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Abstract

The line graph L(G) of a nonempty graph G has the set of edges
in G as its vertex set where two vertices of L(G) are adjacent
if the corresponding edges of G are adjacent. Let k > 2 be
an integer and let G be a graph containing k-paths (paths of
order k). The k-path graph Pi(G) of G has the set of k-paths
of G as its vertex set where two distinct vertices of Py (G) are
adjacent if the corresponding k-paths of G have a (k—1)-path in
common. Thus, P2(G) = L(G) and P3(G) = L(L(G)). Hence,
the k-path graph Pi(G) of a graph G is a generalization of the
line graph L(G). Let G be a connected graph of order n > 3 and
let k be an integer with 2 < k <n— 1. The graph G is k-tree-
connected if for every set S of k distinct vertices of G, there
exists a spanning tree T of G whose set of end-vertices is S.
Thus, G is 2-tree-connected if and only if G is Hamiltonian-
connected. It was conjectured that if T is a tree of sufficiently
large order containing no vertices of any of the degrees 2, 3,
..., k+1 for an integer k > 2, then P3(T) is k-tree-connected.
This conjecture was verified for k = 2, 3. In this work, we show
that if T is a tree of order at least 6 containing no vertices of
degree 2, 3, 4, or 5, then P3(T) is 4-tree-connected and so verify
the conjecture for the case when k = 4.

1 Introduction

There are many graphs associated with a given graph. Such graphs are
referred to as “derived graphs”. For a given graph G, a derived graph of
G is a graph obtained from G by a graph operation of some type. The
study of the structural properties of derived graphs is a popular area of
research in graph theory. One of the most familiar graph operations on a
graph is that of the line graph. The line graph L(G) of a nonempty graph
G has the set of edges in G as its vertex set where two vertices of L(G)
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are adjacent if the corresponding edges of G are adjacent. More generally,
for a nonempty graph G, we write L%(G) to denote G and L'(G) to denote
L(G). For an integer k > 2, the kth iterated line graph L¥(G) is defined
as L(L¥~1(G)), where L*~(G) is assumed to be nonempty. In particular,
L(L(G)) = L*(G). Over the years, various generalizations of line graphs
have been introduced and studied by many (see [1, 9], for example).

Another more general class of derived graphs was inspired by line graphs.
Observe that the vertex set of the line graph L(G) is the set of 2-paths of a
graph G (the paths P, of order 2) where twd' vertices of L(G) are adjacent if
the corresponding paths of G have a path P; in common. This observation
leads us to a generalization of line graphs. Let k > 2 be an integer and let
G be a graph containing k-paths. The k-path graph Pi(G) of G has the set
of k-paths of G as its vertex set where two distinct vertices of Py(G) are
adjacent if the corresponding k-paths of G have a (k — 1)-path in common.
Thus, the 2-path graph of a nonempty graph is its line graph. The 3-path
graph P3(G) of a connected graph G of order at least 3 therefore has the
set of 3-paths in G as its vertex set, where two distinct vertices of P3(G)
are adjacent if the corresponding 3-paths of G have a 2-path (an edge) ir
common. Since every 3-path in a graph G is both a vertex of P3(G) and ar
edge of L(G) and every 3-path is obtained from a pair of adjacent edges o
G, it follows that P3(G) = L?(G). However, if kK > 4 and G is a connectec
graph having k-paths, then Px(G) # L¥~1(G) in general. For example, if C
is the double star of order 5, then L(G) = K; 3 +e. Thus, L*(G) = C4 +«
and so L3(G) = C4+ K1, which is the wheel of order 5. Since P4(G) = K2
it follows that P4(G) # L*(G). This concept was introduced by Gary Char
trand and studied in [2, 3, 10}, where the primary emphasis in these paper:
was on 3-path graphs.

A Hamiltonian cycle in a graph G is a cycle containing every vertex of ¢
and a graph having a Hamiltonian cycle is a Hamiltonian graph. Harary anc
Nash-Williams [8] characterized those graphs whose line graph is Hamilto
nian. Their characterization primarily involved the existence of a circui
in a graph called a dominating circuit in which every edge of the graph i
incident with a vertex of the circuit.

