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Abstract

We introduce a new bivariate polynomial which we call the defen-

sive alliance polynomial and denote it by da(G;x, y). It is a generaliza-
tion of the alliance polynomial [Carballosa et al., 2014] and the strong al-
liance polynomial [Carballosa et al., 2016]. We show the relation between
da(G;x, y) and the alliance, the strong alliance and the induced connected
subgraph [Tittmann et al., 2011] polynomials. Then, we investigate infor-
mation encoded in da(G;x, y) about G. We discuss the defensive alliance
polynomial for the path graphs, the cycle graphs, the star graphs, the dou-
ble star graphs, the complete graphs, the complete bipartite graphs, the
regular graphs, the wheel graphs, the open wheel graphs, the friendship
graphs, the triangular book graphs and the quadrilateral book graphs.
Also, we prove that the above classes of graphs are characterized by its
defensive alliance polynomial. A relation between induced subgraphs with
order three and both subgraphs with order three and size three and two
respectively, is proved to characterize the complete bipartite graphs. Fi-
nally, we present the defensive alliance polynomial of the graph formed
by attaching a vertex to a complete graph. We show two pairs of graphs
which are not characterized by the alliance polynomial but characterized
by the defensive alliance polynomial.

1 Introduction

Let G be a simple graph and S be a subset of V (G). S̄ is V (G) \S. The degree
of a vertex u in S denoted by δS(u) is |{{u, v} ∈ E(G) : v ∈ S}|. An alliance
is a non-empty subset of V (G). S is defensive alliance [Kristiansen et al., 2002]
provided that

δS(v)− δS̄(v) ≥ −1 , ∀ v ∈ S.

Further, S is called strong defensive alliance provided that:

δS(v) − δS̄(v) ≥ 0 , ∀ v ∈ S.

The concept can be generalized to the defensive k-alliance [Rodriguez et al., 2008]

δS(v)− δS̄ ≥ k , ∀ v ∈ S , k is an integer in the range −∆ ≤ k ≤ ∆.
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Note that for k = −1 we get the defensive alliance and for k = 0 we get the
strong defensive alliance.

We denote by G[S], the subgraph induced by S in the graph G, where
S ⊆ V (G). Through this paper, we present the graph polynomials using the
form:

∑

S⊆V (G)

[ p1(S) ][ p2(S) ] · · ·x
fx(S)yfy(S)zfz(S) · · · , where

[ pi(S) ] =

{

1 if G[S] has the property pi,
0 otherwise.

We denote the polynomial of the terms xk in the graph polynomial da(G;x, y)
by [xk]da(G;x, y) and the coefficient of the term xkyl by [xkyl]da(G;x, y). We
say that a graph G is characterized by a graph polynomial f if for every graph
G such that f(G) = f(H) we have that G is isomorphic to H . The class of
graphs K is characterized by a graph polynomial f if every graph G ∈ K is
characterized by f . Also, when we say a vertex set S contributes a term t, we
mean the set S induces a connected subgraph G[S] which yields the term t in
da(G;x, y).

2 Definition and relations with other graph poly-

nomials

Definition 1. The mappings fx and fy are defined as follows:

fx : P(V (G)) 7→ N with fx(S) = |S| and

fy : P(V (G)) 7→ Z with fy(S) = min
u∈S

{δS(u)− δS̄(u) + n}.

The defensive alliance polynomial denoted by da is:

da(G;x, y) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]xfx(S)yfy(S).

2.1 Alliance polynomial

The alliance polynomial defined in [Carballosa et al., 2014] denoted by A is:

A(G; y) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]yfy(S).

Proposition 2. A(G; y) = da(G; 1, y).

2.2 Strong alliance polynomial

Proposition 3. Let S be a non-empty subset of V (G) which induces a connected
subgraph in G. S is strong defensive alliance if fy(S) ≥ n.
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Definition 4. The strong alliance polynomial defined in [Carballosa et al., 2016]
denoted by a is:

a(G;x) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]

[S is strong defensive alliance ]xfx(S)

Proposition 5. a(G;x) =
∑n−1

k=0 [y
n+k]da(G;x, y).

2.3 Induced connected subgraph polynomial

Definition 6. The induced connected subgraph polynomial defined in [Tittmann et al., 2011]
denoted by q is:

q(G;x) =
∑

S⊆V (G)

[S is not empty ][ G[S] is connected ]xfx(S).

Proposition 7. q(G;x) = da(G;x, 1).

3 Properties

Proposition 8. The number of connected induced subgraphs of order k is
[xk]da(G;x, 1).

Proof. A set S where S ⊆ V (G), contributes a term with fx(S) = k if and only
if S induces a connected subgraph in G and |S| = k. By substituting y = 1
in da(G;x, 1), we sum the terms with the similar exponent of x. Hence, the
coefficient of xk in da(G;x, 1) is the number of connected induced subgraphs of
order k in G.

