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Abstract

The paper proposes techniques which provide closed-form solu-
tions for special simultaneous systems of two and three linear recur-
rences. These systems are characterized by particular restrictions on
their coefficients. We discuss the application of these systems to some
algorithmic problems associated with relationship between algebraic
expressions and graphs. Using decomposition methods described in
the paper we generate the simultaneous recurrences for graph expres-
sion lengths and solve them with the proposed approach.

1 Introduction

A recurrence relation (recurrence) for the sequence ag, a1, ag, ... is an
equation that expresses the term a, of a sequence as a function of certain
preceding terms a;, ¢ < n, for each n = ng.

A recurrence with finite history depends on a fixed number of earlier
values, while an equation that depends on all preceding values has a full
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history. The recurrence with finite history is of k-th order if an can be
expressed in terms of an_1, Gp_2, ..., Gn_y, i.e.

a'n = f(a’ﬂ—lya’n—za' ] -,an*k); n 2 k

Initial conditions for this recurrence specify particular values (initial val.
ues) of ag, ay, ..., ax_;.

The recurrence is linear if it expresses a4, as a linear function of pre-
ceding terms. Otherwise the recurrence is nonlinear. A linear recurrence
of k-th order is an equation of the form

an = C -10n-1+ Ch_20n-2+... + Coag + a(n), nz1. (1)

The function « (n) is the particularity function. If o (n) = 0 the recurrence
(1) is called homogeneous. Otherwise, it is nonhomogeneous. Each coef-
ficient C; may be either a constant coefficient, or a function on n, i.e., a
variable coefficient.

The goal of numerous investigations devoted to recurrence relations is
to find closed-form (explicit) solutions for these equations, i.e., to express
an directly in n. Specifically, generic recurrences and methods for their
solutions are discussed in [9], [15], (16], [21], [23], [24], [32].

Linear recurrences of k-th order with constant coefficients are the most
common examples of recurrence relations. Many of them are solved by
methods of characteristic equations (roots) and generating functions. Also,
other methods for solving special equations of this. type are considered in
(9], [23], [24], [32]. A matric method to solve the recurrences of order k > 3,
when use of the traditional methods is rather difficult, is provided in [22].

The usual methods can be used elegantly when constant coefficients
are of special form. Linear recurrences with coefficients in arithmetic and
geometric progression are solved in [7].

Linear nonhomogeneous recurrences with constant coefficients and par-
ticularity functions of special forms are studied in [36] and [38]

Linear recurrences with variable, mainly, polynomial coefficients are sur-
veyed in [3], [6], [15], [16], [30], [31]. Specifically, the approach presented in
[6] is to transform an equation to a previously solved equation.

Some linear recurrences with full history are analyzed in [15]. A special
linear recurrence with full history that arises in a number of applications,
is solved in [35].

As noted in [40], sometimes recurrences working in tandem are more
effective than a single recurrence. Ways for solving simultaneous systems
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of two linear recurrences are discussed in [16], [24], [40]. With simultane-
ous recurrences, one uses a substitution from one recurrence to reduce the
number of different sequences occurring in other recurrences. The objective
is to reduce the solution of the initial system to the solution of one or more
independent recurrences. In the general case, for two or more simultaneous
recurrences, it is possible to divide the system into individual recurrences
using the Hamilton-Cayley theorem [4]. The obtained recurrences each of
which has a single unknown will be of a higher order than the initial ones.
They are to be solved by the standard methods for regular recurrences.

The purpose of this paper is to solve a following simultaneous system
of three linear nonhomogeneous recurrences of first order with constant
coefficients: '

Qn = 0110n-1 + @12bp—1 + @13Cn_1 + @1
b’n = 21Qn-1 + a22bn—1 + ao3Cn_1 + a2 (2)
Cn = 0318n-1 + 32bp_1 + a33cr-1 + a3,

when
11 + a1z + a3 = agy + Qgz + g3 = 31 + Q32 + 33

and a sequence b, is an affine combination (linear combination with the
sum of weights equal to 1) of sequences a,, and ¢, (ag, by, and cy are initial
values of a, b, and c, respectively). The particularity functions (o, a2, a3)
in all recurrences of (2) are constants (absolute terms).

The application of this system to some algorithmic theory problems is
discussed in Section 3.

2 Graphs and graph expressions

A graph G consists of a vertez set V(G) and an edge set E (G), where each
edge corresponds to a pair (v,w) of vertices. If the edges are ordered pairs
of vertices (i.e., the pair (v, w) is different from the pair (w, v)), then we call
the graph directed or digraph; otherwise, we call it undirected. If (v, w) is
an edge in a digraph, we say that (v, w) leaves vertex v and enters vertex w.
A vertex in a digraph is a source if no edges enter it, and a sink if no edges
leave it. A path from vertex vg to vertex vy in a graph G is a sequence of its
vertices [vg,v1,v2,...,Vk_1,Vk] such that (v;_1,v;) € E(G) for 1 <1 < k.
G is an acyclic graph if there is no closed path [vp,vy,v2,...,Vk,vo] in G.
A two-terminal directed acyclic graph (st-dag) has only one source s and
only one sink ¢. In an st-dag, every vertex lies on some path from s to t.

A graph G' is a subgraph of G if V (G') C V (G) and E(G') C E(G).
A graph G is homeomorphic to a graph G’ (a homeomorph of G') if G can
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be obtained by subdividing edges of G’ with new vertices. Two graphs @
and G' are isomorphic if there exists a bijection f : V(G) — V (G") such
that (v,w) € E(G) if and only if (f (v), f (w)) € E(G").

The transpose [8] of a digraph G is another digraph on the same set of
vertices with all of the edges reversed compared to the orientation of the
corresponding edges in G. In graph theory, a skew-symmetric graph is g
directed graph that is isomorphic to its own transpose graph.

Given a graph G, an edge labeling is a funetion E(G) — R, where R is
a ring equipped with two binary operations + (addition or disjoint union)
and - (multiplication or concatenation, also denoted by juxtaposition when
no ambiguity arises). In what follows, elements of R are called labels, and
a labeled graph refers to an edge-labeled graph with all labels distinct,.

