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Abstract

We develop an ordering function on the class of tournament di-
graphs (complete antisymmetric digraphs) that is based on the Rényi
x-entropy. This ordering function partitions tournaments on n ver-
tices into equivalence classes that are approximately sorted from
transitive (the arc relation is transitive — the score sequence is
0,1,2,...,n— 1)) to regular (score sequence (“T"', i “2;‘)) But
the diversity among regular tournaments (there are for example 1123
regular tournaments on 11 vertices, and 1,495,297 regular tourna-
ments on 13 vertices up to isomorphism) is captured to an extent.

1 Introduction

Many entropy functionals have been developed for use on graphs to the
ends of a variety of purposes including assessing network complexity [8],
approximating similarity [11], characterizing graphs (3], as tools for data
analytics involving clustering [1], and for their theoretical value in and of
themselves [2]. Possibly all the entropy functionals are developed with the
goal of capturing what the classical Shannon entropy for information theory
does for probability distributions; in particular, for a discrete probability
distribution P = (p1,...,pn), the Shannon entropy of P 1s

S(P) = “—Zpilﬁgz(m)-

If a graph’s Laplacian is normalized in some way so that its trace is equal
to 1, then, being symmetric and positive semidefintie, the Laplacian’s spec-
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trum is thought of as a probability distribution and the graph’s ent:
1s computed via — ) Alog, A, where the sum is over the spectrum of
graph’s Laplacian (normalized in some way as mentioned). In this case
entropy is called the von Neumann entropy, after the way von Neum
used it in [10].

Here we explore using Rényi a-entropy to compare tournaments.
so-called Rényi a-entropy was developed by Rényi in [9] to identify
axioms to which entropy fuinctionals should adhere and to develop a «
general functional than Shannon’s. Traditionally, the Rényi x-entrog
defined using the log function as follows:

1 Z“ N
i=1

where P = (py,...,pn) is a discrete probability distribution. For our -
poses, we suppress the log in order to apply this functional to a com
“probability distribution,” if you will, and we take the Rényi x-*ent:
to be

n

Hy(P)=-> pf.

i=1

Note that if P = (p1,...,pn) and Q = (qi,...,qn), then HZ (P
HZ(Q) ff Ho(P) = Hy(Q). Thus we lose no information by using the n
simplistic *entropy. Let T be a tournament with vertex set V = {v; I
arc set A(T), and score sequence (sy,...,s,), where the vertices are lab
so that s; is the score of vi (s; =|{x € V(T):v; — x in T}). We define
normalized Laplacian matrix [(T) = (a)i; by aw = s¢ (721)—1 for 1 <i
and ai; = —(;)—] if ij € A(T) and O otherwise. We pretend the com
spectrum of I(T) is a probability distribution and define the Rény
*entropy of T by

Hy(T)=- )  A%eR
A€spec(L(T))

for o > 1, where spec(A) denotes the spectrum of matrix A. If Tisa t
nament whose vertex set has size n we may refer to T as an n-tournam

We note that our work here is an improvement on the work done
Landau in [4] in which a tournament is assessed based on how close it :
the what he called the “hierarchy” (the transitive tournament). Land
assessment mechanism is sensitive to the score sequence of the tournan
only; our ordering is sensitive to other structural properties not capt



by the score sequence. For example, the regular n-tournaments (tourna-
ments in which all vertices have score 231) can be distinguished up to

isomorphism to an extent.

We observe that L(T) = (“)"] D — A), where D is the diagonal matrix
diag(s1,---»Sn) and A s the adjacency matrix of T. Recall that raising a
matrix to a power raises each of its eigenvalues to that power, and multi-
plying it by a scalar multiplies the eigenvalues by that scalar. Also recall
that for any matrix M, tr M, called the trace of M, is both the sum of its
diagonal entries and the sum of its eigenvalues.

Pulling this together, we see that

Hy(M=— Y A%
A€spec(L(T))

n\ "% N
--—(2) tr[(D — A)%].

