On Tree-Connection of Generalized Line Graphs Jamie Hallas, Mohra Zayed, and Ping Zhang Department of Mathematics Western Michigan University Kalamazoo, MI 49008-5248, USA ping.zhang@wmich.edu #### Abstract The line graph L(G) of a nonempty graph G has the set of edges in G as its vertex set where two vertices of L(G) are adjacent if the corresponding edges of G are adjacent. Let $k \geq 2$ be an integer and let G be a graph containing k-paths (paths of order k). The k-path graph $\mathcal{P}_k(G)$ of G has the set of k-paths of G as its vertex set where two distinct vertices of $\mathcal{P}_k(G)$ are adjacent if the corresponding k-paths of G have a (k-1)-path in common. Thus, $\mathcal{P}_2(G) = L(G)$ and $\mathcal{P}_3(G) = L(L(G))$. Hence, the k-path graph $\mathcal{P}_k(G)$ of a graph G is a generalization of the line graph L(G). Let G be a connected graph of order $n \geq 3$ and let k be an integer with $2 \le k \le n-1$. The graph G is k-treeconnected if for every set S of k distinct vertices of G, there exists a spanning tree T of G whose set of end-vertices is S. Thus, G is 2-tree-connected if and only if G is Hamiltonianconnected. It was conjectured that if T is a tree of sufficiently large order containing no vertices of any of the degrees 2, 3, ..., k+1 for an integer $k \geq 2$, then $\mathcal{P}_3(T)$ is k-tree-connected. This conjecture was verified for k = 2, 3. In this work, we show that if T is a tree of order at least 6 containing no vertices of degree 2, 3, 4, or 5, then $\mathcal{P}_3(T)$ is 4-tree-connected and so verify the conjecture for the case when k=4. ## 1 Introduction There are many graphs associated with a given graph. Such graphs are referred to as "derived graphs". For a given graph G, a derived graph of G is a graph obtained from G by a graph operation of some type. The study of the structural properties of derived graphs is a popular area of research in graph theory. One of the most familiar graph operations on a graph is that of the line graph. The line graph L(G) of a nonempty graph G has the set of edges in G as its vertex set where two vertices of L(G) are adjacent if the corresponding edges of G are adjacent. More generally, for a nonempty graph G, we write $L^0(G)$ to denote G and $L^1(G)$ to denote L(G). For an integer $k \geq 2$, the kth iterated line graph $L^k(G)$ is defined as $L(L^{k-1}(G))$, where $L^{k-1}(G)$ is assumed to be nonempty. In particular, $L(L(G)) = L^2(G)$. Over the years, various generalizations of line graphs have been introduced and studied by many (see [1, 9], for example). Another more general class of derived graphs was inspired by line graphs. Observe that the vertex set of the line graph L(G) is the set of 2-paths of a graph G (the paths P_2 of order 2) where two vertices of L(G) are adjacent if the corresponding paths of G have a path P_1 in common. This observation leads us to a generalization of line graphs. Let $k \geq 2$ be an integer and let G be a graph containing k-paths. The k-path graph $\mathcal{P}_k(G)$ of G has the set of k-paths of G as its vertex set where two distinct vertices of $\mathcal{P}_k(G)$ are adjacent if the corresponding k-paths of G have a (k-1)-path in common. Thus, the 2-path graph of a nonempty graph is its line graph. The 3-path graph $\mathcal{P}_3(G)$ of a connected graph G of order at least 3 therefore has the set of 3-paths in G as its vertex set, where two distinct vertices of $\mathcal{P}_3(G)$ are adjacent if the corresponding 3-paths of G have a 2-path (an edge) in common. Since every 3-path in a graph G is both a vertex of $\mathcal{P}_3(G)$ and an edge of L(G) and every 3-path is obtained from a pair of adjacent edges of G, it follows that $\mathcal{P}_3(G) = L^2(G)$. However, if $k \geq 4$ and G is a connected graph having k-paths, then $\mathcal{P}_k(G) \neq L^{k-1}(G)$ in general. For example, if C is the double star of order 5, then $L(G) = K_{1,3} + e$. Thus, $L^2(G) = C_4 + e$ and so $L^3(G) = C_4 + K_1$, which is the wheel of order 5. Since $\mathcal{P}_4(G) = K_2$ it follows that $\mathcal{P}_4(G) \neq L^3(G)$. This concept was introduced by Gary Char trand and studied in [2, 3, 10], where the primary emphasis in these paper: was on 3-path graphs. A Hamiltonian cycle in a graph G is a cycle containing every vertex of C and a graph having a Hamiltonian cycle is a Hamiltonian graph. Harary and Nash-Williams [8] characterized those graphs whose line graph is Hamiltonian. Their characterization primarily involved the existence of a circui in a graph called a dominating circuit in which every edge of the graph i incident with a vertex of the circuit. **Theorem 1.1** [8] Let G be a graph without isolated vertices. Then $L(G \text{ is Hamiltonian if and only if } G \text{ is the star } K_{1,t} \text{ for some integer } t \geq 3 \text{ or } G \text{ contains a dominating circuit.}$ While a connected graph G with no vertices of degree 1 or 2 need no have a Hamiltonian line graph, Chartrand and Wall [4] verified that if G is connected graph with $\delta(G) \geq 3$, then L(G) must have a spanning subgrap containing an Eulerian circuit, which is a dominating circuit of L(G) and consequently, gives the following result in terms of 3-path graphs. **Theorem 1.2** [4] If G is a connected graph with $\delta(G) \geq 3$, then $\mathcal{P}_3(G)$ is Hamiltonian. There are graphs possessing a variety of Hamiltonian properties where spanning trees or spanning walks play a major role. For example, a Hamiltonian path in a graph G is a path containing every vertex of G and a graph G is Hamiltonian-connected if every two vertices of G are connected by a Hamiltonian path. The concept of Hamiltonian-connected graphs can be looked at in a different way. That is, a connected graph G is Hamiltonian-connected if for every two vertices u and v, there exists a spanning tree T of G whose only end-vertices are u and v. This observation gives rise to an extension of Hamiltonian-connected graphs. Let G be a connected graph of order $n \geq 3$ and let k be an integer with $0 \leq k \leq n-1$. The graph $0 \leq k$ is $0 \leq k$ if for every set $0 \leq k$ of $0 \leq k$ distinct vertices of $0 \leq k$. Thus, $0 \leq k$ is 2-tree-connected if and only if $0 \leq k$ is Hamiltonian-connected. These concepts were studied in $0 \leq k$ \leq$ **Conjecture 1.3** If T is a tree of sufficiently large order containing no vertices of any of the degrees 2, 3, ..., k+1 for each integer $k \geq 2$, then $\mathcal{P}_3(T)$ is k-tree-connected. By viewing the line graph $L^2(G)$ of the line graph L(G) of a connected graph G in terms of its 3-path graph $\mathcal{P}_3(G)$, we are able to apply techniques involving paths or walks in the graph to establish sufficient conditions for the 3-path graph of a connected graph to possess stronger Hamiltonian properties In particular, the following two results appear in [2, 3], which verify Conjecture 1.3 for k = 2, 3. **Theorem 1.4** If T is a tree of order at least 5 containing no vertices of degree 2 or 3, then $\mathcal{P}_3(T)$ is Hamiltonian-connected and, equivalently, 2-tree-connected. **Theorem 1.5** If T is a tree of order at least 6 containing no vertices of degree 2, 3 or 4, then $\mathcal{P}_3(T)$ is 3-tree-connected. In this work, we verify Conjecture 1.3 for the case when k=4. That is, we present an extension of Theorem 1.5 to show that if T is a tree of order at least 6 containing no vertices of degree 2, 3, 4, or 5, then $\mathcal{P}_3(T)$ is 4-tree-connected. We