Each path between the source and the sink (a spanning path) in an st-
dag can be represented by a product of all edge labels of the path. We define
the sum of edge label products corresponding to all possible spanning paths
of an st-dag G as the canonical expression of G. The label order in every
product (from the left to the right) is identical to the order of corresponding
edges in the path (from the source to the sink). An algebraic expression is
called a graph expression (a factoring of an st-dag in [2]) if it is algebraically
equivalent to the canonical expression of an st-dag. A graph expression
consists of labels, the two ring operators + and -, and parentheses. For
example, clearly, the algebraic expression ab+ bc is not a graph expression.

We define the total number of labels in an algebraic expression as its
complezity. An optimal representation of the algebraic expression F is an
expression of minimum complexity algebraically equivalent to F. Graph
expressions with a minimum (or, at least, a polynomial) complexity may be
considered as a key to generating efficient algorithms on distributed systems.
Therefore, our intention is to simplify a graph expression to its optimal
representation or, at least, to the expression with polynomial complexity
in relation to the graph’s size.

A series-parallel graph is defined recursively as follows:

(i) A single edge (u, v) is a series-parallel graph with source u and sink
Vs

(ii) If G; and G are series-parallel graphs, so is the graph obtained by
either of the following operations:

(a) Parallel composition: identify the source of G with the source of
G2 and the sink of G; with the sink of Go.

(b) Series composition: identify the sink of G; with the source of Ga.
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A series-parallel graph expression has a representation in which each
abel appears only once (2], [19] (a read-once formula [12] in which Boolean
yperations are replaced by their arithmetic counterparts). This represen-
ation is optimal for the series-parallel graph expression. For example,
e canonical expression of the series-parallel graph presented in Fig. 1 is
bd-+abe +acd+ace+ fe+ fd and it can be reduced to (a(b+c)+ f)(d+e).

b d

Figure 1: A series-parallel graph.

A Fibonacci graph [14] which gives a generic example of non-series-
sarallel graphs has vertices {1,2, 3,...,n} and edges {(v,v+1) | v =
,2,...,n—=1}U{(v,o2+2) |v= 1,2,...,n—2}. As shown in (3], an st-
dag is series-parallel if and only if it does not contain a subgraph which is
a homeomorph of the forbidden subgraph positioned between vertices 1 and
4 of the Fibonacci graph illustrated in Fig. 2. Possible optimal represen-
tations of its expression are a (aga3 + b) + biag or (a1a2 +b1) az + a1 be.
For this reason, an expression of a non-series-parallel st-dag can not be
represented as a read-once formula. However, generating the optimum fac-
tored form for expressions which cannot be reduced to read-once formulae

is NP-complete [39].

Figure 2: A Fibonacci graph.

Problems related to computations on labeled graphs have applications
in various areas. Specifically, flow [37], scheduling [11], reliability [33],
economical [29] problems which are either intractable or have complicated
solutions in the general case are solvable for series-parallel graphs.

Interrelations between graphs and expressions are discussed in [1], {2l
[10], [13], [17], [18], (19], [25],(26], [27], (28], [29], [34], and other works. In
a number of papers, in particular, in [13], [25], the algorithms developed
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in order to obtain good factored forms are presented. In this Paper we
describe decomposition methods for generating compact graph eXpressiong

3 Generating graph expressions by decompq.
sition methods

3

These methods are based on recursive reveajing subgraphs of approximately
equal sizes in a graph of a regular structure. The resulting expression ig
produced by a special composition of subexpressions describing these syb.
graphs. Subgraphs revealed in all recursive steps are divided into the same
number of subgraphs of proportionally decreasing sizes. The existence of
a decomposition method for a graph G is a sufficient condition for the ex-
istence of a polynomial-size expression for G. The expression’s complexity
depends, in particular, on the number of revealed subgraphs in each recur.
sive step of the decomposition procedure

In [19] we apply a decomposition method to a Fibonacci graph. Denote
by F(p,q) a subexpression related to its subgraph (which is a Fibonacc
graph as well) having a source pand asink q. If g—p > 2, then we choose
any decomposition vertez i (p+1<i<g- 1) in a subgraph, and, in effect,
split it at this vertex (Fig. 3). Any path from vertex P to vertex q passes
through vertex i or avoids it via edge b; 1. Therefore, in the general case
& current subgraph is decomposed into four new subgraphs and

F(p,q) < F(p,i)F(i,q) + F(p,i — 1)b; 1 F(i+1,q).

Figure 3: Decomposition of a F ibonacci subgraph at vertex i.

As shown in [19], the shortest expression obtained by the decomposition
method is achieved for i chosen as 222 | or [ 4£2] in each recursive step. By
the master theorem 8], the total number of labels T'(m) in this expression

for an m-vertex Fibonacci graph is O (mz). For m that is a power of two
(m =27 for some positive integer r > 2),

T(m)=2T(%)+T(—7§—1)+T(~?+1)+1
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that is presented in closed form as

T (m) = % (%mz—l).

Consider a more complicated graph called a full square rhomboid [18].
We split every mon-trivial subgraph through two decomposition vertices
with the same absolute ordinal numbers which are chosen in the middle of
the upper and the lower vertex rows in the graph (see the example in Fig.
4). Any path from the source to the sink of the graph in Fig. 4 passes either
through one of the decomposition vertices or through edge b3. The graph
is decomposed into six subgraphs two of which are also full square rhom-
boids (F'SR) and four ones are so called single-leaf full square thomboids
(FSR;). Each F SR, is decomposed into six new subgraphs in the similar
way (Fig. 5(a)). They are one FSR, three FSR, and two dipterous full
square Thomboids (F'SRy). Decomposition of possible varieties of FSRy
(see the example in Fig. 5(b)) gives two F'SR; and four F'S Ry subgraphs.

Figure 5: Decomposition of single-leaf and dipterous full square rhomboids.
We use a number of vertices of the central vertex Tow in the graph

as a parameter which characterizes the size of the graph. Thus the total
number of labels T(m) in the expression of a full square rhomboid of size
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m for m =27 (r > 1) is defined recursively as follows:

T(m) =2T (%) +473 (B) + 1
Ti(m) =T () +37y (B) + 213 (2) +1 (3
Tz (m) =211 (3) + 4T (Z) + 1, ;

where Ti(m) and T3(m) are the total numbers of labels in expressions
of FSR, and FSR,, respectively, of size;m and T'(1) = 0, 77 (1) = q
15(1) =38.