It directly follows that

= (nzZS

- H;:_é_s(;w(@-m.

i=1

Therefore, if two tournaments have the same score sequence, then they
must have the same Rényi 2-*entropy and Rényi 3-*entropy*. However,
the converse is not true. For example, Landau’s conditions ([5]) guarantee
the existence of tournaments with score sequences (1,1,2,3,4,5,5) and
(0,3,3,3,3,3,6). Such tournaments each have Hj = —81/217 and H} =
—-336/213.

Also, it’s not true that if two tournaments have distinct Rényi 2-*entropy,
then they have distinct Rényi 3-*entropy. Take for examples tournaments
with score sequences (0,1,3,4,4,4,5) and (1,2,2,3,3,4,6). The first has
Hy= ——79/212, while the second has Hj = —83/212, with H% = —333/21°
for both.

Establishing a tournament ordering is further complicated by examples
in which H3(T) < H5(T’) and H%(T) > H%(T’). This is the case with tour-
naments T and T’ with score sequences (0, 1,4,4,4,4,4) and (2,2, 2,2, 3,4, 6),
respectively. Here, H3(T) = —81/212 < —77/212 = H3(T’) and H3(T) =
—306/21° > —318/213 = H3}(T").
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To address these issues, we define the Rény: ordering of tournar
on n vertices using the following structure. Tournaments T and T’ ar«
to be in the same Rény: a-class if for every integer § with 2 < 8
we have Hi(T) = HE(T’). f T and T’ are in the same Rényi x-clas:
Hy 1 (T) > H;, ,(T’), then T precedes T’ in the Rényi order. For any
o, the Rényi «-classes partition the set of tournaments on n vertices
the Rényi (« + 1)-classes refine that partition. For tournaments on
and 9 vertices, this refinement is summarized in the following table.

l | 7 vertices | 8 vertices | 9 verti
Tournaments, up to isomorphism 456 6880 1915
Score sequences 59 167 672
Rényi 2-classes 15 21 31
Rényi 3-classes 56 145 355
Rényi 4-classes 165 778 387"
Rényi 5-classes 270 2152 2107
Rényi 6-classes 334 4176 9316
Rényi 7-classes 334 4664 1429!
Rényi 8-classes 334 4664 1606!

2 Results

We see from the table that the Rényi 7-classes don’t partition the :
/-tournaments any more than the 6-classes do. We will show that

large enough, the «-classes partition the set of tournaments at the spec
level.

Lemma 1. Let S be the multiset of the n complez roots of the po
maual

1

X"+ an_1x™ +--‘+a1x+ao:H(x-—s).

SES
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Then for €N, pa =) o5 8 satisfies the recursion

(1] [ 1 0 0 0
P2 P 3 0 .. 0
P3 P2 P1 3 0 o
. . , ; .
Pn =" Pa~1 Pr-z Pi=s ~°° n
: : o
Px Pk—-1 Pk-2 Pxk-3 ~°° Pxk-n

Proof. We define

ec= Y JIx

Ac(i) e

for k € N. By expanding and reordering terms, we proceed by inductior
to express p recursively. To begin,

ch:ZX“

xX€S

(23 (&) = (T 5
cerer- 3 () £

AE(?_) XEA xXEA

Now suppose that

k.
Pa = Z(*i)”"eipq_i + (**1)k Z ((H X) Z x“"(kﬁ-‘))
)

i=1 s
Ae(k+1 xXEA XEA
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for some k with 1 <k < «— 1. Then

