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Abstract

For a given graph G, a variation of its line graph is the 3-xline
graph, where two 3-paths P and Q are adjacent in G if V(P)NV(Q) =
{v} when v is the interior vertex of both P and Q. The vertices of
the 3-xline graph X L3(G) correspond to the 3-paths in G, and two
distinct vertices of the 3-xline graph are adjacent if and only if they
are adjacent 3-paths in G. In this paper, we study 3-xline graphs for
several classes of graphs, and show that for a connected graph G, the
3-xline graph is never isomorphic to G and is connected only when
G is the star K1, forn =2 orn > 5. We also investigate cycles
in 3-xline graphs and characterize those graphs G where X L3(G) is
Eulerian.

1 Introduction

For a given graph G, a derived graph of G is a graph obtained from G by
some type of a graph operation. The study of the structural properties of
derived graphs is a popular area of research in graph theory. While one
of the most familiar derived graphs of a graph is the line graph, various
generalizations of line graphs also have been introduced and studied (see
[1], (3], [8] and [10]).

The line graph L(G) of a nonempty graph G has the set of edges in G as
its vertex set with two vertices of L(G) adjacent if the corresponding edges
of G are adjacent. This concept was introduced in 1932 by Whitney when
he was investigating graph isomorphisms [11]. Two recent generalizations
of line graphs were introduced by Chartrand.
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The £line graph was introduced in 2015 and studied extensively i I
and (2], where the emphasis was on 3-line graphs. Let G be 5 Connecte,
graph of order at least 3. Two nontrivial paths P and Q in G are said t,
be adjacent paths in G if VIP)NnV(Q) = {v} where v is an end-vertex
both P and Q. For an integer £ > 2, the £-line graph Ly(G) of a graph (
is the graph whose vertex set is the set of £-paths (paths of order 1) of
Where two vertices of L¢(G) are adjacent if they are adjacent Z-paths in led
Since the 2-line graph is the line graph I{G) for every gr aph G, this is ,
generalization of line graphs. *

The k-path graph was first discussed in 2018 and studied in [4] and [9].
Letk > 2bean integer and let G be a graph containing k-paths. The k-path
graph P(G) of G has the set of k-paths of G as its vertex set and where
two distinct vertices of Pi(G) are adjacent if the corresponding k-pathsg
of G have a (k — 1)-path in common. Specifically, if k& = 3, then vertices
in P3(G) correspond to 3-paths in G and distinct vertices are adjacent in
P3(G) when the corresponding 3-paths have an edge in common, Again,
this is a generalization of line graphs because P2(G) is the line graph of G.

In this paper we investigate a variation of 3-line graphs and 3-path
graphs called 3-xline graphs, where for g given graph G, two 3-paths P and
Q are adjacent in @ if V(IP)NV(Q) = {v} where v is the interior vertex of
both P and Q. The 3-xline graph of a graph G, denoted by X L3(G) has the

For instance, if UV, w,z,y and z are (not necessarily distinct) vertices of
a graph G, then the two vertices (denoted by uvw and zyz to indicate the
3-paths «, v, w and Z,y,2) in XL, (G) are adjacent if and only if v =y and
U w,z and z are distinct vertices in G. Note that, just as with the 3-line

graphs and 3-path graphs, some vertex of (@ must have degree 2 or more
for X13(G) to exist,

In [2], the following formula for the order of L3(G) was given for a
connected graph G with the convention that if a < b, then (Z) =0,

Proposition 1.1 If G is a connected graph of order n 2> 2 with degree
sequence dy,dy ..., d,, then the order of L3(G) s i (d?')
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Figure 1: A graph G, its 3-path graph P;(G) and 3-xline graph X L3(G)

This is true based on the following argument: Let G be a nontrivial
connected graph and v a vertex of G. If degv = 1, then there is no P3 in
G whose interior vertex is v; while if deggv > 2, then there are exactly
(degzc ¥} copies of P3 whose interior vertex is v. Note that this formula also
gives the orders of the 3-path graph P;(G) and the 3-xline graph XL3(G).

We refer to [5] for graph theory notation and terminology not described
in this paper.

