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Abstract

Unlike undirected graphs where the concept of Roman domina-
tion has been studied very extensively over the past 15 years, Ro-
man domination remains little studied in digraphs. However, the
published works are quite varied and deal with different aspects of
Roman domination, including for example, Roman bondage, Roman
reinforcement, Roman dominating family of functions and the signed
version of some Roman dominating functions. In this survey, we will
explore some Roman domination related results on digraphs, some
of which are extensions of well-known properties of the Roman do-
mation parameters of undirected graphs.
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1 Introduction

Throughout this survey, a digraph D = (V, A) consists of finite vertex set
V = V(D) and an arc set A= A(D) C P. where P is the set of all ordered
pairs of distinct vertices of V. Thus D has neither loops nor multiple arcs,
but it may contain pairs of opposite arcs. If A = P, then the digraph
is complete. A digraph without directed cycles of length 2 is an oriented
graph. The order n = n(D) of a digraph D is the number of its vertices.
If (u,v) is an arc of D, then we also write v — v, and we say that v is an
out-neighbor (or a successor) of u and u is an in-neighbor (or a predecessor)
of v.

For a vertex v, the sets N~ (v) = Np(v) = {u | (u,v) € A} and
Nt@) = NA(w) = {u | (v,u) € A} are called the inset and outset of
the vertex v. We also let the sets N~[v] = N~ (v) U {v} and N*[v] =
N*t(v) U {v}. The indegree of a vertex v is d~(v) = dp(v) = [N~ (v)| and
the outdegree of v is d*(v) = df,(v) = [Nt (v)]. The minimum indegree,
mazimum indegree, minimum outdegree and mazimum outdegree of D are
denoted by 6~ = 6= (D), A~ = A~(D), §t = 6*(D) and AT = AH(D),
respectively. If W = z, 2y, ..., z, is a sequence of vertices such that every
z;1 is an out-neighbor of z;, then W is a directed walk from z; to z, of
length n—1. If all of z;’s are different, then W is a directed path. Moreover,
if z; = z,,, then W is a directed cycle (circuit). If X C V(D), then D[X]
is the subdigraph induced by X. The complement of a digraph D = (V, A)
is the digraph D = (V, P — A). For an integer k > 0, a digraph is k-out-
reqular if d¥(x) = k for every vertex « € V. A tournament of order n,
denoted by T,, is a complete oriented graph. A cycle factor C of a digraph
D is a collection of ¢ directed cycles Cy, Cy, .. ., C, that are pairwise vertex-
disjoint and Ui;l V(C;) = V(D). A rooted tree is a connected digraph with
one vertex of indegree 0, called the root, and each of the remaining vertices
has indegree 1. A digraph D is contrafunctional if each vertex of D has
indegree one. In [19], Harary, Norman and Cartwright have shown that
every connected contrafunctional digraph has a unique directed cycle and
the removal of any arc of the directed cycle results in a rooted tree. The
associated digraph D(G) of a graph G is the digraph obtained from G when
each edge e of G is replaced by two oppositely oriented arcs with the same
ends as e. Since Nz_)_((;) [v] = Ng[v] for each vertex v € V(G) = V(D(G)),
the following useful observation is valid.

Observation 1.1 Let D(G) be the associated digraph of a graph G. If
w(G) is a graph parameter and u(D(G)) is its corresponding digraph pa-
rameter, then mostly u(D(G)) = u(G).

A subset S of vertices of D is a dominating set if for all v € S, v
is a successor of some vertex s € S, that is N*[S] = V. The domination
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number (D) is the minimum cardinality of a dominating set of D. In terms
of application, the questions of Facility Location and Assignment Problems
etc. are related to the idea of domination or independent domination on
digraphs. The domination number of a digraph was introduced by Fu [14]
and has been studied by several authors [24, 25]. In his Ph.D. dissertation
(24], Lee has surveyed some of the bounds on the domination number of
undirected graphs and proved corresponding ones for digraphs.

2 Roman domination in digraphs

A Roman dominating function (RDF) on a digraph D = (V, A) is defined
by Kamaraj and Hemalatha [22] as a function f : V — {0, 1, 2} satisfying
the condition that every vertex v for which f(v) = 0 has an in-neighbor u
for which f(u) = 2. If f is an RDF on a digraph D, then let V; be the set of
vertices assigned the value 7 under f for ¢ € {0,1,2}. We will write in this
case f = (Vp, V1, V3). The Roman domination number vyr(D) of D equals
the minimum weight of an RDF on D. Roman domination in digraphs has
been studied in [18, 30] and elsewhere. As for undirected graphs, it was
observed in [22] that

(D) < yr(D) < min{2v(D), n(D)}.

It is worth noting that the bound vg(D) < n(D) can be reached for
connected digraphs of order at least three which makes a difference with
undirected graphs. To see this, consider the digraph K;, (n > 2) whose
arcs are directed from the leaves towards the central vertex.

The first general bound on the Roman domination number of a digraph
is given by Kamaraj et al. [22] which is a straightforward extension of a
similar bound established for undirected graphs. |

Proposition 2.1 ([22]) For any digraph D with n vertices, yp(D) < n—
AY(D) +1.

As an immediate consequence of Proposition 2.1, any digraph D satisfies
Yr(D) < nif and only if AY(D) > 2. Note that there are many digraphs D
including directed paths and directed cycles, having equal Roman domina-
tion number and order of D. Quldrabah et al. [27] showed that the problem
of deciding whether an oriented graph D satisfies yp(D) =n— At (D) +1
is co-N'P-complete. Moreover, they characterized the out-regular oriented
graphs and tournaments attaining equality in Proposition 2.1. The ro-
tational tournament RQT, is a 3-out-regular-tournament with vertex set
{0,1,2,3,4,5,6} and ¢ — 5 if j —¢ = 1,2 or 4 (mod 7). Let F; be the
family of all 1-out-regular oriented graphs D such that every component of
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D has only one circuit of order at least 3 and let F; be the family of all
2-out-regular oriented graphs D for which the maximum outdegree of the
subgraph induced by V— N*[z] is at most one for every z € V.

Theorem 2.2 ([27]) Let D be a k-out-reqular oriented graph of order n,
where k > 1. Then ygr(D) =n—A1Y(D) +1 if and only if D € F1UF3 or

Theorem 2.3 ([27]) Let T, be a tournament of order n > 2. Then we
have Yr(Ty) = n—AY(T,) +1 if and only if AT (Ty,) > n—3, or A (T},) =
n—4 and N;Tn [ujU N,;i; [v] # V for all pairs of vertices u,v € V.

Since df,(v) + d5{v) = n — 1 for any vertex v € V(D), the following
Nordhaus-Gaddum type result for the Roman domination number of a
digraph given in [18] immediately follows from Proposition 2.1.

Proposition 2.4 ([18]) Let D be a digraph with n vertices. Then yr(D)+

Ouldrabah et al. [27] gave a descriptive characterization of digraphs D
of order n > 3 attaining equality in the upper bound of Proposition 2.4.

Theorem 2.5 ([27]) If D is a digraph of order n > 3, then vyp(D) +
yr(D) = n+3 if and only if D is a k-out-regular digraph with 1 < k < n-—2
and the mazimum outdegrees of the subgraphs induced by V— N} [z] and
V- JV%[:ZT] are at most one for every x € V.

