We consider a tensor A and its CHR of order m and dimension n:
A = (a5, i ie n] - The set of such hypermatrices is written ¥ A—

The subset of T,, ,, of hypermatrices with onl)tz nonnegative coeflicients is
written IV, ,,.

A hypermatrix A = (a,-l___im)ih_‘_,im cln] € T'n,n is said reducible if it
exists a nonempty proper subset J C [»] such that: Vi; € J,Viy, ..., i, €
[]\J : a4..4, = 0. A hypermatrix that is not reducible is said irre-
ducible. The notion of reducibility has to be seen as a possible way of
reducing the dimensionality of the problem.

Irreducible nonnegative hypermatrices have plenty of nice properties,
particularly the Perron-Frobenius theorem for irreducible nonnegative hy-
permatrices which is one of the two declinations of the extension of the
Perron-Frobenius theorem for irreducible nonnegative matrices.

The Perron-Frobenius theorem for irreducible nonnegative matrices states
that the eigenvector associated to the spectral radius of a nonnegative ma-
trix is non negative, and moreover, if this matrix is irreducible then this
eigenvector is positive and its eigenvalue is the unique one associated with
a nonnegative eigenvector.

The Perron-Frobenius theorem has a lot of applications in probability
with stochastic matrices and is the basis for algorithms such as PageRank,
ensuring that the convergence is feasible—Pillai et al. [46].

But hypermatrices manipulated in hypergraph theory are reducible. In

this case, this first extension of the theorem of Perron-Frobenius cannot be
used.

Weak irreducibility of non negative hypermatrices has been introduced
to help to solve this problem. To define weak irreducibility, an associated
graph G (A) is built out of the nonnegative hypercubic CHR A which
represents A by considering as vertex set [n] and building the edges by
considering an edge from i to J if it exists ay,..;., # O such that j €
o oyt -

A directed graph is strongly connected if for any ordered pair of
vertices (i, 7) of the graph, it exists a directed path from 7 to 1.

A tensor A is said weakly irreducible if its associated graph is strongly



snnected. A tensor that is not weakly irreducible is said weakly re-
ucible.
We now consider a tensor A of nonnegative CHR A = (aiy..im) € Nmn-
The representative vector of A is the vector u (A) of coordinates
i (A) = 3 Qiiy..in- A is called a strictly nonnegative tensor if

iz )~“iim€ﬂn]]
s representative vector is positive.

Let now J be a proper nonempty subset of [n]. The tensor A of CHR
1_] = (ail,,,im) € Nm‘ljt such that QG i Qi) i if il;---aim € J is
alled the principal subtensor of A associated to J.

A is said a nontrivially nonnegative tensor if it exists a principal
ubtensor of A that is a strictly nonnegative tensor.

The following proposition will be helpfull in the spectral analysis of
ib-graphs.
>roposition 9. A nonnegative tensor has a positive eigenvalue if and only
f it is nontrivially nonnegatwe.

As a consequence, a nontrivially nonnegative tensor has its spectral
-adius positive.

Qi and Luo [47] give a procedure to check easily if a nonnegative tensor
s nontrivially negative or not.

5.4.2 Classification of the tensors built

The hypermatrices constructed in the three approaches are symmetric and
nonnegative. This ensures that these hypermatrices have their spectral ra-
dius p(A) which is an H *-eigenvalue of A, which means that p (A) has a
nonnegative eigenvector—all the components of the vector are nonnegative—

associated to it.

A uniform hypergraph tensor is shown in Pearson and Zhang [12] to
be weakly irreducible if and only if the hypergraph is connected. In the
e-adjacency tensors this result does not hold.

Nonetheless, we can claim the following results:

Claim 5.4. Let § = (V, €) be a non-m-uniform hb-graph with: |J ¢ = V.
e€€

If § is connected then its straightforward e-adjacency tensor s weakly

irreducible.
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Proof. This proof combines arguments of Pearson and Zhang [42], with
arguments of Qi and Luo [47] on weak irreducibility of the adjacency tensor
of a uniform hypergraph, and some specific arguments related to the .
adjacency tensors we use for hb-graphs.