One can see that the sum of the coefficients in each of three simult,,
heous recurrences (3) equals 6 and 7} (m) = 3T (m) + 3T» (m) for m =9
Therefore, system (3) may be presented in general terms as (2),

a

The similar graph called a Square thomboid is considered in (18] and (20].

it is more efficient to split this graph through one decomposition vertex
located in the middle of the central vertex row [20] (Fig. 6). Any path
from the source to the sink of the graph in Fig. 6 passes either through
the decomposition vertex or through edge c3 or through edge a3. As a
result, six analogous subgraphs of three kinds (square Thomboid, single-leaf
square rhomboid and dipterous square rhomboid) appear in each recursive
step. Since at this time, the splitting vertex belongs to the row whose size

determines the size of the graph, the system for the expression’s complexity
looks as follows for m, = 9 (r > 3):

T(m):T(%+1)+T(%2+2T1 () + 2T (2~ 1) +2
Ty (m) =T (% +1) + 313 3)+2T5 (2 —1)+2 (4)

Ty(m) =T (B +1) +13 (%) +27% (2) + 213 (2-1)+2.

Figure 6: Decomposition of a square rhomboid.

System (4) can not be presented as (2). However, by a number of inter-
mediate findings [20] which allow to express characteristics with arguments
2 —1and % + 1 in characteristics with argument % and using initial val-
ues of T'(m), Ty (m), Tz (m), simultaneous recurrences (4) transform to the
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follOWin g ones:

T(m) =T (%) - 71 (3) +2
Ty (m) = %T%ﬂ;—% - %Tl () + 275 (Z) +2 (5)
Tg(m) =?T % — -39T1 %1-)+4T2(7—;-)+2,

where ™M = 2 ("" > 3), T(4) = 41, T1 (4) = 47, T2 (4) = 60, and Tl (m) =
%T (m) + I—%Tg (m) for m > 4. One can see that the sum of the coefficients
in each of three simultaneous recurrences (5) equals 6 and, therefore, (5) is

an example of a general system (2).

The considered examples show that graphs may be decomposed in dif-
ferent ways. We define graph vertices whose number determines the size
of the graph as basic vertices (for instance, vertices of the central row in a
square and a full square rhomboids or all vertices in a Fibonacci graph). In
the case of a full square rhomboid we have a decomposition into subgraphs
with disjoint sets of basic vertices (disjoint decomposition). It is possible
that a graph of even size, m is decomposed only into subgraphs of sizes o
An overlapping decomposition takes place when subgraphs revealed from
the left and from the right of the location of the split have common ba-
sic vertices. Specifically, this decomposition is applied to Fibonacci graphs
and square rhomboids. An overlapping decomposition implemented on a
full square rhomboid divides the graph into ten subgraphs [18] and thus it
is not efficient in this case.

Both disjoint and overlapping decompositions can occur under various
scenarios.

In the simple case, all subgraphs revealed in the course of decomposition
may be of the same kind as the initial graph (for example, in a Fibonacci
graph). The complexity of the graph expression is expressed by a single
recurrence in this case.

In another graphs only some of subgraphs emerged in the result of de-
composition are exactly of the same structure as the initial one. Others
are supplemented at one of the end by elements which were in the middle
of the split graph. The structure of these one-sided subgraphs (single-leaf
square and full square rhomboids in the examples above) does not change
in the middle and, hence, they are decomposed in the same way. This gives,
together with subgraphs of the initial structure and one-sided subgraphs,
two-sided subgraphs (dipterous square and full square rhomboids in the
examples above) supplemented at both ends by the elements of inner struc-
ture. The two-sided subgraphs are decomposed likewise and their splitting
yields new one-sided and two-sided subgraphs. Hence, subgraphs with ends
of two kinds arise throughout decomposition and three simultaneous recur-
rences appear in this case.
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Also, subgraphs with ends of more than two kinds may be formed. Thjg
yields more complex systems of recurrences.

Thus complexities of graph expressions derived by decomposition met},.
ods are represented with simultaneous systems of linear recurrences. (.
efficients in each of the recurrences in a system are equal to the numberg
of respective subgraphs. Since subgraphs of all kinds are decomposed intq
the same numbers of new subgraphs, sums of coefficients in all recurrences
of the system are equal. An absolute term in each recurrence equals the
number of edges which connect revealed subgraphs (connecting edges).

Theorem 1 Given o skew-symmetric st-dag G of size m = 27 (r > 70,
where g is any natural number) suppose an expression of G is derived by
disjoint decomposition so that G is decomposed only into subgraphs of sizes
T and subgraphs with ends of two kinds arise throughout decomposition,
Then in the general case the total number of labels T'(m) in the expression
of G of size m is defined recursively by the following simultaneous system

of three linear recurrences with constant coefficients and absolute terms:

T'(m) = anT (Z) + o Ty (B) +a
Ty (m) = anT (2) + aeTi (2) + anT: () + o (6)
Ty (m) = azTi (B) + assTh (Z2)+a,

where Ti(m) and Ty(m) are the total numbers of labels in ezpressions of

one-sided and two-sided subgraphs, respectively, of size m revealed in the
course of decomposition. At that, '

11+ Q12 = g1 + Qg2 + Qg3 = a3y + ass (7)
and

P ) %T(m) b %Tg it (8)

Proof. Since G is skew-symmetric then the number of subgraphs with
the end of a given kind adjacent to the location of the split from the left is
equal to the number of subgraphs with the end of the same kind adjacent
to the location of the split from the right (symmetric-ends property).

Because m is a power of two, a size, m' of each revealed subgraph in even
and each of the subgraphs is decomposed in its turn only into subgraphs of
sizes 7—’2‘-'—, etc. The initial graph is decomposed only into subgraphs of the
same kind and one-sided subgraphs. A two-sided subgraph is decomposed
only into one-sided and two-sided subgraphs. For this reason coefficient 013
of T, ( -T-"Q—) in the first recurrence and coefficient, agy of T (%‘—) in the third
recurrence of system (6) are zeros. Therefore, since sums of coefficients in
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Al recurrences are equal we obtain equation (7). Subgraphs of all kinds
are decomposed in the same way, specifically, with the same number of
connecting edges. Thus absolute terms in all equations are equal.