In addition, they showed that for every digraph D of order n > 3,
vr(D) + vr(D) > 4, with equality if and only if both D and D have a
vertex of outdegree n — 1.

Digraphs D with yg(D) = (D) + k for any integer k such that 1 < k <
v(D) have been characterized in [18, 30] as follows. Note that these char-
acterizations are straightforward extension to similar results for undirected
graphs.

Theorem 2.6 ({18, 30]) Let D be a digraph of order n. Then:

1. (D) = vr(D) if and only if AT (D) = 0.

2. ifn>2 and § (D) > 1, then yp(D) = (D) + 1 if and only if there
is a vertex v € V(D) with dt(v) = n — v(D).

3 ifn >4, (D) > 1 and k is an integer with 2 < k < (D), then
Yr(D) = v(D) + k if and only if:
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(i) for any integer s with 1 < s < k— 1, D does not have a set U,
of t (1 <t < s) vertices satisfying [Nt [U]| = n— (D) — s+ 2t,

(it) there exists an integer | with 1 <! < k such that D has a set W,
of | vertices satisfying [Nt [W]| = n — (D) — k + 2L.

A characterization of digraphs with small Roman domination has been
given in [30]. More precisely, digraphs D with yr(D) = k for k € {2,3,4,5}.
However, Hao, Xie and Chen [18] extended these results to arbitrary posi-
tive integer k by proving the following.

Theorem 2.7 ([18]) For any positive integer k and a digraph D of order
n >k, yr(D) = k if and only if one of the following conditions holds:

1. n=k and AT(D) < 1,

2. for any proper subset X C V(D) with1 < |X| < |k/2), N*[X]| < n+
2|X|—k. In addition, there exists some proper subset Y C V(D) with
1 < Y| < |k/2] such that NT[Y)| =n+2|Y|—k and AY(D[V(D) —
N*Y|) <1

Other bounds similar to those established for undirected graphs were
obtained for digraphs.

Theorem 2.8 ([30]) For any digraph D on n vertices,

1+ 0-(D)

1+6“SD2
vR(D)Sn(“ln Z )

Theorem 2.9 ([17]) Let D be a digraph of order n and mazimum outde-
gree At > 1. Then

D 2n
. > i
vr(D) > {1 +/_\.*'-l

We call aset S C V(D) a 2-packing of the digraph D if N~ [u]NN~[v] =
0 for any two distinct vertices of u, v € S. The maximum cardinality of a 2-
packing is the 2-packing number of D, denoted by ps(D). The parameters
vr and pg are related as follows.

Proposition 2.10 ([17]) For any digraph D of order n with §* > 1,

Yr(D) < n— (61 — 1)pa(D).
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For a positive integer k, a function f : V(D) — {—1,1} is called
in [15] a signed k-dominating function on a digraph D if f(N~[]) =
2 ren-pu f(x) 2 k for every v € V(D). The signed k-domination number
~is(D) of D is the minimum weight of a signed k-dominating function on
D. The special case k = 1 was introduced by Zelinka [44] and has been
studied by several authors [23, 32] and elsewhere. An upper bound on the
Roman domination number of a digraph D in terms of its order and signed
domination number 7, (D) = v4(D) is given in [17].

Proposition 2.11 {[17]) For any digraph D of order n,

vr(D) < 75(D)/2 + 5n/6.

2.1 Roman Bondage and Roman reinforcement in di-
graphs

2.1.1 Roman bondage

Roman bondage for digraphs was studied by Dehgardi, Meierling, Sheik-
holeslami and Volkmann [12]. The Roman bondage number bp(D) of a
digraph D with maximum outdegree at least two is the minimum cardi-
nality of all sets A’ C A for which yp(D — A") > yr(D). Dehgardi et al.
determined the Roman bondage number in several classes of digraphs.

Theorem 2.12 ([12]) 1) If D is a digraph of order n > 3 with exactly
k > 1 vertices of outdegree n — 1, then br(D) = k.

2) If n > 3, then br(K) = n, where K 1is the complete digraph of order
n.

3) Let K3, ns,..on, be the complete p-partite digraph such thatp > 2 > ny,

n<ng<---<npandn=>3"%, ,n;>3. Then

br(K:

Ny M2,.

)__ 1 if’ﬁi$1<ni+],
Walky 22 if n; = 2 & Tit1-

4) Let K}, , be the complete bipartite digraph such that n > m > 2 and
m-+n>5. Then

= 4 if m=2’
br(Kmn) = { m+2 if m>3.

(5) For k > 2, let C¥ be the k-th power of the directed cycle of length
n>2k+1. If n is a multiple of k + 1, then bp(C8) =k + 1.
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Dehgardi et al. also gave some sharp bounds for the Roman bondage
number of a digraph. The underlying graph G[D] of a digraph D is the
graph obtained from D by replacing each arc (u,v) by an edge uwv. Note
that G[D] has two parallel edges uv when D contains the arcs (u,v) and

(v,u).

Theorem 2.13 ([12]) 1) If D is a digraph, and xyz a path of length
2 1n G[D] such that (y,z),(y,2) € A(D), then br(D) < degqp(x) +
degep)(y) + deggp)(2) =3 — [N~ (z) N N~ (y)].

Moreover, if z and z are adjacent in G|D], then br(D) < degg D](.r)
degep)(y) + deggp)(2) —4 — [N~ (z) N N~ (y)|.

2} If D is a digraph, cmd xyz a path of length 2 in the graph G|D] such
that (y,z), (y, z) € A(D), then

br(D) < deggpy(x) + degp(y) + degpy(z) — IN"(2) NN (y) NN~ (2)].

Assume that §*(D) > 2, and let y € V(D) be an arbitrary vertex.
Then there exist two different vertices z,z € N*(y). Thus G[D] contains
a path zyz such that (y, x), (y, z) € A(D) for each vertex y € D. Applying
Theorem 2.13 (2) for a vertex y € V(D) with deg™ (y) = (D), it follows
immediately that bp(D) < 2A(G[D]) + 6~ (D) for any digraph D with
6"(D) > 2. Moreover, since always § (D) < $A(G[D)), we find that
br(D) < %A(G[D]) for any digraph D with §1(D) > 2.

The next bounds involve the maximum degree and Roman domination
number.

Theorem 2.14 ([12]) 1) Let D be a digraph of order n > 4 with §t(D) >
2 and Roman domination number yp(D) > 3. Then br(D) < (yr(D) —
2)A(G[D]) + 1.

2) Let D be a vertez-transitive digraph of order n. Then bp(D) > [;ﬁ%}ﬁ]

2.1.2 Roman reinforcement number of digraphs

In [21], Huang, Wang and Xu defined the reinforcement number r(D) of
a digraph D as the minimum number of arcs that must be added to D in
order to decrease the domination number. Analogously, Dehgardi, Meier-
ling, Sheikholeslami and Volkmann [11] introduced the Roman reinforce-
ment number rp(D) of a digraph D as the minimum number of arcs that
must be added to D in order to decrease the Roman domination num-
ber. Obviously, if yg(D) € {1,2}, then addition of arcs does not reduce
the Roman domination number, and thus rp(D) = 0 as defined in [11].
Since A’D(C,){ v] = Ng[v] for each vertex v € V(G) = V(D(G)), we find
that vr(G) = Yr(D(G)), r(G) = r(D(G)) and rx(G) = rr(D(G)) for any
graph G.
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Theorem 2.15 ([11]) If D is a digraph with yr(D) = 2y(D) > 4, then
r(D) =rp(D)+ 1.