refer to the book [5] for graph theory notation and terminology not described in this paper. ### 2 Main Result First, we introduce an additional definition. A Hamiltonian walk in a connected graph G is a closed walk of minimum length that contains every vertex of G. This concept was introduced by Goodman and Hedetniemi [6] who showed that if G is a connected graph of order n and size m, then the length of Hamiltonian walk W in G is at least n and at most 2m. Furthermore, every edge of G occurs at most twice in W. The length of W is n is and only if G is Hamiltonian (in which case W is a Hamiltonian cycle) and the length of W is 2m if and only if G is a tree (in which case each edge of G appears exactly twice in W). Every embedding of a tree T in the plane gives rise to a Hamiltonian walk in T. For example, let T be the star $K_{1,4}$ of order 5 whose four edges are labeled a, b, c, d. Figures 1(a) and 1(b) show two different embeddings of T in the plane. By tracing the walk as shown in Figure 1(c using the embedding of T in Figure 1(a), we construct the Hamiltonian walk $W_1 = (w, v, x, v, y, v, z, v, w)$ or, in terms of edges of T, the wall $W_1 = (a, b, b, c, c, d, d, a)$. While every edge of T occurs exactly twice of W_1 , the 3-path (w, v, x) = (a, b) = ab occurs once in W_1 but the 3-path (w, v, y) = ac does not occur at all in W_1 . On the other hand, the embedding of T shown in Figure 1(b) gives rise to the Hamiltonian wall $W_2 = (w, v, y, v, x, v, z, v, w) = (a, c, c, b, b, d, d, a)$, which contains the 3 path (w, v, y) but not the 3-path (w, v, x). Figure 1: Two embeddings of $K_{1,4}$ in the plane We are now prepared to present the main result of this work. **Theorem 2.1** If T is a tree of order at least 7 containing no vertices degree 2, 3, 4, or 5, then $\mathcal{P}_3(T)$ is 4-tree-connected. **Proof.** Let P, Q, R_1 and R_2 be four 3-paths of T. We show that $\mathcal{P}_3(T)$ $\{R_1, R_2\}$ contains a Hamiltonian P-Q path. It suffices to show that the exists an ordering $$P = A_1, A_2, \dots, A_p = Q \tag{}$$ of those 3-paths A_i $(1 \leq i \leq p)$ of T that do not include R_1 and R_2 , beginning with P and ending with Q such that A_i and A_{i+1} have an edge in common for i = 1, 2, ..., p-1. Indeed, since the interior vertices of R_1 and R_2 must have degree at least 6, there exist at least five of these 3-paths distinct from P, Q and R_2 that contain an edge of R_1 and at least five of these 3-paths distinct from P, Q and R_1 that contain an edge of R_2 . Thus, each of R_1 and R_2 shares an edge with A_k for some $k \notin \{1, p\}$. By taking the Hamiltonian P-Q path together with R_1 and R_2 and the edges A_i and A_j in $P_3(T)$ for $i, j \notin \{1, p\}$ (we may have $A_i = A_j$) joining R_1 and R_2 , respectively, a spanning tree of $P_3(T)$ is formed whose set of end-vertices is $\{P, Q, R_1, R_2\}$. We consider the following four cases, depending on the location of P and Q in T: - (1) P and Q have an edge in common, - (2) P and Q do not have an edge in common and there exists a path in T containing both P and Q, - (3) P and Q do not have an edge in common and there exists a path in T containing one edge of each of P and Q but there is no path in T containing one of these paths and one edge of the other, - (4) P and Q do not have an edge in common and there is no path in T containing both P and Q but there is a path containing one of P and Q and one edge of the other. Case 1. P and Q have an edge in common, say $P = e_1e_2$ and $Q = e_2e_3$. Thus, either P and Q have the same interior vertex or P and Q have distinct adjacent interior vertices (see Figure 2). We consider these two possibilities. Subcase 1.1. P and Q have the same interior vertex v. See