Theorem 1.1 [8] Let G be a graph without isolated vertices. Then L(G
is Hamiltonian if and only if G is the star K, ; for some integert > 3 or (
contains a dominating circurt.

While a connected graph G with no vertices of degree 1 or 2 need nc
have a Hamiltonian line graph, Chartrand and Wall [4] verified that if G is
connected graph with §(G) > 3, then L(G) must have a spanning subgrap
containing an Eulerian circuit, which is a dominating circuit of L(G) anc
consequently, gives the following result in terms of 3-path graphs.



Theorem 1.2 [4] If G is a connected graph with §(G) > 3, then P3(G) is
Hamiltonian.

There are graphs possessing a variety of Hamiltonian properties where
spanning trees or spanning walks play a major role. For example, a Hamalto-
nian pathin a graph G is a path containing every vertex of G and a graph G
is Hamiltonian-connected if every two vertices of G are connected by a
Hamiltonian path. The concept of Hamiltonian-connected graphs can be
looked at in a different way. That is, a connected graph G is Hamiltonian-
connected if for every two vertices u and v, there exists a spanning tree T
of G whose only end-vertices are u and v. This observation gives rise to an
extension of Hamiltonian-connected graphs. Let G be a connected graph
of order n > 3 and let k be an integer with 2 < k < n — 1. The graph
G is k-tree-connected if for every set S of k distinet vertices of G, there
exists a spanning tree T' of G whose set of end-vertices is S. Thus, G is
2-tree-connected if and only if G is Hamiltonian-connected. These concepts
were studied in [2, 3, 7, 10]. The following conjecture was due to Chartrand
(see [10]).

Conjecture 1.3 If T is a tree of sufficiently large order contaiming no
vertices of any of the degrees 2, 3, ..., k+ 1 for each integer k > 2, then
P3(T) is k-tree-connected. -

By viewing the line graph L?(G) of the line graph L(G) of a connected
graph G in terms of its 3-path graph P3(G), we are able to apply techniques
involving paths or walks in the graph to establish sufficient conditions for
the 3-path graph of a connected graph to possess stronger Hamiltonian
properties In particular, the following two results appear in (2, 3], which
verify Conjecture 1.3 for k = 2, 3.

Theorem 1.4 If T is a tree of order at least 5 containing no vertices
of degree 2 or 3, then P3(T) is Hamiltonian-connected and, equivalently,
2-tree-connected.

Theorem 1.5 IfT is a tree of order at least 6 containing no vertices of
degree 2, 3 or 4, then P3(T') is 3-tree-connected.

In this work, we verify Conjecture 1.3 for the case when k = 4. That
is, we present an extension of Theorem 1.5 to show that if T' is a tree of
order at least 6 containing no vertices of degree 2, 3, 4, or 5, then P3(T) is
4-tree-connected. We refer to the book [5] for graph theory notation and
terminology not described in this paper.



2 Main Result

First, we introduce an additional definition. A Hamaltonian walk in a con-
nected graph G is a closed walk of minimum length that contains every
vertex of G. This concept was introduced by Goodman and Hedetniemi (6]
who showed that if G is a connected graph of order n and size m, then the
length of Hamiltonian walk W in G is at least n and at most 2m. Further-
more, every edge of G occurs at most twice in W. The length of Wisni
and only if G is Hamiltonian (in which casé W is a Hamiltonian cycle) anc
the length of W is 2m if and only if G is a tree (in which case each edge o
G appears exactly twice in W).