Proposition 2.16 ([11]) If D is a digraph of order n with yr(D) = 3,
then rr(D) < n — AT(D) — yr(D) + 2. This bound is sharp.

The following result provides a characterization of digraphs D of order
n > 3 and A1 (D) > 1 such that rg(D) = 1.

Theorem 2.17 ([11]) Let D be a digraph of order n > 3 and A*(D) > 1.
Then rr(D) = 1 if and only if there is a yr(D)-function f = (Vp, V1, V2)
with Vi # 0.

As a consequence of Theorem 2.17, for a digraph D of order n > 4
with yr(D) = 4 and rx(D) > 2, we obtain rg(D) = n— AY(D) - 2.
Furthermore, if D is a digraph of order n > 3 and A" (D) > 1 such that
vr(D) is odd, then rp(D) = 1.

Dehgardi et al. [11] transferred an idea from [21] to digraphs and
presented an upper bound for the Roman reinforcement number. Any
minimum Roman dominating function f = (Vp, Vi, V) on a digraph D
such that |V5| is maximum will be called a nice yg(D)-function. Let
S be a subset of vertices of a digraph D with |[S| > 2. Assume that
n(S) = max{|N*t[X]|: X C S, |X]|=|S|— 1} and define

n(D) = max{n(Vy U Va): f = (Vp, V1, V2) is a nice yg(D)-function}.

It is clear that n(V; U V5) < n — 1 for any nice yp(D)-function and hence
(D) <n-—1

Theorem 2.18 ([11]) Let D be a nonempty digraph of order n > 3 with
vr(D) 2 3. Then rg(D) < n - n(D).

If D is a digraph and S a subset of V(D), then let
p(S) = min{|PN(z,S)| : z € S}.
The private neighborhood number of D is defined by
p(D) = min{p(Vz): f = (Vo, V1, V2) is a nice vp(D)-function}.
Note that if A(D) # 0, then it is clear that p(D) > 2.

Theorem 2.19 ([11]) If D is a digraph of order n > 3 with AT (D) > 1,
then rp(D) < p(D) — 1.
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Corollary 2.20 1) If D is a digraph of order n > 3 with AT(D) > 1, then
T’R(D) S ;;{22%7 — 1.

2) For any digraph D of order n > 3 and AT(D) > 1, rp(D) < AY (D).
Moreover, the bound is sharp for any digraph D with A1T(D) = 1.

3) If D is a digraph of order n > 3 with AY(D) > 1, then

- DY+2
’f'R(D)\_{n 'YR; )+ _

Dehgardi et al. then studied Roman reinforcement number in compo-
sitions of digraphs. For two undirected graphs G and H, the join G + H
is defined as the undirected graph consisting of G and H with each vertex
of G adjacent to every vertex of H. In the directed case, there are two
possibilities to define the join of two digraphs. Let G and H be digraphs.
The digraph G — H is obtained from G and H by adding all possible arcs
from vertices of G to vertices of H, and G <> H is be obtained from G — H
by adding all possible arcs from vertices of H to vertices of G.

Proposition 2.21 ([11]) Lei G and H be two digraphs with AT{(G) > 1
and AY(H) > 1. Then

1. rr(G — H) = rr(G),
2. 7R(G & H) = min{n(G) — A*(G) — 2, n(H) — A+ (H) — 2).

The corona GoH of two undirected graphs G and H is formed from
one copy of G and n(G) copies of H by joining v; to every vertex in H;,
where v; is the ith vertex of G and H; is the ith copy of H. For digraphs
G and H, if all the additional edges are from G to H;, then we denote the
resulting digraph by G¢ H.

Proposition 2.22 ([11]) Let G and H be two digraphs with n(H) > 2.
Then

0 if n(G) =1,
re(GdH) = n(H) if G is the empty graph and n(G) > 2,
n(H)—1 otherwise.

2.2 Roman domatic number in digraphs

A set {fi, fao,..., fq4} of Roman dominating functions on a digraph D with
the property that 3¢ | fi(v) < 2 for each v € V(D), is called a Roman
dominating family (of functions) on D. The maximum number of functions

in a Roman dominating family on G is the Roman domatic number of
D, denoted by dgr(D). Clearly dp(D) > 1. Hao et al. [17] studied the
properties of Roman domatic number in digraphs.
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Theorem 2.23 ([17]) For any digraph D, dr(D) = 1 if and only +f D has

no directed even cycle.
Theorem 2.24 ([17]) For any digraph D of order n, yr(D)-dr(D} < 2n.
As a consequence of Theorem 2.24, we have the following result.

Theorem 2.25 ([17]) For any digraph D of order n > 2, dp(D) < n with
equality if and only if D is a complete digraph.

Using Theorems 2.23, 2.24 and 2.25, the following upper bound on the
sum vr{D) + dr(D) can be given.

Theorem 2.26 ([17]) Let D be a digraph D of order n > 2. Then
Yr(D) + dr(D) < n+2

with equality if and only if D is a complete digraph, or AT (D) <1 and D
has a directed even cycle.

Since ')R(Bn) = n, it follows from Theorem 2.24 that dR(E%n) = 2 for

even n.
Theorem 2.27 ([17]) For any digraph D, we have dp(D) < 6~ (D) + 2.

The reader can find an example in [17] showing the sharpness of Theo-
rem 2.27.

Theorem 2.28 ([17]) If D is a k-out-regular digraph of order n, where
n=pk+1)+7r with integersp>1 and 0 < r < k, then

dr(D) < k+e.
where €e =1 when k=0, or v =0, or 2r = k+ 1. and e =0 otherwise.

Using Theorems 2.27 and 2.28, the following Nordhaus-Gaddum type
result can be given.

Theorem 2.29 ([17]) If D is a digraph of order n > 2, then
dr(D) + dr(D) < n+e

where € = 1 when D is out reqular, € = 2 when D is not in-regular and
€ = 3 otherusse.

The following extension of Theorem 2.27 can be found in a note of
Volkmann and Meierling [43].
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Theorem 2.30 ([43]) For any digraph D, we have dr(D) < 6~ (D) + 2.
Moreover, if dp(D) = 6~ (D) + 2, then the set of vertices of minimum
in-degree is an independent set.

Theorem 2.30 leads to the following improvement of Theorem 2.29.
Theorem 2.31 ([43]) If D s a digraph of order n, then
dr(D) +dr(D) < n+ 1.

Using Observation 1.1 and Theorem 2.31, we obtain the following Nord-
haus-Gaddum bound for graphs.

Corollary 2.32 ([43]) If G is a graph of order n, then
dr(G) + dp(G) < n+ 1.
In [29] Corollary 2.32 was only proved for regular graphs.