2 Preliminary Results of 3-Xline Graphs

Let G be a graph of order n > 3. If a vertex v in the graph G has degree less
than 4, then there are no pairs of 3-paths that have only v in common. Thus,
there are no edges in X L3(G) between vertices of the form uvw. Proposition
1.1 gives a formula for the order of X L3(G) based on the degrees of the
vertices in G. The next result gives a formula for the size of X L3(G) also
based on the degrees of the vertices of G.

Proposition 2.1 IfG is a connected graph of order n with degree sequence
dy,ds, ..., dy, where at least one of the d; > 2, then the size of XL (G) s
s [di(di-ll@i—2)(di*3)]

- .

=1

Proof. As noted above, if degov = d, < 4 for a vertex v of G,
then no edges of X L3(G) are generated by 3-paths of the form uwvw and

(d"{ %) = 0. Thus, consider vertices v where degg 2 4. For such a vertex

v, there are (dz") vertices in X L3(G) of the form uvw and for each of these

vertices there are exactly (d"; 2) vertices in X L3(G) that are adjacent to

it creating an edge. Since the product (dz“ ).(d"; 2) counts an edge twice,

we divide it by 2. By considering every vertex of G, we see that the num-

d;\ (di—2
ber of edges in XL3(G) is Y i, [gi-)—(»z—’—l] This can also be written as
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Table 1: The order and size of the 3-xline graph of some graphs.

Class G V(X L3(G))| [E(XLs(G))|
Paths Pu,n>2 n—2 0
Cycles Comz>3 n 0 |
Complete K,, n(";1) = 0
Graphs 2<n<4 n "—12 n-2
Complete K, n>5 n("gl) =, n("—len—%(n—ff)(n—‘i)
Graphs i("_—lzl(”_“?).
Stars Kin,n>2 ( ﬂn—i)(na—Q)(n-@
n n n(n—1)(n—-2)(n—3
Wheels W, 2) +n(2) — (n=1)( X 2)(n—3)
n(n+5
2
Petersen P 30 0
Graph
Complete | K, m>2, [ m(})+ n(3) = | Z2[(n—1)(n—2)(n—3)
Bipartite n>2 mn(mtn—2) +(m—1)(m—2)(m—3)]
Graphs 2
py [d‘(d‘_l)(dg_z)(d"_a)] for all ¢ where d; > 4.

Using the formulas in Propositions 1.1 and 2.1, we summarize results
for several classes of graphs in Table 1.

It is easy to verify that X Ly(K,) is regular of degree (";3) and X L3(K ,)
is regular of degree (";2). For stars, the 3-xline graph X L3(K;2) = K,

the graph XL3(Ki3) = 3K, and XL3(K;4) = 3K,. This leads to the
following interesting result.

Theorem 2.2 The 3-zline graph of G'= K 5 is the Petersen graph.

Proof. Suppose the vertices of G = K 1,5 are labeled such that the ver-
tex u is adjacent to the vertices vy, vs,v3,v4 and vs. Since each vertex of
XL3(Ky5) is of the form v;uv;, we can simplify the notation to i5. By

Proposition 1.1, the order of X L(K 1,5) is (g) = 10 and the degree of each
vertex is (g) = 3. To show that XL3(K;5) = P, consider the graph of

X L3(K,,5) shown in Figure 2 drawn as the Petersen graph. B

We have seen that XL3(K1’2), XL3(K1,3) and XL3(K1,4) are discon-
nected while X L3(K; 1) and XL3(K;5) are connected. The next result
determines for which stars the 3-xline graphs are connected.
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Figure 2: The 3-xline graph of K 5.

Lemma 2.3 The 3-zline graph for the star K1, 8 connected if and only
ifn=2o0rn=>>5.

Proof. For n = 3 or 4, we have already seen that the 3-xline graph is dis-
connected and for n = 2 or 5, we have X L3(K; 2) = K; and XL3(K;5) =
P, the Petersen graph, which both are connected. Now suppose that n > 6
and suppose that the vertices of K, are labeled such that the vertex
u is adjacent to the vertices vi,vg,v3,...,v,. Every pair of vertices of
XL3(K1,n) are of the form vsuv; and veuv. To show that XL3(Ki »)
always has a path from v;uv; to vguv, when n > 6, consider two cases:

Case 1: Suppose 1, j, k and £ are distinct. Then vertices vjuv; and viuve
are adjacent.