Every embedding of a tree T' in the plane gives rise to a Hamiltoniar
walk in T. For example, let T be the star K 4 of order 5 whose fou
edges are labeled a,b,c,d. Figures 1(a) and 1(b) show two different em
beddings of T in the plane. By tracing the walk as shown in Figure 1(c
using the embedding of T in Figure 1(a), we construct the Hamiltonial
walk W; = (w,v,z,v,y,v,zv,w) or, in terms of edges of T, the wall
Wi = (a,b,b,¢,¢,d,d a). While every edge of T' occurs exactly twice ol
Wi, the 3-path (w,v,z) = (a,b) = ab occurs once in Wy but the 3-patl
(w,v,y) = ac does not occur at all in W;. On the other hand, the em
bedding of T shown in Figure 1(b) gives rise to the Hamiltonian wal
Wy = (w,v,y,v,2,v,z,v,w) = (a,¢ ¢, b,b,d,d,a), which contains the 2
path (w,v,y) but not the 3-path (w, v, z).

(b)

Figure 1: Two embeddings of K 4 in the plane

We are now prepared to present the main result of this work.

Theorem 2.1 If T is a tree of order at least T containing no vertices
degree 2, 3, 4, or 5, then Ps(T') is 4-tree-connected.

Proof. Let P, Q, R; and Ry be four 3-paths of T. We show that P3 (T)
{Ry, Ry} contains a Hamiltonian P-Q path. It suffices to show that the

exists an ordering
P=AA,..., A =Q (



of those 3-paths A; (1 < i < p) of T that do not include R; and Ra,
beginning with P and ending with @ such that A; and A, have an edge
in common for 2 = 1,2,...,p — 1. Indeed, since the interior vertices of R;
and R must have degree at least 6, there exist at least five of these 3-paths
distinct from P,Q and R, that contain an edge of R; and at least five of
these 3-paths distinct from P, Q and R; that contain an edge of Ry. Thus,
each of R; and R, shares an edge with Ay for some &k ¢ {1,p}. By taking
the Hamiltonian P — Q path together with R; and Ry and the edges A4; and
Aj in P3(T) for 4,5 ¢ {1,p} (we may have A; = A;) joining F; and Ry,
respectively, a spanning tree of P3(T) is formed whose set of end-vertices
is {P,Q, Ry, Ra}.

We consider the following four cases, depending on the location of P
and Q in T:

(1) P and @ have an edge in common,

(2) P and Q do not have an edge in common and there exists a path in
T containing both P and @,

(3) P and Q do not have an edge in common and there exists a path in
T containing one edge of each of P and Q but there is no path in T
containing one of these paths and one edge of the other,

(4) P and Q do not have an edge in common and there is no path in
T containing both P and @ but there is a path containing one of P
and @ and one edge of the other.

Case 1. P and Q have an edge in common, say P = ejez and QQ = ezes.
Thus, either P and @ have the same interior vertex or P and @ have distinct
adjacent interior vertices (see Figure 2). We consider these two possibilities.

Subcase 1.1. P and @ have the same interior vertex v. See Figure 2(a).
So, v is incident with all three edges ey, ez, es3.

First, suppose that v is also the interior vertex of Ry and Rp, say R =
f191 and Ry = fag0, where fi, g1, f2, g2 are four edges incident with v. Then
we consider two situations. In each situation, we will provide an ordering
of the edges incident with v such that e; and e; appear consecutively, and
the pairs eg, ez and fi, g1, f2, g2 do not appear consecutively.

First, suppose that R; and R, have no edge in common. So, we have
the following situations.

(z) One of f; and g; (i = 1,2) is e; or ey, say f1 = e;.

(17) Neither f; nor g; (i = 1,2) is e; or e;.
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Figure 2: The 3-paths P and @Q have the edge e; in common
* In situation (z), fi = ey, g1 # e; and go & {ey,e2}. Let d > 0 be th

number of edges not in P,Q, Ry, Ry. For d > 1, let eq,e5,... €443 b
the distinct edges incident with v that are none of ey, e, es, 91, f2, 9

If g, = e3, then d > 2 and we produce the sequence

€1,€2,€443, - - -, 6,91 = €3, f2, €5, 92, €4.