Proof of (8) is based on the fact that decomposition rules do not depend
on the ends of the graph and thus are the same for subgraphs of all kinds.
The initial graph (and subgraph of the same kind) is decomposed into ag1
subgraphs of the same kind and a;o one-sided subgraphs. A two-sided
subgraph is decomposed into asgg one-sided subgraphs and a33 two-sided
subgraphs. Hence, a1y = as2 and a2 = az3. We denote a subgraph of
the same kind as G by [], one-sided subgraphs with the ends supplemented
by additional elements adjacent to the location of the split from the left
and from the right by [} and {], respectively, and a two-sided subgraph by
{}. Using these denotations and based on the symmetric-ends property we
illustrate possible decompositions corresponding to the first and the second
(without loss of generality) recurrences of (6) as

- ( A1)

R

2

and

{0 ( e {] S+ ) | (9)
=5 7
az{} 2

respectively, where a symbol before the arrow is a decomposed subgraph.
Elements of a matrix after the arrow are emerged subgraphs with their
numbers. The left column of a matrix includes subgraphs revealed from
the left of the location of the split and the right column includes subgraphs
revealed from the right. Elements in a row of a matrix corresponds to

subgraphs with the same kinds of ends adjacent to the location of the split.
In accordance with (9) and the second recurrence of (6) we have

Qg1 = 9—21-1:&_;1_+0=ﬁ21_1_+a_§l’
age = a211+a;2:a212+%33,
| = %2=0+a—53=%§+9-;3.
Thus
Ti(m) = onT (%)+a22'1"1 (%)—FQQ‘?,TQ (1;)+a

- () (P PG
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The proof of the theorem is complete. H

Remark 1 Suppose the initial graph in Theorem 1 is an one-one sided Sub-
graph of G, i.e., not skew-symmetric. It is clear that this graph’s expression
is also defined by the system like (6) with analogous restrictions.

One can see that system (6) with restrictions (7) and (8) is a special
case of (2) and generalization of (3). As shown above (Fig. 6, system (5))
an overlapping decomposition can also ultimately give system (2).

)

Therefore, system (2) appears in solving a problem of deriving the ex-
plicit form of graph expression complexity for various graphs of regular
structure. Solving this system being a rather special problem for a discrete

mathematics as a whole, is a common problem from the perspective of the
algorithmic theory.

It is possible to divide system (2) into separate recurrences [4] and fur-
ther to use general methods of linear recurrences solving. However, these
methods can be very cumbersome and lead to appearance of high-degree
equations. We propose a simpler way that accommodates the restrictions
imposed on the coefficients and directly gives closed forms for solutions of

(2). As an intermediate step we solve a special simultaneous system of two
linear recurrences.

4 A system of two recurrences

Lemma 2 Given a system

Qn = Q11Q0p_1 + a12bn—1 Eake !
bn = @101 + agob,_ 1 + ag,

when
Q11 + Q12 = ag; + Qgg (10)

and where ag and by are initial values of a and b, respectively, it holds that
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Case 1. a1z # —ag1, o1 +o2 #1, o1 —ag # 1

(an + Ot12)n — (an = 0421)11

o, = (011 +a12)" a0+ a2 (bo — ao) Sl o +
(o +a2)” =1 Il @)
oy 4oy — 1 o2 + Q21
(a1 +a12)" —an—oqp (an — ag)" —omy + 0421)
( ay +ayz — 1 a;;p —og — 1
n n
by = (@11 + a12)"bo + azi (a0 — bo) ot alz)lz + c(:;il = ¥
- (a11 +oag2)" — 1 L oz (o — ) »
a1 + a2 —1 o2 + 21
((an +ap2)" — g — 212 B (o1 — o))" — any + szl)
ap +oag2 —1 app —agp — 1 ‘

Case 2. g # —ag1, aqp +apg = 1 (a1 — o # 1):

1 — (an —a21)"
12 + a2y
a2 (g — ay) ((an —ag)" — an + a2 _— 1)

ay; —ag — 1 oy —ag —1
1— (11 — @21)”
a2 + Qg
agy (o — o) ((0411 ~az1) —antog ik 1) .
gy — tegy — 1

a, = a9+ a12 (bo — ao) -+

oayn 4

Q-l
3
Il

bo + a1 (ao — bo)

Qomn +
oy — o1 — 1

Case 3. ayg # —agy, a;p — gy = 1 (011 + a1z #1) ¢

(o1 + a2)" — 1
a2 + o2

o (ag — o) ((0411 +ayz)" —an —a1z _— 1)

an = (o114 a12)"ao+ (12 (bo — ao) + 1) +

a2 + a2 a2 + 21
n
(au + am) -1

bn = (o114 a12)™bo+ (g1 (a0 —bo) + +
(a1 12)" bo + (@21 (@0 — bo) 2) -

™

Qo1 (] — @ «yy + oy — Q11 — 12

21( 1 2) ( 11 2) -—n+1).
39 -+ Qg a2 + a2

Case 4. g = —agy, a) +a12 # 1 (o1 — gy # 1) :

an = (a1 +a2)"" " (a1 + ea2) ao+ a2 (bo — ao) ) +
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(a1 +ap2)" —1 ag (g — o)
app +ajpz—1 (a1 + g2 — 1)

((n —1)(a11 + a12)" —n(ann +ai)" ' + 1)

bn = (a11 4 ay)™? (@11 + a12) bo + a2 (ap — bo) n) +
5 (o1 +ag2)" —1 a2y (a; — ag)
2
on +ayz—1 (11 + o — 1)°

((n —1) (011 + e12)" = m(0q1 +oq2)" 4+ 1) -

Case 5. ong = —any;, aipt+oaiz =1 (o —ag =1):
nin—1
Gy = @0+(a12(b0_@O)+al)n+0~’12(02"‘al)_(“2—l
n(n-—1)
bn = b+ (an (ao*b0)+02)n+0121(01—a2)‘—(—2_‘-

Proof. Denote A, =b,—aqa,, S = an+apg, D =ay—ag, d = a;—o.
Case 1. a1z # —amy, a1 + g # 1, g — agy # 1.
An = 011Qn-1 + 02 (an—l +An 1)+

= (an + @12) Gn-1 + @12ln_ 1 + oy
= Sap-i+4 12801 + 0.

As follows from (10)
Q11 — Qg = Qg — (3.
Therefore,
bn — an = (Oén - 021) (bn~l = a"n.—l) =+ By — @y

or
An = DA‘n—l + 6

Hence, we have two simultaneous recurrences:

an = Sanu1+a12An—l ~+ (11)
Ap =DA,_1+4.