Let $) = (V, €) be a non-m-uniform hb-graph with: L] & =

eee

Suppose that the straightforward e-adjacency tensor Ay, 5 of CHR
Agir,g € T%y nt1 is weakly reducible, it means that the associated graph
G (Astr,5) is not strongly connected and hence its matrix representation
AG (A 5) = (@45) is reducible.

As Agtr e is symmetric, its associated graph G (Astr,5) is bidirectional
and Ag(a,,, ,) = (o4;) is symmetric.

It means that it exists a nonempty proper subset J of [n + 1] such that
Vie JVjen+1]\J:a; =0.

As £ is not m-uniform, J cannot be reduced to the singleton {n + 1}
since the special vertex has to be linked to vertices of the hb-edges of m-
cardinality lower than the maximal m-range.

For symmetric reasons, J cannot be [~] , otherwise it would mean that

the special vertex n +1 is isolated, which is not possible as the hb-graph is
not m-uniform.

Thus it exists at least one iy € J, which represents an original vertex of
9 such that Qiyiy..i., = O When at least one of the indices 15, cvy Ury IS iD

[n+1]\J. In these r¢g — 1 indices, at least one corresponds to an original
vertex of 9.

It indicates in this case that the group of original vertices of §) repre-
sented in J are disconnected from the original vertices that are in [rn + 1]\ J.
Hence the hb-graph is disconnected. O

By: |J ¢ = V, we require that there are no unused vertices in the
ec¢

universe.

If the hb-graph is m-uniform and connected, the straightforward e-
adjacency tensor Ay, 5 is weakly reducible as the additional vertex is not
used and hence is isolated in the associated graph of A . In this case, one
can use .Astr,fjl{n]] the principal sub-tensor of Ay, ¢ related to [n] which is
weakly irreducible. As Ay, 5 lﬂn]] is weakly irreducible it is strictly nonneg-
ative and the Ay, 4 is a non-trivially nonnegative tensor, which means by

using the theorem from Qi and Luo [47] that Astr, 55 has a positive eigenvalue
and hence p (Asgir,q) > 0.
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Nonnegative tensor weak irreducibility is a desirable property as it en-
sures that the tensor has a unique positive Perron vector (up to a multi-
plicative constant) associated to its spectral positive radius p (A), which
ensures the convergence of algorithms to find it.

To ensure weak irreducibility, we could transform the straightforward
e-adjacency tensor so its associated graph is always strongly connected. It
is sufficient to add the special vertex to each of the hyperedges: in this
case it will force the associated graph to be connected, albeit the spectral
radius upper-bound will be increased to the maximum between the maximal
m-degree and the number of hb-edges.

Moreover:

Claim 5.5. The three e-adjacency tensors bualt for hb-graphs are non-
trivially nomnegative tensors when the hb-graph is connected and that the
union of the support of hb-edges covers the vertez set.

Proof. We already know that for a connected hb-graph which is not m-
uniform, the straightforward e-adjacency tensor is weakly irreducible, hence
non-trivially nonnegative. For a m-uniform hb-graph, the principal sub-
tensor of Agsir, composed of its n first indices is weakly irreducible, hence
strictly non negative. The proof is similar to the one of Pearson and Zhang
[42] and Qi and Luo [47] for hypergraphs, so we omit it.

We have already explained in Ouvrard et al. [38] how a hb-graph ) =
(V, €) can be decomposed in layers by considering €, = {¢ € €, me =k}
and the hb-graphs $; = (V, &) to obtain ) = P Nk

kelrs]

For the silo e-adjacency tensor, the principal sub-tensor to be considered
is the one obtained using J = [nJU{n+k:1<k<Ts — 1A =0}
Asin gl 18 then weakly irreducible, hence strictly non negative. The tensor
Asil 5 is therefore a non-trivially nonnegative tensor.

For the layered e-adjacency tensor Ajay,s, We consider the principal sub-
tensor Alay,5|, where K = [n] U {n+k: k [kmin, 75 — 1]} With kmin =
min {k : € # 0}. This principal sub-tensor is weakly irreducible as the hb-
graph is connected, hence strictly non negative. Hence, the tensor Ajay 5
is non-trivially nonnegative. O

As a consequence the spectral radii of those tensors are positive.
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5.4.3 A remark on the tensors built

The uniformisation process used to built the three tensors uses the fact
that some additional vertices are added to the hyperedges; if it does not
change the number of hb-edges and the degree of the vertices that are in
the original hb-graph, it has an impact on the connectivity of the uniform
hb-graph compared to the original one.