If g1 # e3, then d > 1 and we produce the sequence

€1,€2,€d43,---,€5,91, g2,€4,€3-

In situation (#7), let d > 0 be the number of edges not in P, Q, Ry, R
For d > 1, let ey4,e5,...e443 be the distinct edges incident with
that are not €1, €2, €3, f1$ f21 g1, 92. If fi = €3 OI g; = €3 (7' = 172
then we may assume that f; = e3 (since R; and R, have no edge :
common). So d > 1. We can then order the edges as follows:

€1, €2,€d 43, - - - » €6, 91, 92, €5, €4, f1 = €3, fa.
If none of f; and g; (i = 1, 2) is e3, then d > 0. Note here that if d =

then {e4,e5, - - €443} is the empty set. In this case, we produce tl
sequence

€1, €3, €443 -+ + y €5y F1, €4, T2, €3, 91, 92-

Next, suppose that Ry and Ry have an edge in common. So, Ry = f;,

and Ry = f192. Then we have the following situations.



(i) Oneof f; and g; (i = 1,2) is e or eg, say f1 = ey.
(it') Neither f; nor g; (: = 1,2) is e; or ey.

» In situation (i’), we may assume that g; ¢ {e;, e2}. Let d be the num-
ber of edges not in P, Q, Ry, Ry, wherethend > 1. Let e4, e5,..., €443
be the distinct edges incident with v that are not e;, e, es, 91, g2.

If g = e3 or g9 = e3, say g; = es, then d > 2 and we produce the
sequence

€1,€2,€413,€442;---,€5,02,J1 = €3, €4.

If g1 # e3 and g2 # e3, then d > 1 and we produce the sequence

€1,€2,€4d+3,---,€5,91,92,€4,€3-

» In situation (ii’), Let d be the number of edges not in P, Q, R, Rs.
For d > 1, let ey, es,...,eqss be the distinct edges incident with v

that are not any of e, ez, e3, f1, f2, g1,92-

If f; = e3 or g; = e3 (i = 1,2), then we may assume that f; = ez or
g1 = e3, say fi = e3, and so d > 1. We can then order the edges as
follows:

€1,€2,€d43,---,€6,91,92,€5, €4, fl = €3.

If none of fi,g1,92 is es, then d > 0. Note here that if d = 0,
then {e4,es, - eqt3} is the empty set. In this case, we produce the
sequence

€1,€2,€4d+3,-.,E5, fl = f2,€4,€3,g]_,92.

Therefore, in any situation, we can embed T so that the edges incident
with v appear counterclockwise in the order given in one of the situations
above. Then there exists a Hamiltonian walk W of T' and a resulting
ordering &1 of those distinct 3-paths of T belonging to W with the following
properties.

* The 3-path P appears in Sj.
* None of @, R; and Ry appears in &;.

Then aey, ejez, egb are three consecutive terms in §; for some edges a and b
in T. Note here that if a and/or b are incident with v, then we have chosen
our ordering so that neither ae; nor ezb is @, R; or Ry. Furthermore, if a or



b is not incident with v, then we may embed T in the plane so that neithe
aeq nor egb is R; for i = 1,2. Indeed, since the degree of every non-end
vertex of T is at least 6, there is some ordering of the edges incident witl
this vertex for which the edges that constitute Ry and R do not appea
consecutively.

Consider the vertex v. Let X be the set of 3-paths whose interio
vertex is v that do not appear in S;. By the manner in which we hawv
chosen the ordering of those edges incident with v, it is clear that X # !
(since Q,R; € X). Now, let X' = X — {R;, Rp}. For each integer ¢ witl
1<i<d—38,let X; = {e;e; € X': i < j}, let s; be any ordering of th
3-paths in X; (i # 2) and let s3 be any ordering of the 3-paths in X7 whos
first term is eges.

* Insert the 3-paths in X; in the order s; between ae; and eje;.
* Insert the 3-paths in X, in the order s; between ejep and egb.

* For each integer 7 with 3 < i < d — 2, insert the 3-paths in X, in th
order s; between consecutive terms containing e; in Sy.