S—D = a1+ a1z —an + oz = oz + ag;. (12)
Based on (11) and (12) we get:

an = Sap1+apA,+o
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S (San-2+ a128n 2+ 1) + 12 (DAp—2+8)+
S%a, o+ a12(S+D)An2+(S+1)og + ayé

$% (San_3 + 128n-3+a1) + 12 (S + D) (DAn—3 + 6) +
(S + Day + ayod

S3an_3+012(824+SD+D*)Ap 3+ (S*+S+1) a1+
sy (5 D+ 1) &

Stan_q+ a1z (5> + S2D + SD* + D) An_y +

($3+ 82 +S+1)ar+aiz (S°+SD+D*+S+D+1)8

n—1 n—1
.=S"ag + aleozSiDnil_i + alZSi + (13)
1=0 =0
@26y Y S'DIT (14)
j=01i=0
n—1 i n—2 J 1
B S™—1 - S
S™ag + aonDn—l ‘ (b_) + oy 51 + a126ZDJZ (5)
1=0 j=0 1=0
g\ n—2 5 J+1
. a(B) —1 Sm—1 5 — I
S™ag + a1980D 1(%_)—1 + oy 1 +a125ZD3(D)%_1
J..——
S™ — pn A | "‘28j+1 — Ditl
S™a0 + czh 0
ap + 12830 S_D +a1S_1+a12 P S_D
Ssm — D7 S™—1
S™aqy + A
ao + 01280~ +Ot1S__1+
o120 nz—f —
g+t _ sz+1
5-D =0 j=0
S™— D" S™—1
5 A ;
ao + a1280—5 7 +onmy 7 (15)
appd (8"—-S DV-D
S-—D(S—l_ D—l) (16)

(01 + oq2)" — (011 — )"

o1 + o2)” ag + a2 (bo — a0 +
( ) 12 ) a2 + a2
an +a2)* =1  ape(ay—o
Ot1( 11 12) L 12 (g 1) y
ajp +ap—1 a1z + a2
((Otn + ay2)" — a1 — a2 B (o1 — 0621)n — a1 + Otm)
o +aiz—1 oy —ag —1

The result for b, can be derived on the basis of symmetry.
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Case 2. 12 # —an1, o1y + agg = 1 (011 — gy # 1).

The proof is similar to Case 1. In lines (13-14) of deriving the explici
form for a,, we substitute S = @11+ aj2 = 1 and obtain

n-1 n-1 n—-2 j
an, = S"qg+ algAOZSiDn"l_i + alzsi -+ aIQJZZS"Dj‘i
i=0 i=0 §=0i=0
n—1 ¢ n-2 j
= ag+ QIQA()ZDn_l_i + din —l—‘adeZDj_i
i=0 7=0i=0
n n
= a0+a12AolI))_ 11 +oan+ 51_261 (DD_ f) —n-l-l)

I - (a3 — as )
= o+ az (by — ag) (o — a) +
Q12 + agy

n
a2 (ag — Q) ((0411 —ag1)" —agq + Q21 et 1)
Q11 — g — 1 11— g — 1

apn +

The result for b can be derived on the basis of symmetry.,
Case 3. a1z # —ag;, ayy — @21 =1 (a1 + agp # 1).

The proof is similar to Case L. In lines (13-14) of deriving the explicit
form for a,, we substitute D = Q11 — ag; = 1 and obtain

n—1 n—1 n—2 j
Bn, = Sy aonZS"D"—l—i . QIZS‘ 5 awazZSin-"
1=0

1=0 7=01i=0

n—1 n—1 n—2 j

= S’"ao + QIZAOZSi + oy ZSI + a125ZZSi

1=0 1=0 7=01=0
n

5% 1 d f8%. 8
——ji_(alng—l-Oq)*F S (————n+1)

= gn
w0+ g S—1\5-7

ay +ap)t -1
= (11 +2) " ag + (@12 (bo — ag) + o) (@11 + o) +
Q12 + gq

a1z (a2 — o) ((au ton)" —ay —app - 1)
Q12 + 0y Q12 + 0y

The result for b,, can be derived on the basis of symmetry.
Case 4. Q12 = —a9y, ay; + Q12 75 1 (a“ —ag; # 1)

The proof is similar to Case 1.

S=an+ap=01; —ag =D (17)
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Based on (17),

and

n—2 1

Sy s

j=0 1=0

], n—1

Zs'iD'n—l-—-i - an—l — nS'ﬂﬂl (18)
1=0 1=0

n—2

Y G+1)S

7=0

n—2 n—2 n—2
> s+ > oS+ Y 4.+ g2
j=0 j=1 j=2

Sn-—l | S(Sn—2 L 1) SZ (Snw—B _ 1)
S-1 T s-1 T §-1

A (5P L4 S oS S =S S

_Sn 2)

1 .
S—1 ((”"1)5 g1 )

1 (p—1)8*1(S—-1)—8§ 141

i . 4 gnE

S—-1 S—1
(n—1)(§"—S" 1) -8 1+1
(S - 1)
n — n_n i
(n—1) fs - 1; L (19)

In lines (13-14) of deriving the explicit form for a, we substitute (18) and

(19) and obtain

n-2 jJ

Gy = &% a0+a12AOZS‘ D™ 1" ‘+a128 +apdy Y S'DIT

i=0 7=01i=0
s —1 (n—1)S"—nS* 141

= S" AguSet 1)

ag + a1289n +C¥15-_1 + a9 (5_1)2

= S™—1 120 -1
= S 1 (ayS A — 15 8% . n "

(agS + a12on) + a1 = +(S~1)2 (n—1) n
+1)

= (g1 + alz)n_l ((@11 + c12) a0 + @12 (bo — ao) ) +

(a11 +ag2)" — 1 ayg (g — o)

' o1 +o1z — 1 (o1 + 12 — 1)2
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((n ~ 1) (o1 + @12)" — 72 (s + azg)™ ! + 1) .

The result for b,, can be derived on the basis of symmetry.
Case 5. Qi3 = =g, ) +Oyp = .1 (au — Qg = 1).

The proof is similar to Case 1. In lines (13-14) of deriving the explicit
form for a, we substitute S = D =1 and obtain

.
a3

n—1 n—1 n—-2 j
an = Stag+ QIZAOZS*‘D"—H + aJZsi 4 amazzs'nj-i
1=0 1=0 7=01i=0
n(n—1
= @+ apAon+ ajn+ a125—(—2—)
nin—1
= a0+ (12 (bo —ao) + 1) n + a1z (g — ) "‘("2“_)

The result, for b, can be derived on the basis of symmetry. B

Case 1 is general. Since expressions in denominators may be equal
to zero, there are additional Cases 2-5. The conditions in parentheses in

Cases 2-5 follow from previous ones. Thus Cases 1-5 cover all possible
combinations.