Nonetheless, to address this problem, it i:s always possible to consider
each connected component of the original hb-graph separately and to bujlg
a tensor for each of this connected component. In this case we do not
change the connectivity.

So we can always assume that we address only connected hb-graphs.

6 Evaluation and final choice

6.1 Evaluation

We have put together some key features of the e-adjacency tensors proposed
in this article: the straightforward approach tensor Agi, 5, the silo approach
tensor A, and Ajay ¢ for the layered approach.

The CHR of the constructed tensors all have the same order rs5. Asil g
and Aj,y, 5 dimensions are r; — 2 bigger than Astr,s (n — 2 in the worst
(n+1)™

case). A, has a total number of elements Boder e
5 —

times smaller
than the two other tensors.

1
FElements of Agir, 5 —Trespectively Ag) ¢—are repeated ——T——respectively

—n——'~——times less than elements of A,y 5. The total number of non-null
Tk

elements filled for a given hb-graph in Ay, ¢ and Agil g are the same and
is smaller than the total number of non-null elements in Apy s

Whatever the approach taken, the tensors are symmetric: a unique
value is needed to have full description of an hb-edge; moreover, this value
depends only on the hb-edge composition.

All tensors are symmetric and allow the reconstruction of the hb- graph
from these elements.

Nodes degree can be retrieved as it has been shown previously. Addi-
tional information on hb-edges is easier to retrieve with the silo and the
layered approach.



6.2 First choice

Insofar as the straightforward tensor is weakly irreducible for non m-uniform
connected hb-graph, and as it is a sufficient desirable property to choose
it, even if it is at the price of less practicability to retrieve information on
hb-edges, we take Astr s for definition of the e-adjacency tensor of the hb-
graph. The preservation of the information on the shape of the hb-edges
through the added null vertex allows to retrieve information on the hb-edge

cardinality.

6.3 Hypergraphs and hb-graphs

Hypergraphs are particular case of hb-graphs and hence the e-adjacency
tensor defined for hb-graphs can be used for hypergraphs. Since the mul-
tiplicity function for vertices of a hyperedge seen as hb-edge has its values
in {0, 1}, the e-adjacency tensor elements differ only by a factorial due to
the cardinality of the hyperedge.

We retain as definition for the e-adjacency tensor of a hypergraph:
Definition 10. The e-adjacency tensor of a hypergraph H = (V, E) having
magimal cardinality of its hyperedges ry = Kmax S the tensor Ay of CHR

A
A% = (ail'"ir“)lgil,...,i,?{ < deﬁned by:
A?‘i :A': Ce,-Re,',
icfp]

max ;s the dilatation co-

and where for e; = {’an---at’jk,-} € E, €, = ]
1

efficient and R., = (Til...i,H is the associated tensor to e;, having all

non-zero elements of same value. The non-zero elements of R, are:

(kmax - kz)'

kmax!

T 51 iy (nA1)emex—ki =

and all the ones whose indices are obtained by permutation of:
G1ee Tk (M4 l)km“—k'i .

As in Ouvrard et al. [36], we compare the e-adjacency tensors obtained
by Banerjee et al. [2] and by Sun et al. [51] with the one chosen in this
article. The results are presented in Table 3.
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elements per hb-edge

e i
& —{"’il y » mosa U,

Nj =Tg — H#me;

Nk =T — #me;

Aﬁtr,fj Aﬂﬂ,ﬁ Alay,f)
Hypermatrix A s A s lay, %
representation
Order Ty T T
Dimension n+1 n+rg—1 ntrg—1 ]
Total number of (n+ 1) (n+ry—1)" (n+rg—1)>
elements
Total number of (n+1)® (nt+r5—1)"" (ntrg—1)7
elements potentially .
used by the way the °
tensor is build ®
Tyl Tyl
Number of repeated Mjiy! w-i:}zj% tn;! mjs,! --“;iﬁ'lﬁ;mik! Ts!

mji,! . .m;;,‘j!

be described to
derived the tensor by
permutation of indices

Number of elements to Conitant Con?ta.nt Conitant
be filled per hb-edge
of size s before
permutation
Number of elements to €] €| €]