Figure 2(a). So, v is incident with all three edges e_1, e_2, e_3 . First, suppose that v is also the interior vertex of R_1 and R_2 , say $R_1 = f_1g_1$ and $R_2 = f_2g_2$, where f_1, g_1, f_2, g_2 are four edges incident with v. Then we consider two situations. In each situation, we will provide an ordering of the edges incident with v such that e_1 and e_2 appear consecutively, and the pairs e_2, e_3 and f_1, g_1, f_2, g_2 do not appear consecutively. First, suppose that R_1 and R_2 have no edge in common. So, we have the following situations. - (i) One of f_i and g_i (i = 1, 2) is e_1 or e_2 , say $f_1 = e_1$. - (ii) Neither f_i nor g_i (i = 1, 2) is e_1 or e_2 . Figure 2: The 3-paths P and Q have the edge e_2 in common * In situation (i), $f_1 = e_1$, $g_1 \neq e_1$ and $g_2 \notin \{e_1, e_2\}$. Let $d \geq 0$ be th number of edges not in P, Q, R_1, R_2 . For $d \geq 1$, let $e_4, e_5, \ldots e_{d+3}$ be the distinct edges incident with v that are none of $e_1, e_2, e_3, g_1, f_2, g_2$. If $g_1 = e_3$, then $d \geq 2$ and we produce the sequence $$e_1, e_2, e_{d+3}, \ldots, e_6, g_1 = e_3, f_2, e_5, g_2, e_4.$$ If $g_1 \neq e_3$, then $d \geq 1$ and we produce the sequence $$e_1, e_2, e_{d+3}, \ldots, e_5, g_1, g_2, e_4, e_3.$$ * In situation (ii), let $d \ge 0$ be the number of edges not in P, Q, R_1, R . For $d \ge 1$, let $e_4, e_5, \ldots e_{d+3}$ be the distinct edges incident with that are not $e_1, e_2, e_3, f_1, f_2, g_1, g_2$. If $f_i = e_3$ or $g_i = e_3$ (i = 1, 2 then we may assume that $f_1 = e_3$ (since R_1 and R_2 have no edge common). So $d \ge 1$. We can then order the edges as follows: $$e_1, e_2, e_{d+3}, \ldots, e_6, g_1, g_2, e_5, e_4, f_1 = e_3, f_2.$$ If none of f_i and g_i (i = 1, 2) is e_3 , then $d \ge 0$. Note here that if d = then $\{e_4, e_5, \dots e_{d+3}\}$ is the empty set. In this case, we produce the sequence $$e_1, e_2, e_{d+3}, \ldots, e_5, f_1, e_4, f_2, e_3, g_1, g_2.$$ Next, suppose that R_1 and R_2 have an edge in common. So, $R_1 = f_1$ and $R_2 = f_1 g_2$. Then we have the following situations. - (i') One of f_i and g_i (i=1,2) is e_1 or e_2 , say $f_1=e_1$. - (ii') Neither f_i nor g_i (i = 1, 2) is e_1 or e_2 . - * In situation (i'), we may assume that $g_i \notin \{e_1, e_2\}$. Let d be the number of edges not in P, Q, R_1, R_2 , where then $d \ge 1$. Let $e_4, e_5, \ldots, e_{d+3}$ be the distinct edges incident with v that are not e_1, e_2, e_3, g_1, g_2 . If $g_1 = e_3$ or $g_2 = e_3$, say $g_1 = e_3$, then $d \ge 2$ and we produce the sequence $$e_1, e_2, e_{d+3}, e_{d+2}, \ldots, e_5, g_2, g_1 = e_3, e_4.$$ If $g_1 \neq e_3$ and $g_2 \neq e_3$, then $d \geq 1$ and we produce the sequence $$e_1, e_2, e_{d+3}, \ldots, e_5, g_1, g_2, e_4, e_3.$$ * In situation (ii'), Let d be the number of edges not in P, Q, R_1, R_2 . For $d \geq 1$, let $e_4, e_5, \ldots, e_{d+3}$ be the distinct edges incident with vthat are not any of e_1 , e_2 , e_3 , f_1 , f_2 , g_1 , g_2 . If $f_i = e_3$ or $g_i = e_3$ (i = 1, 2), then we may assume that $f_1 = e_3$ or $g_1 = e_3$, say $f_1 = e_3$, and so $d \ge 1$. We can then order the edges as follows: $$e_1, e_2, e_{d+3}, \ldots, e_6, g_1, g_2, e_5, e_4, f_1 = e_3.$$ If none of f_1, g_1, g_2 is e_3 , then $d \geq 0$. Note here that if d = 0, then $\{e_4, e_5, \dots e_{d+3}\}$ is the empty set. In this case, we produce the sequence $$e_1, e_2, e_{d+3}, \ldots, e_5, f_1 = f_2, e_4, e_3, g_1, g_2.