9 A solution of systems of three recurrences

by their transformation to systems of two
recurrences

Lemma 3 Given system (2) and the following conditions:
1. an a2+ a13 = ag) + ag + ags = Q31 + a2 + ass,
2. 3 real constants Wy, w2, w1 +wg =1, thatV n, b, = wya, + Wy Cp,

three simultaneous recurrences (2) can be presented by means of represen-
tations of ¢ through a and b, b through a and ¢, and a through b and ¢ as
the following three pairs of simultaneous recurrences, respectively:

’ ’
! I

(20)
b'n = Qg10p—1 + 022bn_1 + Qg

! w ! 1 ' w S
where a,, = ay; — -sz-alg, Qg = Q12 + S-0n3, gy = agy — oo (123, Qg =
Qo2 + ;%Otzs; '

{ an = a,llan_l =+ a:lzcn_l iy
Cn = CYIzlan~1 + Qycn-1+ a3

(21)
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! ¥ ! '
where @ = Q11 + W12, Gy = W22 + a3, Qg = (31 + w132, X2 =
o032 + (335

]  ;
bn = @y1bn-1+ a@pcn-1+ a2 (22)
7 !
Cn = Qg1bp_1 +apcn-1+a3
! ! 1 . _1—
where 0y = :j—lazl + @ga, @y = —Jrag + g3, O T 37081 + a3z,
1'22 = —=%03; + ass, and for all these pairs of simultaneous TecurTences
1 ! 1 r
ayy + oy = Qg + agy. (23)
Proof. Since b, = wya, + wac, then ¢, = —;"’u—;an + Elgbn- We substitute
-in (2) and get:
an = Q11Gn-1+ 12bn_1 + @13Cn-1+ Q1

1 wh
= o0q180n-1 + @12bp—1 + 013 (-u—)*bn—l — —Gp_1 )| +0a
2

wo
un 1
= (ag——ai3)an 1+ a2+ —a3 b1+
wo w2
by = @1Gn_1+ 22bp_1 + Q23Cn_1 + Q2

1 un
= Q910n-1+ 022bn_1 + @23 | —bpn-1— —@n-1] + Q2
Wy wy

w 1
= (szl - “—laz'z.) an-1+ (0422 & “w—azs) bn-1 + ag.
2

w2
Here
' ] 'ujl ==
ay Fayg = a1 — —a3+oazt+ —ag3
weo w9
= aj1 +ai2+ o3
1 i wh
Qg + Qg = Qo1 — —03 + Q2+ —Q23
w2 wy

= gy + ag+ Q3.

Since a1y + a2 + @13 = gy + (g2 + 23 then alll + a;Q = a,m -+ a’m.
We substitute b in (2) and get:
an = 0110n-1+ @12bn—1 + Q13Ch-1+ 1

= ai10n-1+ 12 (wian-1+ WaCn-1) + 13Cn-1 + 1

(a1 + wronz) @n_1 + (woay2 + @13) Cn—1 + 1

I

a31@n-1 + a32bn—1 + az3zcn-1 + Q3
a310n_1 + @32 (Wian-1 + WoCn_1) + 33Cn-1 + 3

Cn
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= (g1 +wiasz)an—) + (waasg + ass) cnq + aa.

Here

’ 1
Qo = an wiang + w2 + a3
ayy +agz + o3
’ ’
Qgy + Qg = a3+ wi03e +wrazy + ass
= a3; + aaz + 033.
a
. ? 1] ! !
Since a1 + a2 + ag3 = ag; + a3z + a33 then ag; + ayy = 0y + .

The pair of simultaneous recurrences for b and ¢ and the equality Ofn +
a12 e a21 + a22 for this case are derived in the same way. B

The following theorem results from Lemmas 2 and 3.

Theorem 4 Given system (2) and the following conditions:
1. an + o012 + a3 = ag) + age + g3 = a3; + o3z + ass,
2. 3 real constants wy, wy, wy + wy = 1, that ¥ n, b, = wya, + wycy,

then with Cy = ay + aiz + as, Cy = aqg + w3, C3 = oy — S —
g1 + Srags, Cy = ayp + 25013 + o9 — a3, Cs = o) — o, and ap
and bg 'whzch are initial values of a and b, respectwely, it holds that

Case 1. C4 #0,Cy #1,C5 #1:

n Cy)" — (C)* ' O =1
an = (C1) 0'0+C2( 1) 04( 3) (bo—a0)+a1%t~l—+
(2 —a1)Ce ((C))" -4 _ (C3)" — Cs
04 O] —1 Cg -1
n (C1)"™ — (C3)" ™ =1
by _ Wy =1
(C1)"bo + Cs A (ap — bp) + a2 o1 +
(01 —a2)Cs ((C))" - Cy - (G3)" - Ca)
Cy Ci -1 Cs;—1
By, = ~ﬂan + ——l-—bn.
Wa w2

Case 2. C4 #0,Cy =1 (C3 # 1) :

l—-:((}f—s)(bo—ao)+a1n+

(02 — 1) C ((cs)"—cs _n+1)

an = ag+ Cy

Cs;—1 C3;—1
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1—(C3)"

bn = bo+Cs (ao — bo) + azn +

Cy
(1 —2)Cs ((C3)" —C3 - l)
C3—1 C;—1
1
Gy = —ﬂan 4+ —bn.
w9 w2

Case 8. 04#0, 03=1(C'1%].):

an = (C1)"ap+ E—l—)c—— (Ca (bo — ao) + ay) +
4
oz — o) O ((6'1)n ~ Ly #n+1)
Cy Cy
)" -1
bp = (C1)"bo+ (—1—)0—*—' (Cs (ap — bo) + o2} +
4
o= (AN 1)
Cy Cy
Gy = —Ejian-i- —Lbn.
wWo w9
Case 4. C4=0,C1 #1(Cs #1):
_ (c)" -1
an = (C1)" ' (Crag + Cz (bo — ag) n) + Oél—-é—ljl— +
(s o) (1) (G)" ~ (G +1)
(C1—1) i
= (C1)" 1 (Cybo+ Cs (ag — b )n)+a2@i)—-———l—+
b = (C1) 1bo + Cs (ao — 0o Ci =1
(1) % (1) () —n ()" +1)
(C1—1)
&y = ——T—U—lan+ —l-bn.
wa w9