Dependent of

Dependent of

Dependent of |

Spectral analysis

increases the
amplitude of the
bounds

increase the
amplitude of the
bounds

hb-edge hb-edge hb-edge
Value of elements composition composition composition
corresponding to a mji,!...mj; In;! Myay ! mgy Ingy! myi ! myi !
hb-edge (g = 1)! (= 1)! (rs = 1)!
Symmetric Yes Yes Yes
Straightforward: Straightforward: Straightforward:
Reconstructivity delete special delete special delete special
vertices vertices vertices
Nodes degree Yes Yes Yes
Information on Ye.s » but not Yes Yes
hb-sdges straightforward
Special vertex Special vertices Special vertices

increase the
amplitude of the
bounds

Interpretability of the
tensor in term of
hb-graph

Yes

Yes

Yes

Table 2: Evaluation of the hb-graph e-adjacency tensor depending on con-

struction

Astr, 5 refers to the e-adjacency tensor built with the straightforward
approach;
Asil, 5 refers to the e-adjacency tensor built with the silo approach;
Alay 5 refers to the e-adjacency tensor built with the layered approach.
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By Sn Ay
Hypermatrix By Su Ay
representation
Order Kivnx kmax Komax
Dimension n n 7+ Kmax — 1
Total number of elements nfmex nFeax (n 4 kmax—=1) "
Total number of elements nfmex e (1 + kmax — 1)
potentially used by the
way the tensor is build
ke ax
a, |E,| with
5™ @, |Es| with . I el
Number of non-zero a=1 LA kmax!
elements for a given B, = By Eiice) Kmax - P kil ks ing!
hypergraph : kyl k! with 7, = Kmax — 8
;
Number of repeated Krnax! s kil..k,n,! with
elements per hyperedge of Kyl k! Ty = Kmmax — 8
size 8
Varying s if prefix
Number of elements to be Vali'cymg s consnderec% = Conitant
filled per hyperedge of Pa (Kenax) HgEpermiiting
, » part
size s before permutation
ax Fmax
Number of elements to be ki: P (kmax) | Bl 3 8B |E|

described to derive the
tensor by permutation of
indices

s=1

a=1

Dependent of

Dependent of
hyperedge iomposition

Dependent of
hyperedge size

Value of elements of a hyperedge composition
s (kmax — 8)!
hyperedge s 2 Ao D S
a, (s—1)! 5 (kepax — 1!
Symmetric Yes No Yes
: Need computation Straightforward:
Reconstructivity e .computatu:.m o of duplicated delete special
duplicated vertices . .
vertices vertices
Nodes degree Yes Yes Yes
_ . Not
Hyperedge cardinality Not straightforward straightforward Yes
Special vertices
I : increase the
pectral analysis Yes Yes amplitude of the
bounds
Interpretability of the No / No No / No No / Yes

tensor in term of
hypergraph / hb-graph

Table 3: Evaluation of the hypergraph e-adjacency tensor
By designates the adjacency tensor defined in Banerjee et al. [2].
Sy, designates the adjacency tensor defined in Sun et al. [51].
Ay refers to the e-adjacency tensor as defined in this article.
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7 Conclusion

Extending the concept of hypergraphs to support multisets and introdyc.
ing hb-graphs has allowed us to define a systematic approach to build the
e-adjacency tensor of a hb-graph. In return, as hypergraphs appear as par-
ticular case of hb-graphs, the e-adjacency tensors are applicable to genera]
hypergraphs. Hb-graphs are a good modeling framework for many reg]
problems and already allow some nice refinements of existing work.

The tensor constructed in Banerjee et al. [2] appears as a transformation
of the hypergraph # = (V, E) into a weighted hb-graph Hp = (V, B, w,):
with the same vertex set but with hb-edges obtained from the hyperedges
of the original hypergraph such that for a given hyperedge all the hb-edges

having this hyperedge as support are considered with multiplicities of ver-

tices such that it reaches k.

We still have to focus on the analysis of the behavior of our constructed
e-adjacency tensor regarding the diffusion process, particularly concerning
the m-uniformation process. The fact that information on hb-edges for
hb-graphs and therefore for hyperedge in hypergraphs are stored in the
e-adjacency tensor should provide a nice explicitation on the role of the
variety of m-cardinality of hb-edges.
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