The resulting sequence S; has ejep, ezes as consecutive terms and contain
all 3-paths of P3(T") belonging to W as well as those 3-paths having v 2
their interior vertex except for the 3-paths R; and R,.

For every other vertex u of T having degree & > 5, let f; f2 be a 3-pat
on W having u as its interior vertex, labeling the remaining edges incider
with u as fs, f4,..., for as was done with v. Inserting 3-paths with interic
vertex u not in Sy, as we did with the vertex v, produces a sequence S «
all 3-paths of T with the desired properties.

Next, suppose that neither Ry nor Ry contains an edge incident with 1
Then we embed T in the plane so that R; and Ry do not appear in W an
we do not add these two 3-paths to Sy in the final step of the proof.

Subcase 1.2. P and Q have adjacent interior vertices. We may assurr
that ey, eg, e3 is a 4-path in T, where e; and e5 are incident with the vertex
and ez and eg are incident with the vertex wu, as shown in Figure 2(b).
Ry and/or R, contains an edge that is incident with either u or v, then w
may choose an ordering of the edges incident with one of these vertices suc
that the edges of Ry and Ry do not appear consecutively. There exists
Hamiltonian walk W of T' and a resulting ordering S; of those 3-paths of
on W such that ejep, esesz are consecutive terms in &;. There are edges
and b in T such that aeq, ejeq, eges, e3b are consecutive terms in S;. Agai:
we may embed T so that neither ae; nor esb is Ry or Ry. For each verte
w having degree 6 or more, we insert all 3-paths containing an edge e ar
with interior vertex w not already in S; into the sequence Sy, except for tl
3-paths R; and R», between two consecutive terms containing e except ey
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and epeg. For the 3-paths containing e that are not R; or Ry, we insert
such 3-paths between two other consecutive terms containing e;. Since the
edge ez occurs elsewhere in W and in &;, this can be done. This produces
a sequence of all 3-paths of T' with the desired properties.

Case 2. P and @ do not have an edge in common and there exists a path
[ in T containing both P and Q. Let P = ab and @ = cd. See Figure 3(a).

N
1

]
O

o

w;_\%o

s

Figure 3: The 3-paths P and @ have no edge in common

AV

(c)

By assumption, there exists a path I' in T' containing both P and Q.
If none of the edges of R; and Rp appear as 3-paths of I, then there is a
Hamiltonian walk W of T such that I is a path in W such that Ry and Ro
do not appear in W. Thus, either

I':a,bc,d or T :a,bees,...,ex,c,dfor some positive integer k.

Let Sy be a cyclic sequence consisting of those 3-paths of 7' appearing in
the order as they are encountered on W. Thus, either

ab,bc,cd or ab,bey,eies,...,exc cd
are consecutive terms in Sj.
* If I': a, b, ¢, d, then we delete bc from &;.

* if " : a,b,eq,e,...,ec,d, then we delete the terms bey, ejes, ...,
erc from Sy.

In either situation, a new sequence Sz is created. Since each edge of T is
encountered twice in W each edge of T occurs in two consecutive terms of
S,. Each 3-path deleted from S; and each 3-path in T not in S; may now
be added in an appropriate position in Sz, with the exception of not adding
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Ry and R;, creating a new sequence S : Ay, Az, ..., A, of all 3-paths of °
such that (1) P = A; and Q = A, (2) A; and A;; have a single edg
in common for s =1,2,...,p — 1 and (3) Ry and Ry are not terms of thi
sequence.

Now, we may assume that R; or Ry (or both) appear in I'. Thus agair
either I" : a,b, ¢, d where R; = bc or Ry = be, say Ry = bcor

[':a,beyq, eg,..., e, c dfor some positive integer k,

where each of Ry and Ry (or perhaps one of them) appears as two conse
utive terms in this sequence not including a,b or ¢,d. Let S; be a cycl:
sequence consisting of those 3-paths of T appearing in the order as the
are encountered on W. Thus, either

ab,bc,cd or ab,bei,ejeg,. .., exrc, cd are consecutive terms in Sy.