Case 2: Suppose that i = k or £ or j = k or £. Without loss of generality,
suppose that i = k. Then vertices v;uv; and v;uvg are not adjacent; however,
since n > 6, there exist positive integers o and 3 less than or equal to 6
such that {,j,k, €} N {a, 8} = 0. Thus, vertices v;uv; and v;uve are both
adjacent to v,uvg creating a desired path.

In both cases, there is a v;uv; - v uv, path when n > 6, which completes
the proof. @

The next result characterizes all graphs with connected 3-xline graphs.

Theorem 2.4 IfG is a graph where some vertex has degree at least 2, then
X L3(G) is connected if and only if G is one of the following:

(1) a star Ky , withn =2 or n > 5,

(i1) a disconnected graph where one component is a star Kq,n with n = 2
orn > 5 and the remaining components contain only vertices v where
degv < 1.

Proof. First, suppose that G is a star Ky, withn =2 orn > 5. The
graph X L3(G) is connected by Lemma 2.3. Next, let G be a disconnected
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graph where one component C is a star X 1,n Withn =20rn>5 ang the
remaining components contain only vertices v where degv < 1. The only
vertices and edges in X L3(G) will correspond to vertices and adjacencieg

in C. Thus, XL3(G) is connected by Lemma 2.3.

To show the converse, we use the contrapositive. Suppose that G is not a
graph satisfying conditions (i) or (ii). If G is isomorphic to K 1,3UaK UbK,
or Ky 4UaK; UbKj,, for some nonnegative integers a and b, then X L3(G)
is disconnected by Lemma 2.3. If G is n?t a star and does not satisfy
condition (ii) , then G has at least two vertices « and v such that degu > g
degv > 2 and the graph X L3(G) has at least two vertices, say wux ang
yvz. Since vertices with interior vertex u are adjacent only to vertices with

the same interior vertex, there is no path from wuz to yvz, so X L3(G) is

disconnected. =

The next result presents a formula for the number of components in

X L3(G) for any given graph G where some vertex of G has degree at
least 2.

Corollary 2.5 If G is a graph with ny vertices of degree 2 or degree at

least 5, and ny vertices of degree 3 or 4, then XL3(G) has (n1 + 3ng)
components.

Proof. Ifa vertex v of G has degree 2, then X L3(G) has a component that
consists of a single vertex and if degv > 5, then X L3(G) has a connected
component. If degv = 3 then X L3(G) has three components which are
Isolated vertices and if degv = 4, then X L3(G) has three components
isomorphic to Kj. Finally, if degv < 2, then X L3(G) is not affected. Thus,
X L3(G) has (nq + 3ny) components as desired. m

For instance, consider the graphs G' and X L3(G) in Figure 1. Since G
has two vertices of degree 2 and one vertex of degree 4, the graph X L3(G)
has (24 3(1)) = 5 components.

Next, we show that XLs(G) is never a complete graph unless G =
P3 + aK; + bK5 for some nonnegative integers a and b.

Corollary 2.6 IfG is a graph where some vertez has degree at least 2, then

X L3(G) is never complete unless G = Ps+aK)+bK3 for some nonnegative
integers a and b.

Proof. If G = P3+aK;+bK, for some nonnegative integers a and b, then
XL3(G) = K. If G has at least two vertices of degree 2 and A(G) = 2,
then X L3(G) is disconnected and not complete by Corollary 2.5. On the
other hand, suppose some vertex v satisfies degv > 3, and say that v is
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nt to vertices u, w, and z. Now uwvw and uvz are vertices in XL3(G)

adjace

that are not adjacent, so X L3(G) is not complete.
We conclude this section by investigating the following question: For
which graphs G is X L3(G) isomorphic to G?

Theorem 2.7 No graph G is isomorphic to XL3(G).