Case 5. C4=0, Cl=1(03:1)2

n(n—1)
an = ag+(Cz(bo—ao)+a)n+Calae—m) ———
n(n—1)
b, = bo+(Cs(ao—bo)+az)n+Cs(og —ag) ———
1
Cn — "‘E)'la"n'*'_'bn
w2 w9
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Proof.  As follows from Lemma 3, three simultaneous recurrences (2)
accompanied by Conditions 1 and 2 specified in the lemma, can be reduced,
specifically, to the pair of simultaneous recurrences (20) accompanied by
restriction (23). Based on Lemma 2 and after corresponding substitutiong
we obtain the expressions for a,, and b.. The result for ¢, follows directly
from Condition 2 of the theorem. B

The conditions in parentheses in Cases 2-5 follow from previous ones,
Thus Cases 1-5 cover all possible combinatigns.

Remark 2 It is not the only way to determine an, by, and c, that is
presented in Theorem 4. FEach of recurrent variables an, b,, and Cn can
be determined through two of three pairs of simultaneous recurrences (20 -

22).

The equality b, = wya, + wgc, does not automatically mean the ex-
istence of the same proportion for coefficients (s = wyap; + Walrsy,
Q22 = W12 + wea3z, Q3 = wiong + woasyz, g = wWiay + wzag). In
the special case, the affine combination bn = wia, + wac, can be provided
by the corresponding proportion for initial values of a, b, and ¢ without
observing the same proportion for coefficients (e.g., system (5)).

Suppose we have stronger conditions when the proportion takes place
between the coefficients as well.

Lemma 5 If

1. a1+ aie + o13 = az, + asg + 33

and
2. 3 real constants wy, we, wy +we = 1, that

Q21 = Wiy +w2a3;, g = wyoge +wosy, gz = w1013+ wae3s,
then

a2 + Qg2 + g3 = g1 + @12 + 13 = az; + a3z + ass. (24)
Proof.
Qo1+ a2+ 23 = wiay; + weosy + wiagg + W32 + W13 + w33
= wy(ay + o + ay3) + wa (o) + ogp + aga)
= (w1 +ws) (11 + a1z + 13)
a1y + a2 + ag3.
0
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Hence, the equality such as (24) is a redundant condition if the condition
b, = W1Gn + W2Cn is provided by the corresponding proportion between
coefficients. The equality of any two sums of coefficients from three ones in
(24) is sufficient in this case.

Consider a situation with weaker conditions when it is only known that
apy + o2 + @13 = 31 + 032 + 033

and bn = Wian + w2cCn, Where wy +wz = 1. In this case, only one pair of
simultaneous recurrences adduced in Lemma 3 can be generated. However,
the solution of this pair of recurrences is sufficient for finding @n, bn, and
¢,. On the other hand, two other pairs of simultaneous recurrences (not as
in Lemma 3) can be generated in this situation as well. Indeed,

b, = wian+W2ln
= wi(@118n-1+ @12bn-1 + @13Cn-1 + ap) +
wa(a31an-1 + @32bn—1 + ¥33Cn—1 + a3)
= (wyoq1 + wea3y) Gnoy + (wyayg + wpasz) bn—y +
(w1a13 + ’U)gOd33) Cp—1 + wi0n +w2a3

* *
= )y 0n-1 + Aobn_1 + @33Cn-1 + @,

where a}, = w11 + weas1, @y = Witz + W2A32, ahs = wi03 + w2033,
ab = wiog + wias. Hence, the recurrence for b, in (2) can be replaced so
that we have the following three simultaneous recurrences:

Onp = Q110p-1 + ay2bp-1 + @13Cn—1 + oy
bp = a318n-1 + @3obn-1+ adsCn—1 + Q3 (25)
Q@310n-1 + a32bn_1 +@33Cn-1 + O3 -

Cn
By Lemma 5,
@y + agy + Q53 = 1 + 12 + 13 = Q31 + agzz + a33.

For this reason, by Lemma 3, (25) can be presented as three pairs of simul-
taneous recurrences. Thus Theorem 4 can be generalized as follows.

Theorem 6 Given system (2) and the following conditions:
1. ay + oq2 + 13 = a3 + a3z + 033
2. 3 real constants wy,wz, wy +wz =1, that ¥ n, bn, = wian + W2Cn,

then with ad, = wion + w203y, ass = wyon3 + w2033, aj = w1 + w3z,
— _ 1 __ w
C, = a1y + o012 +aas, Co = arz+ 5703, C3 = om — e e s a3,
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1 w — wy ok .
Cy =02+ yra13 + 03 — Laj,, C_s = a§1 ~ wy @23, and ag and by whep,
are initial values of a and b, respectively, it holds that

Case 1. C4 #0,Cy #£1,C3 # 11 :

C)" — (C3)™ =1
an = (C'1)nao+C’2( 1) 04( 3) (bomag)+al—————( Cl'l)—l
(a3 — ) Cy ((C)" - Cy _ (€3)" — Cj3
Cy C1—1 (31
n (C)" - (Gy)" (C)" -1
b, = . X
(C1)" bo + Cs Ch (ao — bo) + o T+
(c1=03)Cs (([C)" =1 (Cy)" = Cy
C’4 Cl -1 C3 -1
Cn = _ﬂan + "l—bn.
w2 w9

Case 2. C4 #0, Ci=1(Cs#1):

anp = ao+Cg-1m—(q'i;’—)—(bo—ao)+a1n+
Cy
(@2 — 1) Cy [(C3)" - C3
G —1 ci—1 i
bn = (I'()"|'CV5I—T'—(£’i (ao—bg)+a§n+
4
(Ctl ——a%) C5 (Cg)n —Cg
C3—1 C3—1 Rt
&y = ——lan ibn
wo w9
Case 3. C4 #0, C3 =1 (Cr #£1) ¢
n C))" -1
o = (€ a0+ L (G - o) ) +
(a§ = 0!1) CQ (Cl)n = Cl
c, Ch —-n+1
n Oy —1 5
bn = (Cy) bo+£—%4——(05 (ap — bo) + a3) +
(a1 —03)Cs ((C)" - Cy
— 1
oA 5 =4
G, == «-zf-l-an —l—bn
w2 we
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Case 4- Ca=0,C1 #1 (C3#1):

an = (C1)" " (Crao + Ca (bo — ag)n) + al—(%) —i -
y -
(a3 —a1)Cy 5 -
e —-1)(Cy) -
(Cl . 1)2 ((n ) (Ch) n (Chy) —+ 1)
n— . O L.
by = (Cy) 1 (C1bo + Cs (ag — bo) n) + az(_al_)_l__
—
(al — a;) Cs _ n -
Cn = "-Eu_l'a'n + "l“bn
w2 'U_]2