* If I': a, b, ¢,d, then we delete bc from S;.

x* If ' : a,b,eq,eq,..., ek, c, d, then we delete the terms beq, ejez, ..
erc from ;.

In either situation, a new sequence S, is created that has the property th:
neither of Ry and Ry appears in S;. Since each edge of T is encountere
twice in W, each edge of T occurs in two consecutive terms of Sp. Eac
3-path deleted from &; and each 3-path in T not in S, except for the tw
3-paths R; and R,, may now be added in an appropriate position in S
creating a new sequence S : Ay, Ay, ..., A, of all 3-paths of T' such that (.
P = A; and Q@ = A4,, (2) A; and A;;1 have a single edge in common fi
1 =1,2,...,p—1 and (3) R; and R, are not terms of this sequence. T!
existence of the sequence S shows that P3(T) contains a Hamiltonian P-
path that avoids R; and R,.

Case 3. P and Q do not have an edge in common and there is no path
T containing one of these paths and one edge of the other. Let P = ab ar
Q = cd. See Figure 3(b). Necessarily, there exists a path in T containit
one edge of P and Q. Let I" be the path in T connecting the interior vertic

of P and Q. We consider two possibilities, depending on whether T is
trivial path. -

Subcase 3.1. T' s a trivial path. Thus, P and @ have the same interi
vertex v. See Figure 3(b). Suppose first that degv = 6. The tree T
embedded in the plane so that the six edges a,b,c, d, e, f incident with
appear as in Figure 4(a).

If Ry and R also have v as their interior vertex, we may select an ordering
these edges so that none the edges of P, Q, Ry and R3 appear consecutive
about v. Possibly as many as three neighbors of v are end-vertices in

12



@ (b)

Figure 4: A step in the proof of Subcase 3.1

This embedding gives rise to a Hamiltonian walk W of T and a cyclic
sequence Sp of distinct 3-paths of T' lying on W. So, S; has the appearance

Si:cfy...,fb...,bd,...,de, ... ea...,za,ac,cy,... 2¢,cf

for edges z,y, 2z in T, where, for example, possibly z = e and/or y = f.
Among the 3-paths in T not in S; are P = ab and @ = cd. We now insert
the pair P = ab, @ = cd between ac and cy, arriving at

Sy: P =ab,ac,za,...,ea,...,de,...bd,...,cf,z¢c,...,cy,cd = Q.

Thus, this noncyclic sequence Sy of distinct 3-paths begins at P, ends at Q
and contains all 3-paths of T on W in addition to P and Q. Furthermore,
every two consecutive 3-paths on S; have an edge in common. Each 3-path
rs in T not in S,, except for the 3-paths R; and Ra, can then be added
to S, either between two 3-paths containing r or between two 3-paths
containing s, to produce a new sequence S : Aj, Ay, ..., A, of all 3-paths
of T such that (1) P = Ay and Q = A4,, (2) A; and A; 1 have a single edge
in common for : = 1,2,...,p— 1 and (3) R; and R, are not terms of this
sequence.

Next, suppose that degv = k > 7, say fi, f2, ..., fk—e are the remaining
k — 6 edges incident with v. Let T be embedded as in Figure 4(b). We then
proceed as above to produce a sequence S with the desired properties.

Subcase 3.2. T is not a trivial path. Let u be the interior vertex of
P = ab and v the interior vertex of @ = cd. Since the interior vertices of P
and Q have degree at least 6, it follows that if B and/or Ry contains an
edge that is incident with one of these interior vertices, then we may select
an ordering of these edges such that none of the edges P, Q, R and R,
appear consecutively about v. Let

I:eez,...,ex, k>1, betheu—v pathinT.