$$ Therefore, in any situation, we can embed T so that the edges incident with v appear counterclockwise in the order given in one of the situations above. Then there exists a Hamiltonian walk W of T and a resulting ordering S_1 of those distinct 3-paths of T belonging to W with the following properties. - * The 3-path P appears in S_1 . - * None of Q, R_1 and R_2 appears in S_1 . Then ae_1, e_1e_2, e_2b are three consecutive terms in S_1 for some edges a and bin T. Note here that if a and/or b are incident with v, then we have chosen our ordering so that neither ae_1 nor e_2b is Q, R_1 or R_2 . Furthermore, if a or b is not incident with v, then we may embed T in the plane so that neither ae_1 nor e_2b is R_i for i=1,2. Indeed, since the degree of every non-end vertex of T is at least 6, there is some ordering of the edges incident with this vertex for which the edges that constitute R_1 and R_2 do not appear consecutively. Consider the vertex v. Let X be the set of 3-paths whose interior vertex is v that do not appear in S_1 . By the manner in which we have chosen the ordering of those edges incident with v, it is clear that $X \neq 1$ (since $Q, R_i \in X$). Now, let $X' = X - \{R_1, R_2\}$. For each integer i with $1 \le i \le d-3$, let $X_i = \{e_i e_j \in X' : i < j\}$, let s_i be any ordering of th 3-paths in X_i $(i \neq 2)$ and let s_2 be any ordering of the 3-paths in X_2 whos first term is e_2e_3 . - * Insert the 3-paths in X_1 in the order s_1 between ae_1 and e_1e_2 . - * Insert the 3-paths in X_2 in the order s_2 between e_1e_2 and e_2b . - * For each integer i with $3 \le i \le d-2$, insert the 3-paths in X_i in th order s_i between consecutive terms containing e_i in S_1 . The resulting sequence S_2 has e_1e_2 , e_2e_3 as consecutive terms and contain all 3-paths of $\mathcal{P}_3(T)$ belonging to W as well as those 3-paths having v a their interior vertex except for the 3-paths R_1 and R_2 . For every other vertex u of T having degree $d' \geq 5$, let $f_1 f_2$ be a 3-pat on W having u as its interior vertex, labeling the remaining edges incider with u as $f_3, f_4, \ldots, f_{d'}$ as was done with v. Inserting 3-paths with interior vertex u not in S_2 , as we did with the vertex v, produces a sequence Sall 3-paths of T with the desired properties. Next, suppose that neither R_1 nor R_2 contains an edge incident with τ Then we embed T in the plane so that R_1 and R_2 do not appear in W an we do not add these two 3-paths to S_2 in the final step of the proof. Subcase 1.2. P and Q have adjacent interior vertices. We may assum that e_1, e_2, e_3 is a 4-path in T, where e_1 and e_2 are incident with the vertex and e_2 and e_3 are incident with the vertex u, as shown in Figure 2(b). R_1 and/or R_2 contains an edge that is incident with either u or v, then w may choose an ordering of the edges incident with one of these vertices suc that the edges of R_1 and R_2 do not appear consecutively. There exists Hamiltonian walk W of T and a resulting ordering S_1 of those 3-paths of on W such that e_1e_2 , e_2e_3 are consecutive terms in S_1 . There are edges and b in T such that $ae_1, e_1e_2, e_2e_3, e_3b$ are consecutive terms in S_1 . Again we may embed T so that neither ae_1 nor e_3b is R_1 or R_2 . For each vertex w having degree 6 or more, we insert all 3-paths containing an edge e ar with interior vertex w not already in S_1 into the sequence S_1 , except for the 3-paths R_1 and R_2 , between two consecutive terms containing e except e_1 and e_2e_3 . For the 3-paths containing e_2 that are not R_1 or R_2 , we insert such 3-paths between two other consecutive terms containing e_2 . Since the edge e_2 occurs elsewhere in W and in S_1 , this can be done. This produces a sequence of all 3-paths of T with the desired properties. Case 2. P and Q do not have an edge in common and there exists a path Γ in T containing both P and Q. Let P = ab and Q = cd. See Figure 3(a). Figure 3: The 3-paths P and Q have no edge in common By assumption, there exists a path Γ in T containing both P and Q. If none of the