K
Pa=) ()" epai+(-1)* > ((H x) I

i=1 Ae(kf_‘) XEA X€EA

x
= Z('—1)i+]eipo¢—i +(=D* x
i=1

X \
£ (oo g

AE(5.) \ \eA xES\A /

M-

(=" eipaci + (=N *err1Pac e 1) + (=1* %

i=1

> () & xee

Ae(ki‘) xEA XxES\A

The second term is of the form of the first sum with i = k + 1
summands of the last term are products of k + 2 distinct element
Thus we can simplify this to

k41
Z(-])i+]eipa—i + (—1)kH Z ((H x) Z x o (k+2)

i=1 Ae(kiZJ XEA XEA

to complete the inductive step. Therefore, taking k = o — 1, we get

Po = ZSZII (_]).i-'_]eipcx—i +(—1)* e, fora<n -
" Y (=D eipas fora >n

Clearly, (—1)*ex = an_x for each k € {1,...,n}. Therefore, P«
simplified to

a—1
=) i) Un-iPa—i—®An_o fora<n

n f *
~ 2 i=1 Gn—iPa—i orx>mn

Lemma 2. For every ordered n-tuple (p1,p2,---,Pn) € C™, there
a unique multiset S of order n containing complex numbers suc

o
2 X" =Pa
xX€S

for each x € {1,2,...,n}.



Proof. Let A be the invertible matrix

1 0 0 07
P1 2 0 - 0
P2 P 3 0,

LPn—1 Pn—-2 Pn-3 - T

and let (@n—1) Qn-2,--+, ap)' be the unique solution to

—AX = (phplm' .. )pn)t-

If S is the multiset containing the complex roots of x™ + an_; x4+
a;x + ao, then by Lemma 1, } o x* satisfies the same recursion as p«
for 1 < &« €< n, so they are equal.

Now we show uniqueness. If R is a multiset of order n containing com-

plex numbers such that
D X =P«

x€S
for each x € {1, 2,...,n}, then if we write
JTx=7) =™ +bn_1x™ "+ + by,

TER

we have (p1,...,Pn)' = —A(bn_1,...,b0)" by Lemma 1. Therefore,
(bn-1)"')b0)t = (an-1,...,a0)",
50 9§ = R. O

Theorem 3. Tournaments T and T’ on n vertices are in the same
Rényi (n —1)-class off L(T) and L(T’) have the same spectrum.

Proof. The reverse direction is clear. For the forward direction, note that
L(T) and L(T’) are singular since their rows sum to 0. Therefore, 0 ¢
spec(L(T)) and 0 € spec(L(T’)). Define S and R to be the multisets of order
n—1 obtained from deleting one 0 from each of spec(L(T)) and spec(L(T")),
respectively. Since T and T’ are in the same Rényi (n — 1)-class, we have
Z N e Z AX = Z A% — Z A
AES A€spec(L(T)) A€spec(L(T’)) AER
for each @ € {1,2,...,n — 1}. By Lemma 2, S = R, so spec(L(T)) =
spec(L(T’)). a
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Corollary 3.1. The Rényi (n— 1)-classes create a mazimal pa
of the set of tournaments on n vertices, that is, for a > n, every
x-class s equal to a Rényi (n— 1)-class.

Theorem 4. The transitive tournament minimizes Rényi 2-e
and 3-entropy.

Proof. Consider the following algorithm. Let §5 = (s1, ..., sn) be th
sequence of some tournament with €; < s;--- < s,. Fori > 1, ob
from §;_; by identifying the first repeated score and subtracting

the first value in the repeated group and adding 1 to the last value
repeated group. Clearly, each step of the algorithm preserves the pr
that s; < sy < ... <'s,,. The algorithm terminates when there

repeated values in s}, which is only possible when §; is the score se
for the transitive tournament on n vertices.

We first show that all sequences given are valid tournament sc
quences. Suppose that §;_; = (s1,s2,...,5,) is the score sequence ¢
tournament T, and let s5 — sy be the first and last values in the f
peated group of values in §;_;. Obtain T’ from T by relabeling v
) and k (if necessary) so that j — k in T’. Next, obtain T” from
reversing the arc between j and k so that k — j in T”. Then T” ha
sequence S; = (s1,...,8; —1,...,8x + 1,...,5,). Therefore, by indi
each §; given by the algorithm is a valid tournament score sequence

Since
(x+1)2+(x-12=2x2+2 foralxeZ,

each step increases the value of p, by 2. Therefore, since the algoritk
minates with the transitive tournament, and since S, was chosen arbif
the transitive tournament maximizes p; and minimizes H3.