Case 5. 0420,Cl=1(03=1)2

n—1
on = a0+(cz(bo—ao)+a1)n+Cz(a§—a1)ﬂ~—Q——)
" -1
b, = b0+(05(a0—bo)+a§)n+05(a1—az)_’_—n(nz )
Gy = ﬂ%an-i——l—bn-
we wy

Remark 3 As in Theorem 4, the way presented in Theorem 6 is not the
only one to determine an, bn, and cn. Each of recurrent variables an,
bn, and c, can be determined through two of three pairs of simultaneous
recurrences derived from system (25).

In the special case, when (24) is true, Theorem 6 is reduced to Theorem
4.

6 Additional findings

Presentation of systems of equations in matriz form allows to consider sums
of coefficients in recurrences as sums of coeflicients in rows. It might also
be of interest to investigate simultaneous recurrences with equal sums of
coefficients in columns.

Lemma 7 Suppose

Qn = @11Qn-1 + a12bn-1 + x1
bn = @1an-1 + 22bn_1 + 02
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and

a1 + ag1 = a2 + agg.

Ifal? ?é —Q21, G131 — Q12 # 1) ay; + a2 % 1, then

n n
- (a11 +a21)" — (11 — aig)
= - b
an (a11 — a12)™ ag + @12 (ap + 0) er =
(a11 —ay2)" =1 gz (a1 + a2)
8731 -+
app —ogp—1 a2 +ag
((au 4 021)n — 01— g1 (o171 — alz)n — a1 + 0112)
a1p +ag; —1 app —oapz—1
a1 + Qo % (& 1 — (12 "
bn = (an —ai2)" b + @z (a0 + bo) e 3 Vo) — o )
ay2 + agy
1] — LI | o
az( 11 — Qj2) 4o (@1 + a2) y
oy — g —1 12 + gy
((au + a91)" — a1y —ag; (o —a)" —on + aw)
a1 +agy — 1 a1 — a2z ~—1

Proof. Denote g, = b, —an, S = ayy + o1, D = a1y — a2, $ = oy + ay.

Gn = @11@n 1+ 12 (On-1—ap_1)+

= (an - 0!12) Qn-1+ Q12001 + 0
= Danp-1+ 12001+ .

an +bn = (a1 + ag;) (@n—1+bno1) + a1 + g
o
On=80,_1+¢.

dence, we have two simultaneous recurrences:
an = Da’n—l + 12051 + 231 (26)
On =801 4<.

Jne can see that system (26) is the same as system (11) in the proof of
wemma 2. Hence, in lines (15-16) of deriving the explicit form for a,, we
swap .S and D, replace Ag with o¢ and ¢ with ¢, and obtain

_ pn D"—S”_{_ D"wl_‘_ Q126 D"—D“S"—S’
L T A e el - (s T e e
+ azl)n - (0411 - Oflz)n
_ . n + (all ol
(o1 — ay2) " ag + ag2 (ag + bp) a1z - oo

™
@11 — -1 oplogg+a
al( 11 — @12) 5 12 (1 + ag) 8
ayp —agz —1 a2 + az
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n n
((Otn +ag) —ai1— a2 (11 — @12)" — 011 + a2
oy +ag — 1 G ~=@g==1 '

e result for b, can be derived on the basis of symmetry. E

Analogous results can be obtained for special cases as in Lemma 2.

Conclusions and future work

> have proposed an approach that gives closed forms for solutions of spe-
1 simultaneous systems of three linear recurrences. Sums of coefficients
these recurrences are equal and each recurrent variable is an affine com-
Jation of two other recurrent variables. The systems are solved by their
ssection into pairs of recurrences with equal sums of coefficients.

The solutions are applied for deriving explicit forms of complexities of
aph expression generated by decomposition methods. Specifically, apply-
7 this way to systems (3) and (5), we have obtained the following explicit
-mulae for the number of labels in expressions of full square rhomboids
7) and square rhomboids (28), respectively, of size m (m = 2"):

154 1 2
T — log, 6 logy3 _ 2 27
{y) 135m * 27m 5 \&7)
89 20 Ik
T(m) = Zs-'mlogz 6 —_ —g—mlogz - g (28)

Our intent is to determine the class of graphs for which the complexities
their expressions can be expressed with these recurrences.

We are going to generalize the presented technique to a system of an
bitrary (or, at least, a larger) number of recurrences.

~ Specifically, as shown in Section 3, each of simultaneous recurrences
rresponds to decomposition of a subgraph of a given kind. A subgraph’s
ad is determined by kinds of its ends (the left and the right). Suppose,
bgraphs with z kinds of ends are revealed in the course of decomposition.
r a given kind of the left (right) end there are z possible kinds of the right
ft) end, i.e., z kinds of subgraphs. A subgraph with the left end of kind 2
< i < 2) and the right end of kind j (1 < j < z) and a subgraph with the
%t end of kind j and the right end of kind z are considered as subgraphs

the same kind. Thus subgraphs of Z kinds are emerged throughout
.composition, where

z(z+1).

5 (29)

Z=z4z—142z—-24+...+1=
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Accordingly, corresponding system will consist of Z recurrences.,

For example, in the case of a Fibonacci graph z = 1 and we have g single
recurrence. For square and full square rhomboids z = 2 and, therefore,
three simultaneous recurrences appear. Decomposition of graphs of more
complicated structure may give systems of 6 recurrences, 10 recurrences,
15 recurrences, and so on, in accordance with (29).

Each of these systems will be characterized:sby equal sums of coefficients
in recurrences. The question is what will be the additional invariant specific
for the systems which have more than three recurrences.

We have presented a similar technique for systems of two recurrences
with equal sums of coefficients in columns. It is of interest to develop
a method capable to handle three or more simultaneous recurrences with
equal sums of coefficients in columns. The problem is to find additional
restrictions which are to be imposed on the coefficients.
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