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Abstract

Linear codes from neighborhood designs of strongly regular graphs
such as triangular, lattice and Paley graphs have been extensively studied
over the past decade. Most of these families of graphs are line graphs of
a much larger class known as circulant graphs, I'n(S). In this article we
extend earlier results to obtain properties and parameters of binary codes
Cn(S) from neighborhood designs of line graphs of circulant graphs.

1 Introduction

Circulant graphs I',,(S) are a well known family of graphs. They are examples
of vertex transitive graphs and in fact automorphism groups of thesc graphs
contain the cyclic group C, as a subgroup acting sharply transitively on the
vertices. Many important classes of graphs belongs to the family of circulant
graphs.

Linear codes obtained from the row span of adjacency matrices of graphs
were extensively studied over the last decade. These types of graph based codes
were used as candidates for permutation decoding. In (9] and {10}, linear codes
obtained from triangular and square lattice graphs and further in [7}, codes from
line graphs of Paley graphs were studied. All of these families were examples
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of line graphs of circulant graphs. Properties of these classes of codes were
independently studied of each other.

In this work we generalize the work done in [9, 10, 7} to obtain a unified
formula for code parameters of line graphs of circulant graphs LT, (S). We
show that parameters of these codes only depend on the number of vertices n
of I',(S) and the defining set S.

The article is arranged as follows: In Section 2 we provide background mate-
rial on codes, designs and graphs. We use Section 3 to define linear codes from
line graphs of circulant codes and to derive their parameters and we discuss
properties of these codes in Section 4. *

2 Background

The notation for designs and codes is as in [1]. An incidence structure D =
(P, B, J), with point set P, block set B and incidence 7 is a t-(v, k, A) design,
if |P| = v, every block B € B is incident with precisely & points, and every ¢
distinct points are together incident with precisely A blocks. The code Cp of
the design D over the finite field F is the space spanned by the incidence vectors
of the blocks over F. Thus Cp = (vB|Be B), and is a subspace of FP the
full vector space of functions from P to F.

All the codes here are linear codes, and the notation [n,k, d]q will be used
for a ¢-ary code C of length n, dimension k, and minimum weight d, where the
weight of a vector is the number of non-zero coordinate entries. A generator
matrix for C is a k x n matrix made up of a basis for C, and the dual code
C+ is the orthogonal complement under the standard inner product (,), ie.
C*+ = {v € F*|(v,c) =0 for all c € C}. A check matrix for C is a generator
matrix for Ct. Two linear codes of the same length and over the same field
are isomorphic if they can be obtained from one another by permuting the
coordinate positions. An automorphism of a code C is an isomorphism from
C to C. The automorphism group will be denoted by aut(C). Any code is
isomorphic to a code with generator matrix in so-called standard form, i.e.
the form [I)| A]; a check matrix then is given by [~AT | I,_x). The first k
coordinates are the information symbols and the last n — k coordinates are the
check symbols.

The graphs, G = (V, E) with vertex set V and edge set F, discussed here are
undirected with no loops. A graph is regular if all the vertices have the same
valency. The line graph of a graph G is obtained by associating a vertex with
each edge of the graph and connecting two vertices with an edge if and only if
the corresponding edges of G have a vertex in common. The adjacency matrix
A of a graph of order n is an n x n matrix with entries a;j such that a;; =1 if
vertices v; and v; are adjacent, and a;; = 0 otherwise.
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3 Codes from line graphs of circulant graphs

In this Section we define circulant graphs, I',(.S) and list their properties. We
define linear codes associated with line graphs LT',,(S) of circulant graphs and
give important examples from this class. Further, we derive code parameters for
this particular class of codes. Definition, properties and examples of circulant
graphs are found in [3].

Definition 1 The circulant graph T'y(S) s the graph with the vertezr set V =
{0,1,2,...,n—1} C Z and any two vertices = and y are adjacent if and only of
|z — y|n € S, where S C V* =\{0} and

el =

a if0<a<n/2
n—a fnf2<a<n

Suppose S = {aj,a2,...,ar} C V" then we define gcd(n, S) = ged(n,ay,. .., ak)
for our convenience. The following properties of circulant graphs are well known.