2.3 {2}-Roman domination in digraphs

An {2}-Roman dominating function (or Italian dominating function) on a
digraph D with vertex set V(D) is defined by Volkmann [38] as a function
f V(D) — {0,1,2} such that every vertex v € V(D) with f{v) = 0 has
at least two in-neighbors assigned 1 under f or one in-neighbor w with
f(w) = 2. The minimum weight of an {2}-Roman dominating function
f is the {2}-Roman domination number (or Italian domination number),
denoted by /(D). Clearly, every Roman dominating function is an {2}-
Roman dominating function of D and thus /(D) < vygr(D). Hence, any
upper bound on yg(D) yields an upper bound on v;(D), and thus Proposi-
tion 2.4 and Theorem 2.8 are true for the {2}-Roman domination number.
Furthermore, since the set V; U V5 in an {2}-Roman dominating function
f = (Vo,V1,V2) is a dominating set of D, we observe that v(D) < ~,(D).
Altogether, we obtain the following inequality chain.

(D) £ v1(D) < yr(D) < min{n(D), 2v(D)}. (1)
It is observed in [38] that y;(D) = n(D) if and only if
max{A*(D),A" (D)} < L.

In [2], the 2-rainbow dominating function of a digraph D is defined as a
function f from V(D) to the set of all subsets of the set {1,2} such that
for any vertex v € V(D) with f(v) = @ the condition {J, .y~ flz) =
{1,2} is fulfilled. The weight of a 2-rainbow dominating function f is the
value 3, v py [f(v)|. The 2-rainbow domination number ~,5(D) is the
minimum weight of a 2-rainbow dominating function of D. The {2}-Roman
domination and 2-rainbow domination numbers are related as follows.
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Theorem 2.33 ([38]) If D is a digraph of order n > 2, then /(D) <
Yr2(D) < 2y (D) - 2.

The digraphs D with yg(D) = k for k € {2,3} are characterized in [38]
as follows.

Proposition 2.34 ([38]) Let D be a digraph of order n > 2. Then
~7(D) = 2 if and only if AT(D) = n — 1 or there exist two different
vertices u and v such that N*(u) N Nt (v) = V(D) \ {u,v}.

Proposition 2.35 ([38]) Let D be a digraph of order n > 3 such that
AT(D) < n— 2 and there doesn’t exist two different vertices a and b such
that Nt(a) N N*(8) = V(D) \ {a,b}. Then /(D) = 3 if and only if
At(D) = n — 2 or there exist three pairwise different vertices u,v and w
such that each vertex x € V(D) \ {u,v,w} has at least two in-neighbors in
the set {u,v,w}.

The next lower bound is an extension of Theorem 11 in [10].

Theorem 2.36 ([38]) If D is a digraph of order n, then

D)2 |z |

2.4 Double Roman domination and double {2}-Roman
domination in digraphs

In [16], Hao, Chen and Volkmann continue the study of double Roman
domination for directed graphs. A double Roman dominating function (ab-
breviated DRDF) on a digraph D is defined in [16] as a function f : V(D) —
{0, 1,2, 3} having the property that if f(v) = 0, then the vertex v must have
at least two in-neighbors assigned 2 under f or one in-neighbor assigned 3,
while if f(v) = 1, then the vertex v must have at least one in-neighbor as-
signed 2 or 3. The double Roman domination number vyy4r(D) of a digraph
D is the minimum weight of a DRDF on D. Double Roman domination
numbers of paths and cycles are determined by Ouldrabah, Blidia, Bouchou
and Volkmann in [28].

Proposition 2.37 ([28]) For any positive integer n > 3,
3n
var(Pr) = 74r(C) = (—2—1 .

The double Roman domination and (Roman) domination of a digraph
are related as follows.
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Proposition 2.38 ([16]) Let D be a digraph. Then

1. 29(D) € var(D) < 3y(D). Moreover, the right equality holds if and
only if there exists a yap(D)-function f such that Vi = Vo, = 0 and
the left equality holds if and only if y(D) = vo(D), where y2(D) is

2-domination number of D.

)

Yr(D)+1 < y4r(D) < 2vr(D), with equality in right side if and only
of D is empty.

Since yr(D) < n for any digraph D of order n, the following corollary
follows from Proposition 2.38 (Item 2).

Corollary 2.39 ([16]) For any digraph D of order n, v4r(D) < 2n with
equality if and only if D is empty.

As a consequence of Propositions 2.1 and 2.38, the next result is proved
in [16].

Proposition 2.40 ([16]) For any non-empty digraph D with n vertices,
Yar(D) < 2(n— A¥(D)) + 1. (2)

In [28], the authors give a descriptive characterization for out-regular
digraphs and tournaments satisfying (2) with equality as follows.

Theorem 2.41 ([28]) Let D be a k-out-regular digraph of order n with
k> 1. Then yar(D) = 2(n—k)+ 1 if and only if D = K, or D =
K¢ o — A(C), where C is a cycle factor without a cycle of order 2.

Theorem 2.42 ([28]) Let T, be a tournament of order n with mazimum
out-degree At > 1. Then v4p(T,) = 2(n— A*Y) + 1 if and only if AT >
n— 2.

Using the bound (2), Hao et al. proved the following Nordhaus-Gaddum
type result, and recently Ouldrabah et al. [28] give a descriptive charac-
terization of extremal digraphs D of order n > 4. From a dlrected cycle

C3, we define two 1-out-regular digraphs denoted by H 1 and H 2 as follows:
The digraph H i is obtained from Cg by adding a vertex, say v, and Jom it

by an arc from v to a vertex of C'3 The digraph I_IZ is obtained from H 1
by adding a further vertex, say u, and join it by an arc from u to v.

Theorem 2.43 ([28]) For any digraph D with n > 4 vertices,
6 < Yar(D) + var(D) < 2n + 3.

Furthermore, for the lower bound equality holds if and only if both D and
D have a vertex of out-degree n — 1 and for the upper bound equality holds

if and only if D or D is an element of {K,’;, 5:,5;,26’;, H—;, fl—;} )
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An upper bound on the double Roman domination number of a digraph
D in terms of its order and signed domination number was given in [16].

Proposition 2.44 ([16]) If D is a digraph of order n, then vyqr(D) <
vs(D) + 4n/3.

Other bounds for the double Roman domination number of a digraph
D can be stated in terms of its order, minimum indegree and maximum
outdegree.

Proposition 2.45 ([18]) For every connected digraph D of order n > 4
with 6~(D) > 1, vap(D) < (57— 1)/3.

Proposition 2.46 ([16]) For any digraph D of order n with 6~ (D) > 1,

D)<n{l3-3 - L . e
Yar{D) <n§3-— (2(1+5*(D))) u (2(1-&-5”(9)))

Theorem 2.47 ([16]) For any connected digraph D of order n > 4,

6n+ 3 }

& > |- >
ar(D) 2 [2A++3

The next result, derived from Theorem 247, shows that the upper
bound in (2) and the lower bound in Theorem 2.47 are sharp.

Corollary 2.48 ([16]) Let D be a connected digraph of order n > 4. Then
Yar(D) = 3 if and only if AV (D) =n—1.

An improvement of the bound in Theorem 2.47 has been given by Volk-
mann in [37] when A*(D) > 2.