13



Since degu > 6 and degv > 6, there exists an edge f incident with
different from a, b and e; and an edge g incident with v different from c,
and e;. Let T be embedded in the plane, as shown in Figure 3(b). Let ¥
be the resulting Hamiltonian walk of T which contains none of P, Q, F
and R, but contains the path T' and let S; be the resulting cyclic sequenc
of 3-paths lying on W. Hence, S; has the appearance

St:af,..., fbbx, ... yb bey, eres,...,ex-1€k ekd, dz,...,wa,af

for edges z,y, z and w in T, where possibly y = f and z = g. Among tt
3-paths in T not belonging to Sy are P = ab and Q = cd (see Figure 3(b)
Hence, we may insert P = ab between yb and be; and Q = cd between e
and dz. We then delete the 3-paths bey, ejes, ..., exd from &y, arriving :
the sequence

Sy : P =ab,yb,..., bz, fb,...,af,wa,...,dz,cd=Q,

consisting of P,@Q and all 3-paths of T lying on W, except bey, ejes, ..
exd. These 3-paths along with all 3-paths of T not in Sz, except the 3 patl
Ry and Ry, can be appropriately inserted into Sy to produce a sequence &
Ay, Ag, ..., A, consisting of the distinct 3-paths such that (1) P = A; ar
Q = Ap, (2) A; and A;,, have a single edge in common for: =1,2,...,p-
and (3) the 3-paths R; and Ry are not terms of this sequence. The existen
of the sequence S shows that P3(T) contains a Hamiltonian P-Q path th
avoids the 3-paths R; and Rj.

Case 4. P and Q do not have an edge in common and there is no pa
in T containing both P and Q but there is a path containing one of P and
and one edge of the other. Let P = ab and Q = cd. See Figure 3(c). V
may assume that there exists a path I' in T containing the 3-path Q a1
the edge b but not a. Then there is a Hamiltonian walk W of T such th
I' is a path in W. Thus, either

I':b,c,d or I":b,eq,es,...,ek, c, d for some positive integer k.

Let T be embedded in the plane, as shown in Figure 3(c). Since no vert
of T' has degree 3, there is an edge f adjacent to a and b but not belongi: -
to I' that lies between a and b. Consider the following three cases:

1. If one of Ry or Ry is af or fb, say Ry = af or Ry = fb, then sin
there are no vertices of degree 5 in T, there is some other edge g th
lies either between a and f or between f and b so that the edges
R, do not appear consecutively.

2. Let Ry = af and Ry = fb. Then since there are no vertices of degr
5in T, there exist some other edges g; and g such that (a) g; 1
between a and f and (b) g2 lies between f and b so that the edges
R; and R; do not appear consecutively.

14



3. If Ry = e1a or Ry = eja, then we place g between these edges instead.

Let S; be the cyclic sequence consisting of those 3-paths of T' appearing in
the order as they are encountered on W. The 3-path ab therefore does not

lie on W. Thus, either

(i) xb,be,cd are three consecutive terms in & for some edge z of T or

(ii) zb,bei,erez,...,exc,cd are consecutive terms in Sy for some edge z
of T

If (i) occurs, then we insert the 3-path ab between zb and bc and delete
be; while if (ii) occurs, we insert ab between b and be; and delete the terms
beq, er€2, ..., exc. In either situation, a new sequence S; is created. Since
each edge of T is encountered twice in W, each edge of T occurs twice in
two consecutive terms of §;. Each 3-path deleted from &; and each 3-path
in T not in S§; may now be added in an appropriate position in Sy except
for the 3-paths R; and Rs.

Specifically, if (i) occurs and Ry, Ra # bc, then the 3-path bc can now be
inserted between two consecutive terms containing c. If (ii) occurs and R,
and Ry are not 3-paths of I', then the 3-path be; can be inserted between two
consecutive terms containing e;, the 3-path ejes can be inserted between
two consecutive terms containing ez, and so on. This creates a new sequence
S: Ay, Ay, ..., Ap of all 3-paths of T that begins at P and ends at @ such
that every two consecutive terms of S have an edge in common and R; and
R, are not terms of S. The existence of the sequence S shows that P3(T)
contains a Hamiltonian P-Q path that avoids R; and Rs.

In each case, there is a Hamiltonian P-Q path in P3(T') that avoids R,
and Rp and so P3(T) is 4-tree-connected. 8
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