Also, using the fact that

st =L (3 (243(2) (%))

i=1

H3 is minimized when } 1 | (s? +3(%)) = Y1, (s2 4+ 3(si)(si — 1
maximized. It suffices to show that this value also increases with eac
of the algorithm. Simply note that the function f(x) = x3 + 3x(x -
satisfies f”(x) > O for x > 0. Therefore, f(x — 1) + f(x + 1) > 2f

x> 1.



Indeed, the value of p;3 increases with each step. Therefore, the transi-
tive tournament maximizes p3 and minimizes HJ.
A straightforward calculation shows that p; and p3 are strictly positive
for any tournament besides the 3-cycle, so it follows that the tramsitive

urnament minimizes the traditional 2- and 3-entropies as well for n >

to
O

4.
Corollary 4.1. Any transitive tournament comes last in its respective
Rényi order.

Recall that a regular n-tournament is one with all scores equal to 25;
necessarily n is odd. For even n, semi-regular n-tournament is a tour-
nament on n vertices with half of the scores equal to % and the other half

equal to 121—-*1.

Theorem 5. The first tournament in any Rény: order is regular or
semi-regular.

Proof. We need only show that H} is maximized for regular and semi-
regular tournaments. Let T be a tournament on n vertices. Then

-2 n

wm =—(3) X

i=1

() B[ ne- 5 () )

i=1

=_(2)_2 ((R-U(;) - E(%I_)ZJr ; (Si_ “2;1)2)

) E )

i=1

If n is odd, it’s now clear that H3(T) achieves its maximum value when
= “T“ for each 1, and if n is even, it’s clear that it achieves its maximum
when |s,-L — “—;l = % for all i. But these are complete characterizations of
regular and semi-regular tournaments. a

We now move on to give an exact count of the number of Rényi 2-classes
for arbitrary n.
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Lemma 6. Let T be a tournament on n vertices. Then

p2 = Z A is even if and only if (n

2) s even..
A€spec(L(T))

Proof. Note that

n

Y RM=u@my)=Y s

A€spec(L(T)) i=1

where §'= (s1,s2,...,5,) is the score sequence of T. Since the sum
scores In any score sequence is always (7)), there are an even num
odd si’s when (3) is even and an odd number of odd s;’s when (1) i
Therefore, p; is even iff (73) is even.

Theorem 7. The number of Rény:i 2-classes of tournaments on 1
tices ts

Proof. We use the algorithm in the proof of Theorem 4 to produce all
of p» = ) [, s{ with §, being a regular or semi-regular score seq

that is, 5o is (%55, ..., %5 or (3 —1,...,2-1,2,..., 1),

We have shown that regular and semi-regular tournaments mi
P2, and that transitive tournaments maximize p2. Also recall th:
algorithm increases the value of p, by 2 each step until it terminate:
the transitive tournament. From the Lemma, we know that eith:
values of p; are all even or all odd, so the algorithm generates the
sequence of some tournament in each Rényi 2-class.

We can count the number of classes by counting the odd or even nu

between minimal and maximal values of p,. The transitive tourn:
gives

n—1
_— =2
P2,max = Z 1
i=0

n(n—)n-1)
Lt}
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Ifn is odd, a regular tournament gives

M e
P2,min =N (-2—)

n{n —1)2
4

The number of Rényi 2-classes for odd n would then be

1 —m -1 —1)2
%(Pz,max—PZ,mm) +1= 5 (n(n 23)(n ) B n(n4 ) ) i

nn-1) 1

_nn-=1)(n+1)
N 24

1T /m+1
= — 1.
i(75)+
If n is even, a semi-regular tournament has T vertices with score 3 —1 and
2 vertices with score %, so

2
o3 (5735
n

= |

nn? —2n+2)
2 .