Theorem 2.49 ([37]) If D is a digraph of order n with A1 (D) > 2, then

3n
var(D) = {m} :

A double {2}-Roman dominating function (or double Italian dominat-
ing function) on a digraph D is defined by Volkmann [37] as a function
f: V(D) — {0,1, 2,3} such that each vertex u € V(D) with f(u) € {0,1}
has the property that }° .y, f(z) = 3. The minimum weight of a dou-
ble {2}-Roman dominating function f is the double {2}-Roman domination
number or double Italian domination number, denoted by v4;(D). Clearly.
any double Roman dominating function on a digraph D is a double {2}-
Roman dominating function on D and so v4;(D) < v4¢r(D). Thus any
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upper bound on y4r(D) yields an upper bound on 54;(D). It was ob-
served in {37] that /(D) + 1 < 7v4;(D) < 2v;/(D). An inequality chain
similar to that given in Proposition 2.38 (item 1) holds for the double {2}-
Roman domination number, namely, (D) + 2 < v4/(D) < 34(D) with
equality in the upper bound if and only if there exists a ~4;(D)-function
f= Vo, V1, V2, V3) with [Vi]| = |[V2| = 0.

The following bounds are established on the double {2}-Roman domi-
nation number in [37].

Proposition 2.50 ([37]) If D is a digraph of order n, then vq;(D) < 2n
with equality if and only if D is empty.

Proposition 2.51 ([37]) If D is a bipartite digraph of order n with min-
imum indegree 0~ (D) > 1, then v4;(D) < vqr(D) < 3n/2.

If C, is an oriented cycle of even length, then 74/ (C}) = v4r(C2) =
3n/2, and therefore Proposition 2.51 is sharp. If C}, is an oriented cycle of
odd length, then v4;C) = v4r(Cy) = (3(n—1))/2+2, and thus Proposition
2.51 is not valid in general.

Theorem 2.52 ([37]) If D is a digraph with §— (D) > 2, then
va1(D) < |V(D)| 42— 8§ (D).

The complete digraph K}, (n > 3), complete bipartite digraphs K3 ;
and K}, demonstrate that Theorem 2.52 is sharp.

Theorem 2.53 ([37]) If D is a digraph of order n with mazimum out-
degree AY(D) = A%, then

o2n+2A1 46 2n+ At
'm;(D)Zmin{ o ex s }

F X e

Corollary 2.54 ([37]) Let D be a digraph of order n > 2. Then (D) =
3 if and only iof AT(D) =n —1.

2.5 Twin Roman domination in digraphs

In (8], Chartrand, Dankelmann, Schultz and Swart defined a twin dominat-
ing set of a digraph D as a subset S C V(D) such that forallv g S, v is a
predecessor of some vertex s € S and v is a successor of some vertex ¢t € S,
that is N*t[S] = N~[S] = V. The twin domination number ~* (D) is the
minimum cardinality of a twin dominating set of D. The twin domination
number of a digraph has been also studied in [4, 5, 26].
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Following the idea of Chartrand et al., Abdollahzadeh Ahangar et al.
[1] introduced the concept of twin Roman domination in digraphs. A twin
Roman dominating function (TRDF) on D is a Roman dominating function
of D such that every vertex with label 0 has an out-neighbor with label 2.
The twin Roman domination number of a digraph D, denoted by 5 (D),
equals the minimum weight of a TRDF on D. Since the set of all vertices
assigned weights 1 or 2 is a twin dominating set when f is a TRDF, and
since placing weight 1 at the vertices of the digraph or weight 2 at the
vertices of a twin dominating set yields a TRDF, we have

v* (D) < yr(D) < min{n(D),2v"(D)}.

Obviously vx(D) = n(D) if and only if there exists a vi(D)-function as-
signing weight 1 to all vertices of D. The next result provides a condition
for a digraph D to have a twin Roman domination number less than n(D).

Proposition 2.55 ([1]) Let D be a digraph of order n, mazximum out-
degree AY and mazimum in-degree A~. If AT+ A~ > n+3, then (D) <
n.

Abdollahzadeh Ahangar et al. 1] have showed that the twin domina-
tion and the twin Roman domination numbers of a digraph D are equal
if and only if every vertex of D has indegree 0 or outdegree 0. Moreover,
they proved the existence of a lower bound in terms of the order or twin
domination number of a digraph.

Proposition 2.56 ([1]) If D is a digraph on n vertices, then ~}(D) >
min{n,y*(D) + 1}.

Further, they characterized the digraphs such that their twin Roman
domination number equals v*(D) + 1 or v*(D) + 2.

Proposition 2.57 ([1]) Let D be a digraph of order n. Then the following
statements hold.

1. Ifn # 3 with (D) > 1, then v5,(D) =~*(D) + 1 if and only if there
is a vertex v € V(D) with INY(v) "N~ (v)| =n — (D).
2. If n > 7 and §(D) > 1, then v(D) = 4" (D) + 2 if and only if:
(i) D does not have a vertex v with with [NT () "N N~ (v)| = n —
Y(D).
(i1) either D has a vertex v with with N1t (v)NN~(v)| = n—y*(D)-1

or D contains two vertices v,w such that |[(N*[v] U Nt[w]) N
(N"[]UN"[w))| = n —~*(D)+ 2.
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Digraphs with twin Roman domination number k where k € {2, 3,4, 5}
were also characterized in [1] as follows.

Proposition 2.58 ([1]) Let D be a digraph of order n.

(1) For n > 2, v;,(D) = 2 if and only if n = 2 or there is a vertex v with
dt(w)=d " (v)=n-—1.

(i) For n > 3, v1(D) = 3 if and only if D has no vertex v with d*(v) =
d”(v) = n— 1. In addition (a) n = 3 or (b) D has a vertex v with
INtT@)NN-(v)] =n—2.

(1) For n > 4, v5(D) = 4 if and only if [Nt (v) NN~ (v)] < n — 3 for any
vertex v € V(D). In addition, (a) n = 4 or (b) there is a vertex v with
IN*(v) N N~ (v)] = n — 3 or (c) there are two vertices u,v € V(D)
such that (N (u) U NE (@) N (N (u) N N5 (0)) = V(D) — {u,v}.

(i) For n > 5, v;,(D) = 5 if and only if [Nt () "N N~ (v)| < n —4 for any
vertex v € V(D) and [(NS (z)UNE ()N (NS (2)UNG ()] < n—3 for
all pairs of vertices z,y € V(D). In addition, (a) there are two vertices
u,v € V(D) such that |(N} (w)UNL (0)0(N, (w)UNS (v))| = n—3 or
(b) n =5 or (¢) D contains a vertex w with [Nt (w)NN~(w)| = n—4
and the induced subdigraph H = D[V(D) — (NT[w]N N~ [w]}] does
not contain a vertex z with [N (z) N N (x)| = 2.

We close this subsection by the following result which is a consequence
of the definition and Theorem 2.9.

Theorem 2.59 ([1]) Let D be a digraph of order n, mazimum outdegree
AT > 1 and mazimum indegree A~. Then

" 2n 2n
D) = ma{ | 2o | [ 2

The complete digraph K (n > 2) and complete bipartite digraph
K} » (n > 4) are examples that show that the bound of Theorem 2.59
is sharp.

2.6 Roman game domination

The study of the Roman game domination number was initiated by Bahre-
mandpour, Sheikholeslami and Volkmann in 2016 [6]. Roman game dom-
ination is a game on a simple graph G consisting of two players D and
A called Dominator and Avoider, respectively, who take turns choosing an
edge from G. In this game, each chosen edge must be oriented and the game
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stops when all the edges of the graph G have been oriented, thus giving a
directed graph D. Knowing that the Dominator starts the game first, his
goal is to decrease the Roman domination number of the digraph D, while
the Avoider tries to increase it. The Roman game domination number of
the graph G, denoted by yg.(G). is the Roman domination number of the
directed graph resulting from this game, that is yg(G) = yr(D). This is
well defined if we suppose that both players follow their optimal strategies.