Proof. If G is isomorphic to X L3(G) then AG) = (A(%)—z) for A(G) >

9. This equation has an integer solution A(G) = 6. Thus, consider A(G)

6. If G is a graph with n; vertices of degree 6, then XL3(G) has 15m;
vertices of degree 6. Clearly G is not isomorphic to X L3(G). If A(G) < 6,
there does not exist a graph G isomorphic to X L3(G). Thus, no graph G
is isomorphic to X L3(G). @

As we saw in Theorem 2.4, multiple graphs can have the same 3-xline
graph. For instance, if G is a connected graph with at least one vertex of
degree 2 and a is any positive integer, then X L3(G) = XL3(GU aK)) =
XL3(G U aKy). This example also illustrates that multiple disconnected
graphs can have the same 3-xline graph. Also, X L3(K,,3) is isomorphic to
X L3(Ps) because both are isomorphic to the empty graph Kj. However,
we still have the following questions:

Question: Do there exist nonisomorphic connected graphs G and H such
that XL3(G) = XL3(H) and X L3(G) is nonempty?

Question: Which graphs H are isomorphic to X L3 (G) for some graph G7

3 Cycles and Circuits in the 3-Xline Graph

As seen in several of the proofs from the previous section, the stars Kin
form an important class of graphs that is useful in understanding the struc-
ture of 3-xline graphs in general. In this section we focus on several prop-
erties of X L3(K; ) for various values of n.

As observed earlier, the graphs XL3(K12), X L3(K;3) and XL3(K1,4)
contain no cycles, and X L3(K; 5) = P contains no 3-cycles or 4-cycles.
However, for n > 6, the graph X L3(K},,) always contains copies of Cs.

Theorem 3.1 If G = K; ,, with n > 6, then Sa, the number of triangles
(or copies of K3) in X L3(G) is

G _nin=Dn -2 -3)(n-4)(n=5)
3! 48

Sp =
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Proof. Let G = K, , and let v be the vertex of degree n. A triangle g
formed in X L3(G) when three 3-paths in G share only the interior Vertex
v. That is, the three 3-paths would be of the form tvu, wvz and yvz where
tu,w,,y and z are distinct vertices in G adjacent to v. The vertex toy
can be selected in (7) ways, the vertex wvz then can be selected from the
remaining n — 2 vertices adjacent to v (in (”'2"2) ways), and yvz then can
be selected from the n — 4 unused vertices adjacent to v (in (";%) ways),
Since the same triangle can be created in six ways, we divide the product
of the three factors by 6 to derive the formula: ]

Since each vertex of G of degree 6 or more generates its own component
in X L3(G), the number of triangles of X L3(G) can be found by summing
the number of triangles in each component.

Corollary 3.2 Let G be a graph where the degree of vertex v is d,. Let
V'(G) = {v: d, > 6}. The number of triangles Sp in X L3(G) is given by

s { 0 if A(G) < 5,
o Zvew(G) G Uzs)( i) f AG) > 5.

Proof. Since adjacent vertices in X L3(G) correspond to 3-paths in
G with a common interior vertex, triangles will consist only of three dis-
tinct 3-paths in G with a common interior vertex. Therefore, if the degree
of a vertex v in V(G) is d,, then the number of triangles in X L3(G) is

ev-y ELEECD) Ghere vo(6) = (o : 4, > 6). ;

Theorem 3.3 For any integer n > 6, if G has a vertex u such thatd, > n,
then X L3(G) contains an n-cycle.

Proof. Let n > 6 be an integer and let G be a graph with vertex u such
that d, > n. Label any n vertices adjacent to u as vy, vg,. .., v,. Now, using
the notation introduced in the proof of Theorem 2.2, create an n-cycle as

follows:
Case 1: If n = 6, then one 6-cycle is (12,34, 16, 32, 14, 36, 12).

Case 2: If n > 8 and n = 4¢ for some integer ¢ > 2, then one n-cycle is
(12,34,16,38,...,1k,3(k+2),...,1(n — 2), 3n,52,74,56,78,. .., 5k, 7(k +
2),...,5(n—2),Tn, 12) where k = 2 (mod 4).