Therefore, the number of Rényi 2-classes for even n is

a—

1
z(pz,max —P2,min) +1 =3 (

2
= (4 (n—;_-) (n—])—3(n2~—2n+2)) +1

nn—-13)n-1) nn?—-2n+2)
23 - i )+1
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Finally, we answer the question of which tournaments come firs
Rényi order for certain values of n. For a vertex v ¢ V(T), let
denote the outset of v; that is the set {x € V(T):v 5 x A(T)} A
tournament on n = 4k+3 vertices is called doubly regular if for any
%Y € V(T), we have IN*(x) N N*(y)| = k. Similarly, a regular tour
on n = 4k + 1 vertices is called quas: doubly regular if for any
%Y € V(T), we have [N*(x) 1N+ (y)] =k —1 or [N+(x) N N+(y)] -

We will show that H;(T) is maximum on Ry if and only if T
doubly regular or doubly regular, when n = 4k + 1 or n = 4k + 3

tively. We'll use the following lemma which counts the number of -
in a tournament.

Let T be an n-tournament and define:

® ¢3(T) to be the number of 3-cycles;
® c4(T) to be the number of 4-cycles;

® t4(T) to be the number of subtournaments of T isomorphic
transitive 4-tournament.

We note that the following lemma addresses a problem similar
in [6] (their Proposition 1.1).

Lemma 8. Let T be an n-tournament on n vertices, and ¢z,
ty defined as above; then

M =te(n =72 () ~sesm) .

Proof. Consider the four 4-tournaments up to 1somorphism:

1. TS4: The strong 4-tournament;

2. TT4: The transitive 4-tournament;

3. TO4: The tournament with score sequence (1, 1, 1, 3):

L

4. TK4: The tournament with score sequence (0, 2, 2, 2).
It is quickly verified that

C3(C4) = 2, C3(T4) =0, C3(TK4) = 1) CS(TO4) =1
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N et T beany n-tournament. Since each 3-cycle belongs to exactly n—3
su%t ournaments of T on 4 vertices, we have
(n—3)ca(T) = 2¢4(T) + toa(T) + tha(T), (1)

- where toa(T) and tkq(T) are the number of TO4's and TK4’s in T. Fur-

thermore, the total number of subtournaments of T on 4 vertices is equal

to -
: ca(T) +t4(T) + tos(T) +tka(T) = (4). (2)

Combining equations (2) and (3), we obtain

s =ta(1) = () + (n=3es(M

— t4(T) — 1‘-4“—3 ((’3‘) —4C3(T)> .

Lemma 9. For regular tournaments, H;(T) is marimized where t4(T)
is minimized, and vice-versa.

O

Proof. Let T = (V, A) be a regular tournament on n = 2Zm + 1 v_ertices.
First note that for ¢ € Z with « > 2, we have Hj(T) = —tr(L(T)%).
Furthermore, since T is regular, we have

£(T) = —(mI— M)

()
Therefore, by the linearity of the trace and using Lemma 8, we can express
H; in terms of t4(T), noting that TS, is the only tournament on 4 vertices
with a walk of length 4 from a vertex to itself.

—4
Hi(T) = -('2‘) tr (m*I —4m?M 4 6m*M? — 4mM> + M?)

—4
- —(;> (m*n — 12mes(T) +4cs(T))

- _(;‘)_ (m4n-'12mc3(T) +4ta(T) — (n = 3) (@) "4°3m>) '

Note that n, m and c3 are all constant for regular fournaments on n ver-

tices. |
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Theorem 10. If n is odd, then a tournament T on n vertic
comes first in its respective Rényi order must be doubly regu
quas: doubly regular. Furthermore, all doubly regular tourname;
cospectral and therefore come first in the Rényi order.

Proof. Since H; is maximized by regular tournaments for odd n, w
that the first tournament in the Reny1 order must be regular, so le
a regular tournament on n = 2m + 1 vertices. Now we look to mj
t4(T). Consider a vertex x € V(T) and the corresponding subtourr

T’ on the m vertices in N*(x). The number of transitive triples i
given by

6= ¥ (|N+(x) ’ N+(y)|)

YEN*(x)
2
=3 ¥ (|N+(x)mN+(y)|~"‘—;—')
YEN*+(x)
+m2D e NNt - Ly (e
2 Z x Y 2 2

YyEN+(x) YyeEN+(x)

N*(x) NN+ m—1)*
Z (l (x)N (H)l—T) +

yeN+(x)
" m m—1)
(m—Z)(Z)—m( 2

Ifn =3 (mod4) and n = 4k + 3, then

(("‘ 2(3)- m(mTﬁ])z)
(k= 1k —%?)