Here is one of the main results obtained in [6] which gives an upper
bound on the Roman game domination number for any graph with no
isolated vertex.

Proposition 2.60 ([6]) Let G be a graph without isoluted vertices and
let (D, A, B) be a partition of V(G) such that D is u dominating set of
G and each vertex in A is adjacent to at least two vertices of D. Then

Trg(G) <2|D| + | 18]

An immediate consequence of Proposition 2.60 is that if D) is a minimum
2-dominating set of G, then by putting B = 0, we have yp,(G) < 2% (G).
Additional bounds on the Roman game domination number were obtained
in [6]. Indeed, it was shown that if G is a graph of order n» with maximum
degree A, then v, (G) < n— {%—1 + 1, while if G is a tree of order n, then
[2] +1 < ygre(G) < n — 1. Moreover, it was proved that for a connected
graph G of order n > 4, yrg(G) > 3 while if n > 6, then yry(G) > 4.
For paths P, of order n > 4, it has been shown that v, (P,) <n—1-—
L&;ﬁj , and this bound is sharp for n € {4, ..., 13}. Bahremandpour et al.
conjectured that for n > 4, ypy(Pn) = 7rg(Crn) = n—1— | 22| . Another
interesting question posed in [6] which remains open: Is it true that if
Yre(G) < 4k, then for any two non-adjacent vertices a and b, yry(G+ab) <
5k?

3 Signed Roman domination in digraphs

The purpose of this section is to present the signed version of two variations
of Roman dominating functions in digraphs.

3.1 Signed Roman k-domination in digraphs

Let £ > 1 be an integer. A signed Roman k-dominating function (abbrevi-
ated SRkDF) on a digraph D is defined by Volkmann in [33] as a function
f: V(D) — {-1,1,2} such that f(N~[v]) = 3 o n-1u) F(2) 2 & for every
v € V(D) and every vertex u for which f(u) = —1 has an in-neighbor v for
which f(v) = 2. The signed Roman k-domination number v¥,(D) of D is
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the minimum weight of an SRKDF on D. The special case k = 1 was in-
troduced and investigated by Sheikholeslami and Volkmann in [31], where
Yir(D) is denoted by v,z(D). The signed Roman k-domination number
exXists when 6 (D) > -’5 — 1. The function assigning +1 to every vertex of
D is an SRkD function of weight n and thus v*,(D) < n for every digraph
of order n with 6= (D) > k — 1. Moreover, it was observed in [31] that
Ysr(G) = n if and only if D is the disjoint union of isolated vertices and
oriented triangles Cj.

In the following, we list some results that are obtained from Observation
1.1 with other results on the signed Roman k-domination established in [20]
for special classes of undirected graphs.

Proposition 3.1 1. Ifn # 3, then vsr(K}) = 1 and vop(K3) = 2.
2. Ifn2>k>2, then ¥, (K}) = k.

8. Ifk 22, then v*p(K;_; ) = 2k —2 and 'yfR(K,’:,k) = 2k and if
k> 1, then 7§R(K;‘1‘,1,k_+_1) =2k +1.

We gather below the few exact values of the signed Roman k-domination
number of digraphs that have been determined in 15, 31, 33].

Proposition 3.2 1. If AT(n) for n > 3 is an acyclic tournament, then
Ysr(AT (n)) = 1 for n # 3, and y,r(AT(3)) = 2.

S

If n = 2r + 1, where r is a positive integer, then v,p(CT(n)) = 3 for
r # 2, and v,p(CT(5)) = 4.

3. If Cy, is an oriented cycle of order n > 2, then v,p(Cy) = n/2 when
n s even and Y,p(Cr) = (n+ 3)/2 when n is odd.

4. If Py is an oriented path of order n, then vop(Py,) = n/2 when n is
even and vy, p(Pp) = (n + 1)/2 when n is odd.

5. For any positive integers p, q and k with q > p > k+ 2, qu(K;‘q) =
2k + 2.

6. vsr(Kiz) =2, vsr(Kig) = 1 for ¢ # 2, van(K3 ) = 3 for ¢ > 2 and
Var(Kp,) =4 forq > p > 3.

7. If H is a (k — 1)-regular digraph of order n, then YER(H) = n.

The next two bounds on the signed Roman k-domination number are
extensions of those obtained in [20] for undirected graphs.

Proposition 3.3 ([33]) If D is a digraph of order n with (D) > k — 1,
then
'yfR(D) >k+1+A7(D) —n.

159



Item 2 in Proposition 3.1 shows that the bound of Proposition 3.3 is sharp.

Theorem 3.4 ([33]) Let D be a digraph of order n with 67(D) > k — 1,
minimum out-degree 6t and maximum out-degree At. If §* < A", then
. 26t 4+ 3k — 2AT
k
ielD) > (o

Examples 9 and 10 in [20] together with Observation 1.1 shows that the
bound presented in Theorem 3.4 is sharp.

Proposition 3.5 ([33]) If D is an r-out-regular digraph of order n with
r >k — 1, then ¥5,(D) > kn/(r + 1).

Item 7 in Proposition 3.2 shows that the bound of Proposition 3.5 is sharp.
A Nordhaus-Gaddum type inequality for the signed Roman k-domination
number of regular digraphs can be derived from Proposition 3.5 as follows.

Theorem 3.6 ([33]) If D is an r-regular digraph of order n such that
r>k—~1landn—r—~12>k~—1, then

4kn
n+1
If n is even, then vX,(D) + v*,(D) > 4k(n + 1)/(n+ 2).

V(D) + ver(D) =

That the bound in Theorem 3.6 is sharp, may be seen by considering a
(k — 1)-regular digraph H of order n = 2k — 1. Then H is a (k — 1)-regular
digraph too and in view of Proposition 3.2 (Item 7), we have v*,(H) +
vk (H)} = 2n which leads to v*o(H) + v5,(H) = 2n = %”f.
The parameters v,z and v, the parameters v*, and i, and the parameters
2, and 7o are related as follows.

Proposition 3.7 ([31]) Let D be a digraph of order n. Then y,p(D) >
29(D) — n, with equality if and only if D is the disjoint union of isolated
vertices.

Proposition 3.8 ([15]) If D is a digraph of order n and k a positive in-
teger k with 6 (D) > k — 1, then

. n
Yor(D) < Wes(D) + 3

The special case k = 1 of Proposition 3.8 is proved in [31]. To illustrate
the sharpness of Proposition 3.8 in the case k = 1, consider the digraph D
with vertex set V(D) = {u;,v; } 1 < i < 3} and arc set A(D) = {(vs,v;) |
1 <i#j<3hU{(vr,m), (v1,uz), (v2,u1), (v, us), (v3, up), (vs, ug)}. It is
easy to see that v,(D) =0 and v,r(D) = 2.
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Proposition 3.9 ([15]) For any digraph D of order n with A~ > 2,
Yir(D) 2 2v2(D) +1—n.

For rooted trees and connected contrafunctional digraphs the following
results were established in {15, 33].