Case 3: If n > 10 and n = 4¢+2 for some integer ¢ > 2,, then one n-cycle
is (12,34,16,38,...,1k,3(k+2),...,3(n—2), In,52,74,56,78, . .. , 0k, T(k+
2),...,7(n—2),5n,12) where k = 2 (mod 4).
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Case 4: If n is odd, insert the vertex 57 between vertices 12 and 34 in
ch of the cycles in the three previous cases to create cycles of length 7,

+ 1 and 4t + 3 respectively. B

If G is a graph with a vertex of degree at least 6, then G also contains
cycles and 5-cycles. For instance, using the notation from the previous
oof, a 4-cycle in G is 12,34,15,36,12 and a 5-cycle is 12, 34, 15, 36,45, 12.
y combining this with Corollary 3.2 and Theorem 3.3, we have the follow-
g result.

orollary 3.4 If G is a graph with mazimum degree A(G) > 6, then
Ls(G) contains an n-cycle for every value of n such that 3 < n < A(G).

Next, we consider which 3-xline graphs have Hamiltonian cycles or Eu-
rian circuits. Dirac’s well-known sufficient condition for a graph to be
amiltonian is the following: If G is a graph of order m > 3 such that
xgv > F for every vertex v of G, then G is Hamiltonian [6]. When is
"L3(K1 ) Hamiltonian? We know for n = 2,3 or 4, that X L3(Kj,,) con-
ins no cycles and is not Hamiltonian. We also know that X L3 (XK s5) is the
etersen graph which is not Hamiltonian (see [7] for a proof). If we apply
irac’s condition to this situation, then we obtain the following result.

‘heorem 3.5 Ifn > 6, then XL3(K1n) @ Hamaltonian.

‘roof. If n = 6, then label the central vertex of K as u and the end-
ertices as vy, vs,.--,v6. Lhere exists a Hamiltonian cycle through the fif-
sen vertices of X L3( K1 6) as following: (12,36, 24, 56, 14, 25, 16, 45,13, 26,
5,46,23, 15, 34,12). (Recall that consecutive vertices on this cycle are ad-
wcent because for each pair of vertices the four digits are distinct.)

If n = 7, we can label the end-vertices v; through v; and using the same
otation as when n = 6, a Hamiltonian cycle through the twenty-one ver-
ices of XL3(K17) is the following: (12,34,57, 23,14,67,13, 45, 36,47, 26,
5,27, 46,25, 37,16, 35, 24,17,56,12).

Let n > 8. The graph X La(K1 ) is regular with order () and common

legree (";1). By Dirac’s condition, if (”;1) > %l, then XL3(Ki ) is
Iamiltonian. The inequality reduces to n(n —9) +12 = 0 which is true
vhen n > 8. ]

Based on Theorem 2.4, a natural extension to all graphs is the following:

Corollary 3.6 If G is a graph where some vertex has degree at least 2,
then X L3(Q) is Hamiltonian if and only if G is one of the following:
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(1) a star Ky, withn > 6,

(42) a disconnected graph where one component is a star Ky n withn > g
and the remaining components contain only vertices v where degv <

L.

A related question is if XL3(K ,,) is ever Eulerian. Recall that a graph
is Eulerian if it is connected and the degree‘of every vertex is even. Since
X L3(K;,,) is connected and regular with cdmmon degree (ngg) forn >5
we must determine which values of n > 5 make (";2) even. Since (”*2) =

9 ) =
!n—2!§n-32

5 , the value is even when (n — 2)(n — 3) is divisible by 4. Since
n— 2 and n—3 are consecutive, only one is even. Therefore, either 4|(n—2)
or 4|(n — 3). That is, n = 2 (mod 4) or n = 3 (mod 4)

Combining the previous argument with Theorem 2.4 we can characterize
all graphs G where X L3(G) is Eulerian.

Theorem 3.7 IfG is a graph where some vertez has degree at least 2, then
X L3(G) is Eulerian if and only if G 1s one of the following:

(1) a star K, ,, with n > 5 such that n = 2 (mod 4) or n =3 (mod 4),

(11) a disconnected graph where one component s a star Ky , with n >
5 such that n = 2 (mod 4) or n = 3 (mod 4) and the remaining
components contain only vertices v where degv < 1.
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