2K —k—%2
2

()

with equality if and only if [N+ (x) "N+ (y)| = m-l =k foreachy e M
Now, since t3(T’) is also the number of Ts in T in which x is the s

I
2

t3(T') >

S

3

T2



it follows that k
t4(T) _>_ nm 2 )

with equality if and only if T is doubly regular.
" fn=1 (mod4) and n = 4k + 1, then

2 _1\2
()2 3 (m (3) +m-2(%) - (=) )

m (1 2k —1 154
:-_Z—(Z+(2k—2) g —(k—z))

=k((k=1)(2k—1)—k* +k)
=k(k_l)2)

with equality if and only if |N*(x) " N*+(y)|— 51| = 3 for each y €
N*(x). Therefore,

ta(T) = nk(k—1)?,
with equality if and only if T is quasi doubly regular.

Now we have that H} is maximized for (quasi) doubly regular tourna-
ments, which means that the first tournament in the Rényi order in these
cases must be one of these types. We now show that all doubly regu-
lar tournaments are cospectral, or that Rényi «-*entropy can’t distinguish
them.

Let A be the adjacency matrix of a doubly-regular tournament T on
n = 2m+1 = 4k+3 vertices. Then AA' = mI+k(J—1I) and A+A* =]—1I,
where I is the identity matrix and J is the all-ones matrix. Then

(A=AD(A=ADt = AAt —A(A +AY) + A1
=ml+k(J—-1)—AJ - 1) + I
= (k=ANJ+ (m—k+A+A)L

Since spec(]) = {n, 0™}, we have

spec((A—AD(A—ADY) = {n(k—A)+m—k+A+A%, (m—k+A+A%) "D}

73



Therefore,

|A = AI? = |(A = AI)(A — AD)Y|
=m(k=A)+m—k+A+A)(m—k+A+ A"~
=(m? =2mA+A%)(k+1+A+AH)!

= ((m—=A) (k+1+7\+7\2)’“)

Therefore, since n is odd, 2

A=Al = (m—A)(k+1+A+AH)™

. (m)
spec(A) = {m, (—% s %) } :

Finally, if L is the normalized Laplacian matrix of T, then L and .
related by

and

—2 (mi-A)
n

S0

3 Concluding Remarks

We conclude with a few conjectures.

Conjecture 1. If tournaments T and T’ have the same spectrum,
they have the same score sequence.

We note that there is reason to doubt this conjecture. Merris [7
structed two cospectral graphs on 11 vertices with different degr
quences. Perhaps there is an analogous result for tournaments. Qur r
for the conjecture is simply because we have not found any countert
ples.
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There in fact exist tournaments with different score sequences and which
belong to the same Rényi a-class for « < 5. Below are the adjacency

matri

ces of two 8-tournaments with score sequences (2,2, 2,3,4,5,5,5) and

(1,33 3% 4,4,6) that are in the same Rényi 5-class.
)

L

[0

_— ) — ) -t (OO

O O = md e O o

— e em O OO OO

- —- 0 O O O O O

- O O O O — O O

©C O O O = =0

0

-

[0 1. 0 0 0 0 0 0]
001 1100 0
100101 00
10001010
10100 1 10
11010010
11100 0 01
111111 0 0]

Conjecture 2. The ratio of the number of Rény: 3-classes of tourna-
" ments on n vertices to the number of score sequences of tournaments
on n vertices 1s greater than 1/2 for alln > 2.

Conjecture 3. The ratio of the number of Rényr (n — 1)-classes of
tournaments on n vertices to the number of tournaments on n vertices
up to 1somorphism ts greater than 1/2 for alln > 2.
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