Theorem 3.10 ([33]) If T is a rooted tree of order n > 1, then

n-+1
5

Directed paths demonstrate that Theorem 3.10 is sharp.

Yor(T) <

Theorem 3.11 ([15]) For any rooted tree T' of order n, v2,(T) = n + L.

Theorem 3.12 ([38]) If D is a connected contrafunctional digraph order
n > 2, then
n+ 3

-

e

Ysr(D) <

The directed cycles C,, of odd length show that Theorem 3.12 is sharp.
The next result improves the bound in Theorem 3.12 for special families of
contrafunctional digraphs.

Theorem 3.13 ([33]) Let D be a connected contrafunctional digraph of
order n > 2 with the unique directed cycle C. If C has even length or the
mazimum distance from C to V(D) — V(C) is exactly one, then v,p(D) <
n/2.

Theorem 3.14 ([15]) Let D be a connected contrafunctional digraph of
order n. Then

(a) ’YER(D) = 15,

(0) n4k/2 < 73,(D) < (3n+ 1)/2, where k is the length of the unigue
directed cycle of D. In particular, if k is even, then y35(D) < 3n/2.

(c) v2in(D) = 2n.

In [15], Hao, Chen and Volkmann showed that for any oriented tree T of
order n, ¥25(T) = (n +3)/2, and characterized all oriented trees attaining
this lower bound.

For an integer k > 1, Volkmann [39, 40] recently defined the weak signed

Roman k-dominating function (WSRKDF) on a digraph D as a function
f V(D) — {~1,1,2} satisfying the condition f(N~[v]) > k for each v €
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V(D). The weight of a WSRKDF f is the value Y, .y (p) f(u). The weak
signed Roman k-domination number 4% (D) of D is the minimum weight
of a WSRKDF on D. The weak signed Roman k-domination number exists
when 6= (D) > £-1. The definitions lead to v5 (D) < ¥5,(D). Therefore
each lower bound of v¥ r(D) is a lower bound of ~g k(D). In [39 40} it
is shown that many lower bounds of 7¥,(D) are also valid for vk r(D).
In particular, Volkmann [39, 40] proved that Propositions 3.3, 3.5, 3.7 and
Theorems 3.4, 3.6 hold for the weak signed Roman k-domination number
too. In addition, Volkmann [40] presented the following general bounds.

Theorem 3.15 ([40]) Let D be a digraph of order n with 6~ (D) > [£7-1.
Then vk o (D) < 2n, with equality if and only if k is even, 6~ (D) = %— -1,
and each vertex of D is of minimum in-degree or has an out-neighbor of
minimum in-dgree.

Theorem 3.16 ([40]) Let k > 3 be an integer, and let D be a digraph of
order n with 5~ (D) > [£]—1. Then~i p(D) > k+ (5] —n, with equality

if and only +f D = KF K-

3.2 Signed total Roman k-domination in digraphs

A signed total Roman k-dominating function (STRKDF) on a digraph D is
defined by Dehgardi and Volkmann [13] as a function f : V(D) — {-1,1,2}
satisfying the conditions that (i) 3., . n-(, f(z) = k for each v € V(D),
and (ii) every vertex u for which f(u) = —1 has an m-nelghbor v for which
f(v) = 2. The signed total Roman k-domination number v5, p(D) of D is
the minimum weight of an STRKDF on D. The special case k¥ = 1 was
introduced and investigated by Volkmann [35], where 7., (D) is denoted
by vetr(D). The signed total Roman k-domination number exists when
6=(D) > 5‘2- As for the signed Roman k-domination, one can see that
vk p(D) < n for every digraph of order n with 6= (D) > k.

The following results are obtained by using Observation 1.1 with some
results established for the signed total Roman k-domination for special
classes of undirected graphs (see for example [34, 36]).

Proposition 3.17 ([18]) If n > k + 2, then v5 p(K}) = k + 2.

Proposition 3.18 ([13]) Ifp > k > 1, then ﬂ,'_f,,R(K;, ) = 2k, with excep-
tion of the case that k =1 and p = 3, in which case v, p(K33) = 4.

We recall that D(C,) and D(P,) are the associated digraphs of the
cycle C,, and the path P, respectively.
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Proposition 3.19 ([35]) Let n > 3 be an mtege'r Then vor(D(C,)) =
5 when n = 0(mod4) Ystr(D(Cn)) = %2 when n = 1,3 (mod4) and
Ystr(D(Cr)) = 28 when n = 2 (mod 4).

Proposition 3.20 ([35]) Letn > 3 be an integer. Then vop(D(Py,)) = 2
when n = 0(mod4) and v r(D(Py)) = [42] otherwise.

The signed total Roman k-domination number was determined for cir-
culant tournaments in {13, 35] and for regular digraphs in [13].

Proposition 3.21 1. If n = 2r 4+ 1, where r is a positive integer, then
YstR(CT(3)) = 3, Yotr(CT(7)) = 5 and y4r(CT(n)) = 4 forn > 5
withn # 7.

2. If n=2r 4 1 with an integer r > k > 2, then v* ,(CT(n)) = n for
r =k and y% o (CT(n)) = 2k + 2 when r > k.

8. If D is a k-regular digraph of order n, then 4 (D =

Dehgardi and Volkmann [13] gave the following upper bound which is
an extension of a bound that can be found in [34, 36].

Theorem 3.22 ([13]) If D is a digraph of order n with minimum in-
degree 6~ > k + 2, then

ha(D) <n+1-2| Pk

Ifn>k+3and n—k—1 is even, then it follows from Proposition 3.17

that
OT(Ky) —k
r) b

et

Vin(K) = k+2=n+1-2]
and therefore equality in the inequality of Theorem 3.22.

Proposition 3.23 ([18]) If D is a digraph of order n with minimum in-
degree 6~ (D) > k, then

Yor(D) 2 k+ A~ (D) - n.

Proposition 3.24 ([13]) If D is a digraph of order n > k + 2 with mini-
mum in-degree 6~ (D) > k, then

Yo r(D) > k+3+8 (D) —n.

Proposition 3.17 shows that Proposition 3.24 is sharp. Moreover, ¥e.n
and the 2-packing number p; are related as follows.
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Theorem 3.25 ([13]) If D is a digraph of order n such that 6~ (D) > k.
then
vair(D) = p2(D)(~(D) + k) — n.

Theorem 3.26 ([18]) 1. Let D be a digraph of order n with minimum
indegree §~ > k, minimum outdegree &' and mazimum outdegree

AbY. IfAY > 8t then

: 20" + 3k — 24t
Yotr(D) = ( SAT 1 o7 )

2. If D is an r-out-regular digraph of order n withr > k, then 'yfm(D) >
kn
alt

Using Theorem 3.26 (Item 2), we obtain the following Nordhaus-Gad-
dum type inequality for the signed total Roman k-domination number in
digraphs.