edges of R_1 and R_2 appear as 3-paths of Γ , then there is a Hamiltonian walk W of T such that Γ is a path in W such that R_1 and R_2 do not appear in W. Thus, either $\Gamma: a,b,c,d$ or $\Gamma: a,b,e_1,e_2,\ldots,e_k,c,d$ for some positive integer k. Let S_1 be a cyclic sequence consisting of those 3-paths of T appearing in the order as they are encountered on W. Thus, either $$ab, bc, cd$$ or $ab, be_1, e_1e_2, \ldots, e_kc, cd$ are consecutive terms in S_1 . - * If $\Gamma: a, b, c, d$, then we delete bc from S_1 . - * if Γ : $a, b, e_1, e_2, \ldots, e_k, c, d$, then we delete the terms $be_1, e_1e_2, \ldots, e_kc$ from S_1 . In either situation, a new sequence S_2 is created. Since each edge of T is encountered twice in W, each edge of T occurs in two consecutive terms of S_2 . Each 3-path deleted from S_1 and each 3-path in T not in S_1 may now be added in an appropriate position in S_2 , with the exception of not adding R_1 and R_2 , creating a new sequence $S: A_1, A_2, \ldots, A_p$ of all 3-paths of i such that (1) $P = A_1$ and $Q = A_p$, (2) A_i and A_{i+1} have a single edg in common for $i = 1, 2, \ldots, p-1$ and (3) R_1 and R_2 are not terms of thi sequence. Now, we may assume that R_1 or R_2 (or both) appear in Γ . Thus again either $\Gamma: a, b, c, d$ where $R_1 = bc$ or $R_2 = bc$, say $R_1 = bc$ or $\Gamma: a, b, e_1, e_2, \ldots, e_k, c, d$ for some positive integer k, where each of R_1 and R_2 (or perhaps one of them) appears as two consecutive terms in this sequence not including a, b or c, d. Let S_1 be a cycli sequence consisting of those 3-paths of T appearing in the order as the are encountered on W. Thus, either ab, bc, cd or $ab, be_1, e_1e_2, \ldots, e_kc, cd$ are consecutive terms in S_1 . - * If $\Gamma: a, b, c, d$, then we delete bc from S_1 . - * If $\Gamma: a, b, e_1, e_2, \ldots, e_k, c, d$, then we delete the terms $be_1, e_1e_2, \ldots e_kc$ from S_1 . In either situation, a new sequence S_2 is created that has the property the neither of R_1 and R_2 appears in S_2 . Since each edge of T is encountered twice in W, each edge of T occurs in two consecutive terms of S_2 . Each 3-path deleted from S_1 and each 3-path in T not in S_1 , except for the two 3-paths R_1 and R_2 , may now be added in an appropriate position in S_1 creating a new sequence $S: A_1, A_2, \ldots, A_p$ of all 3-paths of T such that (if $P = A_1$ and $Q = A_p$, (2) A_i and A_{i+1} have a single edge in common for $i = 1, 2, \ldots, p-1$ and (3) R_1 and R_2 are not terms of this sequence. The existence of the sequence S shows that $P_3(T)$ contains a Hamiltonian P-path that avoids R_1 and R_2 . Case 3. P and Q do not have an edge in common and there is no path T containing one of these paths and one edge of the other. Let P=ab ar Q=cd. See Figure 3(b). Necessarily, there exists a path in T containing one edge of P and Q. Let Γ be the path in T connecting the interior vertice of P and Q. We consider two possibilities, depending on whether Γ is trivial path. Subcase 3.1. Γ is a trivial path. Thus, P and Q have the same interivertex v. See Figure 3(b). Suppose first that $\deg v = 6$. The tree T embedded in the plane so that the six edges a, b, c, d, e, f incident with appear as in Figure 4(a). If R_1 and R_2 also have v as their interior vertex, we may select an ordering these edges so that none the edges of P, Q, R_1 and R_2 appear consecutive about v. Possibly as many as three neighbors of v are end-vertices in Figure 4: A step in the proof of Subcase 3.1 This embedding gives rise to a Hamiltonian walk W of T and a cyclic sequence S_1 of distinct 3-paths of T lying on W. So, S_1 has the appearance $$S_1: cf, \ldots, fb, \ldots, bd, \ldots, de, \ldots, ea \ldots, xa, ac, cy, \ldots, zc, cf$$ for edges x, y, z in T, where, for example, possibly x = e and/or y = f. Among the 3-paths in T not in S_1 are P = ab and Q = cd. We now insert the pair P = ab, Q = cd between ac and cy, arriving at $$S_2: P = ab, ac, xa, \ldots, ea, \ldots, de, \ldots bd, \ldots, cf, zc, \ldots, cy, cd = Q.