Proposition 2 Let [',(S) denote the circulant graph with the defining set S =
{al,ag, G ,a,k}. Then

e T',(S) is connected if and only if ged(n, S) = 1.

o Ifgcd(n,S) = d thenT',(S) is the disjoint union of d copies of Tg (S, .. F)-
e Circulant graphs are ezamples of Cayley graphs.

o I',.(S) is vertex transitive.

The class of circulant graphs consists of many important families of graphs.
We list three examples of strongly regular graphs [4] that have been studied in
coding theory context.

Example 3 Let T'»(S) denote the circulant graph and LT'»(S) denote the line
graph of T'p(S):

1. When S = {1,2,...,|n/2]}, Tn(S) is the complete graph and LT,,(S) 1s
the triangular graph.

2. When S = {1,3,...,2|n/2] + 1}, Tn(S) is the complete bipartite graph
and LT, (S) is the square lattice graph.

3. Whenn= 1(mod4) and S = {22 : x € Z,} thenT,,(5) is the Paley graph.
We define the set of vertices of LT',(S) to be
P = {{:r’y} : [x—"yln € S:l Siﬂ,y‘én}

The 1-design D = (P, B) will have for point set P and for each point {z,y} €
P, a block which we denote by {z, y} is defined in the following way:

{z,y} = {{z, 2} |z — 2z |€ Sandz £y} U {{v,2}:]y—2z|€ S and z # z}.
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The incidence vector of the block {z,y} is

WET = 3 @y Y v

|lz—z|€S ly—=z|€S

where, as usual with the notation from [1], the incidence vector of the subset
X C P, is denoted by v*~. Further, if a, b, ¢ are distinct integers in S so that
{a,b}, {b,c} and {a,c} € P, we write

v{a,b,c} — plab} + v{b,c} +,U{a'§c}
L
to denote this vector of weight 3 in the vector space spanned by the incident
vectors. Also note that for distinct a, b and ¢,

,v{a.,b} ) U{b,c} - ,U{a,c}

To avoid trivial cases we take n > 4. Then in all the following C,, (S) will denote
the binary codc of D and of the span of the row space of an adjacency matrix
of LT',(S).

The number of vertices of LI',,(.S) only depend on cardinality of the defining set
S and whether the element 7 belongs to S or not. If § ¢ S then the number of
vertices of LI',(S) is n|S| and if 2 € S then the number of vertices is 2(2|5]-1).
Since the length of the code C,,(S) is [V(LT,,(S))| we have the following result.

Proposition 4 C,(S) has length n|S| if 5 € S and length 5(2|S|-1) if 5 € 5.

We will use following results in order to determine the dimension of Cn(S)
codes. The first result is due to Bjorner and Karlander [2] who determined
dimensions of linear codes obtained from incidence designs of connected graphs.

Result 5 Let ' = (V, E) be a connected graph, B an incidence matriz for T,
and C'2(B) the row-span of B over F3. Then dim(C3(B)) = |V| — 1.

Dankelmann, Key, and Rodrigues [5] used Result 5 to show that dimension
of binary codes from a neighborhood design of a line graph of a connected graph
only depends on the cardinality of the vertex set of the resulting graph. Further,
they obtained minimum distances of such codes.

Result 6 Let I' = (V,E) be a k-regular connected graph with (V| > 4. Let
A be the adjacency matriz of the line graph LT'. If V is odd then C2(A) has

dimension |V| — 1 and minimum distance k and if V is even then C(A) has
dimension |V| — 2 and minimum distance 2k — 2.

Notation

Let n = 2%(1 +28) > 4 and let f(a,S) = ["-‘ﬁ;’:ﬂ@l] Suppose S =

{a1,a2,...,a} then define ged(n, S) = ged(n,ay, ag, ..., @) andlet D = SU{n}.

Next we give a unified formula for the dimension of C,(S) codes and the di-
mension does not depend on whether n/2 € S or not.
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Proposition 7 The dimension of the code C,,(S) s n— é—'f%:—',% for alln > 4.