Theorem 3.27 ([13]) If D is an r-regular digraph of order n such that
r>kandn—r—12>k, then

4kn

Ysr(D) + 5r(D) 2 L

If n is even, then 4%, ,(D) + 75 p(D) > dk(n—1)

n—2

For an integer & > 1, Volkmann [41, 42] recently defined the signed
total Italian k-dominating function (STIkKDF) on a digraph D as a function
[+ V(D) - {-1.1,2} satisfying the conditions (i) f(N~(v)) > k for
each v € V(D) and (ii) each vertex u for which f(u) = —1 has an in-
neighbor » with f(v) = 2 or two in-neighbors w and z with f(w) = f(z) =
1. Note that in the case £ > 2 or 6~ (D) > 2. the second condition is
superfluous. The signed total Italian k-domination number ~%5,;(D) of D
is the minimum weight of an STKIDF on D. The signed total Italian
k-domination number exists when 6~ (D) > % The definitions lead to
vk (D) < 45 ,(D). Therefore each lower bound of 4%, (D) is a lower bound
of v5, o (D). In [41, 42] Volkmann proved that Proposition 3.23, Proposition
3.24 when 6~ (D) — k is odd, Theorems 3.25, 3.26 and 3.27 also hold for the
signed toal [talian k-domination number. In addition, Volkmann presented
the following general bounds.

Theorem 3.28 ([42]) Let D be a digraph of order n with 6~ (D) > [%1
Then v¥ (D) < 2n, with equality if and only if k is even, 6~ (D) = % and
each vertex of D has an out-neighbor of minimum in-dgree.
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Theorem 3.29 ([42]) Let D be a digraph of order n such that 6~ (D) >
[£], and let t be the number of vertices z € V(D) with d*(z) = 0. Then
Then v5,,(D) < v5p(D) < 2n — 3¢, and if k > 3 is odd, then Then
v (D) <45 (D) < 2n — 3¢ — 1.

Theorem 3.30 ([42]) Let k > 2 be an integer. If D is a digraph of order
n with §~(D) > [%], then

k

Examples in [42] demonstrate that Theorems 3.28 and 3.30 are both
sharp.

4 Roman domination parameters in oriented
graphs

An orientation of a graph G is a digraph D obtained from G by choosing an
orientation (x — y or y -+ z) for every edge zy € E(G). If u(G) is a graph
parameter and u(D) is its corresponding digraph parameter, then clearly,
two distinct orientations of a graph can have distinct p values. Motivated
by this observation, Chartrand, VanderJagt and Quan Yue defined in [9]
the lower and upper orientable domination numbers of a graph as follows:

dom(G) = min{y(D) | D is an orientation of G}, and
DOM(G) = max{v(D) | D is an orientation of G}.

The lower orientable twin domination number dom*(G) and upper ori-
entable twin domination number DOM*(G) of a graph G have been defined
in [8].

Similar concepts for Roman domination have been studied, and the
main results will be presented in this subsection.

4.1 Orientable twin Roman domination

The study of lower and upper orientable twin Roman domination num-
bers of a graph G was initiated by Abdollazadeh Ahangar, Amjadi, Sheik-
holeslami, Samodivkin and L. Volkmann in [1], where the these two param-
eters were defined as follows:

dom%(G) = min{y,(D) | D is an orientation of G}, and
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Domg(G) = max{yx(D) | D is an orientation of G}.

Trivially, domy(G) < Domp(G) < n for every graph G of order n. The
first result we cite provides a condition for a graph G to have domy(G) =
n(G).

Proposition 4.1 ([1]) If G is a graph of order n with at most one cycle.
then domp(G) = n. In particular, for n > 1, domyk(Ky,) = n and for
n > 2, domy(Cy) = domy(P,) = Domy(Cr) = Domp(P,) = n.

Exact values of the lower orientable twin Roman domination number
of complete graphs, complete bipartite graphs and complete multipartite
graphs have been also established in [1].

Proposition 4.2 ([1]) For n > 4, we have domy(K,) =4 and forn > 2,
domp(Kp n) = 4.

Proposition 4.8 ([1]) For every two integersr > s > 3,

(5 if s=3
6 if s=4
domp(K,s)=<¢ 7 if s=5
8 if s>86.
\

Proposition 4.4 ([1]) Let G = Ky, m,,....m, (1 > 3) be the complete r-
partite graph with 1 <mjy < my < ... < m,. Then

(4 if my=-=m,=1,
4 if my =mo=1o0rm; =2 for some i,
domp (Ko, mg,..m,)=¢ 5 if my=30rm;=1andmy=3,
\

The next two upper bounds on the lower orientable twin Roman domi-
nation of a graph G are expressed in terms of the order, clique number and
independence number of G.

Proposition 4.5 ([1]) For any graph G of order n > 4 with cligue number
¢ >4, dompx(G) < n—c+4.

Proposition 4.6 ([1]) For any graph G of order n > 4 with §(G) > 2,
domp(G) < 2(n — «(G)), where a(G) is the independence number of G.

Proposition 4.2 shows that Proposition 4.5 is sharp for complete graphs
K,, (n > 4) and Proposition 4.6 is sharp for complete bipartite graphs
Kz’n (n 2 2)
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4.2 Orientable signed Roman domination

The lower and upper orientable twin signed Roman domination numbers of
a graph G were defined in [7] by Bodaghli, Sheikholeslami and Volkmann
as follows:

dom;,(G) = min{y}z(D) | D is an orientation of G}, and
Dom; ,(G) = max{~y},(D) | D is an orientation of G}.

Clearly, dom;,(G) < Dom}x(G) < n(G) for all graphs G. The next
result shows that the right bound is sharp.

Proposition 4.7 ([7]) If G is a bipartite graph with n vertices, then
Dom; p(G) = n.

Exact values of the lower orientable twin signed Roman domination
number of complete graphs K, and complete bipartite graphs K, , (n >
m) were determined in [7]. Indeed, for n > 3, dom,z(K,) = 3 if n ¢
{4,6}, and dom; z(K,) = 4 if n € {4,6}. Also, for n > 2, dom;p(K2,) =
2if n # 3 and dom;,(K23) = 3. For n > 4, dom,p(K3,) = 4, and
domjp(K33) = 5. If m = 4,5, then dom} (K ,,n) = m + 2, and for
n2>m 2> 6, dom, (K, ) = 8.

4.3 Orientable signed total Roman domination

Amjadi and Soroudi [3] introduced the lower and upper orientable twin
signed total Roman domination numbers of a graph G defined as follows:

domy, p(G) = min{v},p(D) |

D is an orientation of G with min{é*(D),d (D)} > 1},
Do}, (G) = max{r’, (D) |

D is an orientation of G with min{§*(D),é~ (D)} > 1}.

The authors determined the exact values of the lower orientable twin
signed total Roman domination number for complete graphs and complete
bipartite graphs as well as the upper orientable twin signed total Roman
domination number of the complete bipartite graph K, .

Proposition 4.8 ([3]) For n > 4 dom,p(K,) = 4.
Proposition 4.9 ([3]) Letn > m > 2.

1. domj, (K2 2) = 4, dom},z(K23) = 5 and dom},z(K2,) = 6 for
n > 4.
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o

o

G

6.

dom},p (K3 3) = dom}, z(Kz5) = 6 and domy,g(K3,) =5 forn >4
and n # 5.

dom},r(Ky5) = 5 and dom},z(K4rn) =4 for n > 4 and n # 5.
domj,r(Ks5) = 6 and dom p(Ks5,,) =5 forn > 6.

For n > 6, dom},p(Ks ) = 4.

Forn>m>7, domy,p(Kpymr) =4.

Proposition 4.10 ([3]) Dom}, z(Ky ) = 2n.
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