$$ Thus, this noncyclic sequence S_2 of distinct 3-paths begins at P, ends at Q and contains all 3-paths of T on W in addition to P and Q. Furthermore, every two consecutive 3-paths on S_2 have an edge in common. Each 3-path rs in T not in S_2 , except for the 3-paths R_1 and R_2 , can then be added to S_2 , either between two 3-paths containing r or between two 3-paths containing s, to produce a new sequence $S: A_1, A_2, \ldots, A_p$ of all 3-paths of T such that (1) $P = A_1$ and $Q = A_p$, (2) A_i and A_{i+1} have a single edge in common for $i = 1, 2, \ldots, p-1$ and (3) R_1 and R_2 are not terms of this sequence. Next, suppose that $\deg v = k \geq 7$, say $f_1, f_2, \ldots, f_{k-6}$ are the remaining k-6 edges incident with v. Let T be embedded as in Figure 4(b). We then proceed as above to produce a sequence S with the desired properties. Subcase 3.2. Γ is not a trivial path. Let u be the interior vertex of P=ab and v the interior vertex of Q=cd. Since the interior vertices of P and Q have degree at least 6, it follows that if R_1 and/or R_2 contains an edge that is incident with one of these interior vertices, then we may select an ordering of these edges such that none of the edges P, Q, R_1 and R_2 appear consecutively about v. Let $$\Gamma: e_1, e_2, \ldots, e_k, k \geq 1$$, be the $u - v$ path in T . Since $\deg u \geq 6$ and $\deg v \geq 6$, there exists an edge f incident with different from a, b and e_1 and an edge g incident with v different from c, and e_k . Let T be embedded in the plane, as shown in Figure 3(b). Let V be the resulting Hamiltonian walk of T which contains none of P, Q, P and P but contains the path P and let P be the resulting cyclic sequence of 3-paths lying on P. Hence, P has the appearance $$S_1: af, \ldots, fb, bx, \ldots, yb, be_1, e_1e_2, \ldots, e_{k-1}e_k, e_kd, dz, \ldots, wa, af$$ for edges x, y, z and w in T, where possibly y = f and z = g. Among th 3-paths in T not belonging to S_1 are P = ab and Q = cd (see Figure 3(b) Hence, we may insert P = ab between yb and be_1 and Q = cd between e_k and dz. We then delete the 3-paths $be_1, e_1e_2, \ldots, e_kd$ from S_1 , arriving a the sequence $$S_2: P = ab, yb, \ldots, bx, fb, \ldots, af, wa, \ldots, dz, cd = Q,$$ consisting of P,Q and all 3-paths of T lying on W, except $be_1, e_1e_2, \ldots e_kd$. These 3-paths along with all 3-paths of T not in S_2 , except the 3 path R_1 and R_2 , can be appropriately inserted into S_2 to produce a sequence S_1, \dots, S_n consisting of the distinct 3-paths such that (1) $P = A_1$ ar $Q = A_p$, (2) A_i and A_{i+1} have a single edge in common for $i = 1, 2, \dots, p$ -and (3) the 3-paths R_1 and R_2 are not terms of this sequence. The existen of the sequence S_1 shows that $P_3(T)$ contains a Hamiltonian P-Q path the avoids the 3-paths R_1 and R_2 . Case 4. P and Q do not have an edge in common and there is no pa in T containing both P and Q but there is a path containing one of P and and one edge of the other. Let P=ab and Q=cd. See Figure 3(c). V may assume that there exists a path Γ in T containing the 3-path Q at the edge b but not a. Then there is a Hamiltonian walk W of T such th Γ is a path in W. Thus, either $$\Gamma: b, c, d$$ or $\Gamma: b, e_1, e_2, \ldots, e_k, c, d$ for some positive integer k . Let T be embedded in the plane, as shown in Figure 3(c). Since no vert of T has degree 3, there is an edge f adjacent to a and b but not belonging to Γ that