Proof. When n = 2%(1 + 28) is odd, we have o = 0 and hence Flo,8) = 0.
 ged(n, S) = 1, graphs T'n(S) are connected and we can apply Result 6 to get
1im(Cr(S)) = n — 1. Suppose gcd(n, S} = d then I, (S) is a disjoint union
»f d circulant graphs I's (2}, %,...,2m). Therefore the line graph LI'(S) is
fisjoint and the adjacency matrix A is a diagonal block matrix of the form.

Ay O 0O s 0
0 A, 0 ... O

A=|. . . : (1)
0 0 0 ... A

Each component adjacency matrix A;, 1 <1 < d has rank 4 — 1 and therefore
A has rank n — d = n — ged(n, S).

When n is even we have o # 0. If gcd(n, S) = 1 then I'z(S5) is connected and
has even number of vertices and f(e,S) = 1. By Result 6, dim(Cr(5)) =n—2.
If ged(n, S) = 2 then we have f(a, S) =0 and I',.(S) is isomorphic to 2* copies
of circulant graphs with 7% vertices. The adjacency matrix A has the same form
as in Equation 1 with each component matrix having rank g — 1. Therefore
dim(Cn(S)) = n — 2%. If gcd(n,S) = d # 2% we get fla,S) = 1 and T'n(S)
is isomorphic to d disjoint union of circulant graphs with an even number of
vertices. By Result 6 and Equation 1 we get dim(Cn(S)) =7 — 2d.

a

The minimum distance of these codes depend on whether n/2 € § or not,
contrary to the dimension.

Proposition 8 The minimum distance of Cn(S) codes 1s 242(1+ f(a, S))(|S}—
1) if n/2 &€ S and 4(|S| — 1) otherurse.

Proof. When n = 2%(1 4+ 28) is odd, we have a = 0 and fle,5) = 0. If
ged(n, S) = 1 then graphs I'(S) are connected with valency 2|S|. By Result 6,
minimum distance, d(Cp(S5)), is equal to 2|S|. If ged(n,S) = d then Ix(8) is
isomorphic to d disjoint union of circulant graphs I';. But cardinality of the
connection set in each of these graphs is equal to |S|. Therefore the vectors
from row span of each component A; in Equation 1 will have minimum weight
2181.
When 7 is even and 3 € S then I',(S) is regular with valency 2|S| — 1, By
Result 6, d(Cr(S)) = 2(2|S|—1) -2 = 4(|S|—1). If § ¢ S then f(,5) =1and
I, (S) is regular with valency 2|S|. Therefore d(Cn(S5)) = 2(2|8))—2 =4|5| -2
B

Now, we list some important examples of codes for different values of n and
S. All the listed codes are optimal when compared to parameters of codes in
the code tables [8], that is, they have the maximumn minimum distance for a
given length n and dimension k.
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n |8 Cn(5) Type

6 |{2,3} 9,4,4] two-weight

6 |{1,2,3} 15,4, 8] simplex code
8 [{1,2,3,4} 28,6,12] | two-weight

8 |1{2,3,4} 20, 6, 8] optimal

10 | {1,2,3,4, 5} 45,8,16] | two-weight
12 1{1,2,3,4,5,6} | {66, 10,20] | three-weight

4 Properties of C,(S) codes

We will study properties of C,,(S) codes in this Section. We find spanning sets
for these codes for particular values of n and S, determine information sets and
bases of minimum weight vectors. Moreover, we derive self-orthogonal codes
from LI',(S) graphs by selecting appropriate defining sets.

Lemma 9 Let A be the adjacency matriz of the circulant graph I'(n, S) and let
det(A) denote the determinant of A. Then det(A) = 0(mod2), when | S | is

even.

Proof. The determinant of any n x n circulant matrix A4 with the first row
(a0, a1,az,...,a,_1) is given by the formula [6]:

n—1

det(A) = H (aO + a1l agC® 4+ an_lCh(n-—l)) (2)

7=0

where ( = e?™/™ is a primitive n-th root of unity. We can separate the first
term of the product in equation 2 in the following way.

n—1

det(A) = (ao+a1+az+- - +an_1) H (ao tard Fagl¥ 4. 4 an—lfh("—l))
i=1

Since A is an adjacency matrix of a graph ag = 0 and E::ol a; =2| S|, we
have (ap + a1 + a2 + -+ an—1) = 0(mod2) and hence det(A) = 0. @

We know that from Section 3 that code parameters of C,(S) codes depend on
the defining set S of I',,(S). When S only contain the element 2 € Z, the
resulting code is a trivial code.

Lemma 10 Let S = {%}. Then C(n,S) is the trivial [2,0, 2] code for even
values of n.

Proof. When S = {%}, I'(n, S) is the disjoint union of n/2 path graphs, which
are disconnected. Therefore the line graph L(I'(n, S)) is an isolated graph con-
sisting of n/2 vertices without any edges. Hence the adjacency matrix of this
graph is the zero matrix and the result follows. =
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It is sometimes important to find a spanning set for a vector space that describes
the whole space. Similarly, for codes if we know a spanning set, then we can use
that set to generate all the code words. This helps to reduce the computational

complexity of algorithms associated with encoding and decoding.
Proposition 11 When a € S and gcd(n,S) = 1, the set of n — 1 vectors
B= {fu{i""*"‘} 0<i<n— 2} is a spanning set for C,(S).

Proof. It is easy to see that any vector in Cp(S) of the form pibitel js in B
for 0 < i< n—2. Next, let {z,7} € P, where |i — j|, # «. Then

U{i!j} - v{i1i+a} + v{i+1:i+1+a} + . + v{j_?‘rj_l} + v{j—lrj}.

Therefore, Wi} ¢ spaﬁ(B).
]
The following result follows from Propositions 7 and 11.

Corollary 12 C(n, S) has a basis of minimum vectors whenever ged(n,S) = 1.

Corollary 13 The set of points T = {{1,7 + a} : 0 < i < n — 2} is an informa-
tion set for the code C(n, S) whenever a € S and ged(n, S) =1,

Proof. Arrange the points P so that the first n—1 points are {{{,i +a}: 0 < i <
followed by the remaining points. Similarly, arrange the incidence vectors that
correspond with the rows of the generator matrix in the same order. Then by
row reduction we get the generator matrix into standard form [I|A]. =

Lemma 14 When n = 4l and S = {2k | 1 < k < n/4} then L(I'(n,S)) is a
{li = 2(”42),k =n—4,A =22 4 = {0,4}) graph.

Proof. When n = 4l and S = {2k | 1 < k < n/4} then gcd(n,S) = 2 and
by Proposition 2, T',,(S) is the distinct union of 2 copies of I'y({1,2,...,1}).
But I'y({1,2,...,1}) is a complete graph on 2! vertices. Therefore, I',(5) is
the union of two copies of complete graphs of 2! vertices. The line graph of
a complete graph on n vertices is a triangular graph with parameters (v =
(3),k = 2(n—1),A = n—1,p = 4). Since, we have a disjoint union of
graphs, the line graph is also disjoint. Hence, the resulting graph has parame-
ters, v =2(%), k=4l —4, A =2 -2, u={0,4}). ®m

A linear code C is called a self-orthogonal code, if the dual code C+ C C.
We can use the above Lemma to generate self-orthogonal codes from LI',.(S)
graphs.

Theorem 15 Let S = {2k | 1 < k < n/4} and C(n,S) be the binary code from
L(D(n,S)). Then C(n,S) is self-orthogonal when n = 4l.
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roof. When n = 4l and S = {2k | 1 € k < n/4}, any two vertices will meet
ther in A = 254 or p = {0,4} number of vertices. Hence, any two incidence
zctors will intersect in 25—4, 0 or 4 points. But, since n = 4l, we have this value
jual to zero modulo 2. Therefore, the inner product of any incident vector

ith another vector is zero and the result follows. ®
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