lies between a and b. Consider the following three cases: - 1. If one of R_1 or R_2 is af or fb, say $R_1 = af$ or $R_1 = fb$, then sin there are no vertices of degree 5 in T, there is some other edge g th lies either between a and f or between f and g so that the edges R_1 do not appear consecutively. - 2. Let $R_1 = af$ and $R_2 = fb$. Then since there are no vertices of degr 5 in T, there exist some other edges g_1 and g_2 such that (a) g_1 between a and f and (b) g_2 lies between f and g_3 so that the edges g_1 and g_2 do not appear consecutively. - 3. If $R_1 = e_1 a$ or $R_2 = e_1 a$, then we place g between these edges instead. Let S_1 be the cyclic sequence consisting of those 3-paths of T appearing in the order as they are encountered on W. The 3-path ab therefore does not lie on W. Thus, either - (i) xb, bc, cd are three consecutive terms in S_1 for some edge x of T or - (ii) $xb, be_1, e_1e_2, \ldots, e_kc, cd$ are consecutive terms in S_1 for some edge x of T. - If (i) occurs, then we insert the 3-path ab between xb and bc and delete bc; while if (ii) occurs, we insert ab between xb and be_1 and delete the terms $be_1, e_1e_2, \ldots, e_kc$. In either situation, a new sequence S_2 is created. Since each edge of T is encountered twice in W, each edge of T occurs twice in two consecutive terms of S_1 . Each 3-path deleted from S_1 and each 3-path in T not in S_1 may now be added in an appropriate position in S_2 except for the 3-paths R_1 and R_2 . Specifically, if (i) occurs and $R_1, R_2 \neq bc$, then the 3-path bc can now be inserted between two consecutive terms containing c. If (ii) occurs and R_1 and R_2 are not 3-paths of Γ , then the 3-path be_1 can be inserted between two consecutive terms containing e_1 , the 3-path e_1e_2 can be inserted between two consecutive terms containing e_2 , and so on. This creates a new sequence $S: A_1, A_2, \ldots, A_p$ of all 3-paths of T that begins at P and ends at Q such that every two consecutive terms of S have an edge in common and R_1 and R_2 are not terms of S. The existence of the sequence S shows that $P_3(T)$ contains a Hamiltonian P-Q path that avoids R_1 and R_2 . In each case, there is a Hamiltonian P-Q path in $\mathcal{P}_3(T)$ that avoids R_1 and R_2 and so $\mathcal{P}_3(T)$ is 4-tree-connected. Acknowledgments We are grateful to Professor Gary Chartrand for suggesting this problem to us and kindly providing useful information on this topic. Furthermore, we thank the anonymous referees whose valuable suggestions resulted in an improved paper. # References - [1] J. S. Bagga, Old and new generalizations of line graphs. *Int. J. Math. Sci.* (2004), no. 29-32, 1509-1521. - [2] A. Byers, G. Chartrand, D. Olejniczak and P. Zhang, Trees and Hamiltonicity. J. Combin. Math. Combin. Comput. 104 (2018) 187-204. - [3] A. Byers, D. Olejniczak, M. Zayed and P. Zhang, Spanning trees and Hamiltonicity. J. Combin. Math. Combin. Comput. To appear. - [4] G. Chartrand and C. E. Wall, On the Hamiltonian index of a grap Studia Sci. Math. Hungar. 8 (1973) 43-48. - [5] G. Chartrand and P. Zhang, A First Course in Graph Theory, Dov. New York (2012). - [6] S. E. Goodman and S. T. Hedetniemi. On Hamiltonian walks in grapl SIAM J. Comput. 3 (1974) 214-221. - [7] M. A. Gurgel and Y. Wakabayashi, On k-leaf-connected graphs. Combin. Theory Ser. B 41 (1986) 1-16. - [8] F. Harary and C. St. J. A. Nash-Williams, On eulerian and hamiltoni graphs and line graphs. *Canad. Math. Bull.* 8 (1965) 701-709. - [9] E. Prisner, Line graphs and generalizations a survey, in: Surve in Graph Theory (G. Chartrand and M. S. Jacobson, eds.) Con Numer. 116 (1996) 193-229. - [10] M. Zayed, Generalized Line Graphs. Doctoral Dissertation. Wester Michigan University (2018).