Proposition 9. The order of G is [x1]da(G;x, 1).

Proof. By putting k = 1 in Proposition 8 we get [x1]da(G;x, 1) as the number
of connected subgraphs of order one, hence the order of G.

Proposition 10. The size of G is [x2]da(G;x, 1).

Proof. By putting k = 2 in Proposition 8 we get [x2]da(G;x, 1) as the number
of connected subgraphs of order two, hence the size of G.

Proposition 11. G is connected if and only if degx(da(G;x, y)) = n.

Proof. If G is connected, then V (G) contributes the term xnyfy(V (G)). Since G

has only one subset of vertcies with cardinality n this implies degx(da(G;x, y)) =
n.

Now we prove the converse. If there exists a term in da(G;x, y) where the
exponent of x equals n, then there exists a connected induced subgraph with
order n. Since V (G) is the only such subgraph, therefore G is connected.
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Proposition 12. Let k be an integer in the range 0 ≤ k ≤ n− 1. The number
of vertices in G with a degree k is [xyn−k]da(G;x, y). Hence the degree sequence
of G can be obtained.

Proof. Let v be a vertex in G. The set {v} induces a connected subgraph in G

which contributes the term xyn−deg(v) in da(G;x, y). Hence [xyn−deg(v)]da(G;x, y)
yields the number of all vertices with degree equal to deg(v).

Proposition 13. Let G be a simple graph. The maximum order of a component
of G is deg(da(G;x, 1)). Further, the number of components with maximum
order c is [xc]da(G;x, 1).

Proof. From the definition of the defensive alliance polynomial, we can see
that deg(da(G;x, 1)) is the order of the maximum component of G. Let c =
deg(da(G;x, 1)) and A = {S : |S| = c and S induces a component in G}. Ev-
ery set S in A contributes a term xcyfy(S) in da(G;x, y). The number of these
terms is |A| which can be obtained from [xc]da(G;x, 1).

A vertex in G whose removal results in increase of the number of components
of G is a cut vertex.

Proposition 14. Let G be a simple connected graph. The number of cut vertices
in G is n− [xn−1]da(G;x, 1).

Proof. Let v be a vertex in V (G), every subset of V (G) \ {v} contributes a
connected subgraph in G if and only if v is not a cut vertex. Every such set
V (G) \ {v}, contributes a term in da(G;x, 1) where the exponent of x is n− 1.
The number of cut vertices is the order minus the sum of the above terms
= n− [xn−1]da(G;x, 1).

Proposition 15. Let G1, G2, · · · , Gk be pairwise disjoint graphs. Then

da(∪k
i=1Gi;x, y) =

(

k
∑

i=1

da(Gi;x, y)

y|Gi|

)

y
∑

k
i=1

|Gi|.

Proof. Let i and j be integers in the range 1, 2, · · · , k. Every connected subgraph
in Gi is disjoint from subgraphs in Gj where i 6= j. But the exponent of y in
da(Gi;x, y) is added to |Gi|, hence the sum of the orders of all the other graphs
must be added.

4 Defensive alliance polynomial of special classes

of graphs and their characterization by it

4.1 The path graph

Proposition 16. A simple graph G is isomorphic to the path Pn if and only if

da(G;x, y) = 2xyn−1+(n−2)xyn−2+yn
n−1
∑

i=2

(n−i+1)xi+xnyn+1, where n ≥ 2.
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Proof. First, we show that a graph G which is isomorphic to a path Pn, has the
given defensive alliance polynomial. Let G be of the form in Figure 1.

v1 v2 v3 vn−1 vn. . .

Figure 1: A path graph

The non-empty subsets of V (G) which induce connected subgraphs in G, can
be partitioned into the following parts: The part {{v1}, {vn}} in which each set
contributes the term xyn−1 and by summing, we get the term 2xyn−1. The
part {{v2}, {v3}, · · · , {vn−1}} in which each set contributes the term xyn−2 and
by summing, we get the term (n − 2)xyn−2. The part containing the sets of
cardinality i in the range of 2 ≤ i ≤ n − 1 in which each set contributes the
term xiyn. By adding the terms we get

(n− 1)x2yn + (n− 2)x3yn + · · ·+ (n− (n− 2))xn−1yn

= yn
n−1
∑

i=2

(n− i+ 1)xi.

Finally, the part containing V (G) in which V (G) contributes the term xnyn+1.
Now we prove the converse. Let n be an integer where n ≥ 2, and H is a

graph with the defensive alliance polynomial,

da(H ;x, y) = 2xyn−1 + (n− 2)xyn−2 + yn
n−1
∑

i=2

(n− i+ 1)xi + xnyn+1.

By Proposition 9, the order of H equals n. By Proposition 10, the size of H
equals n − 1. By Proposition 11, H is connected. Hence, H is a tree. By
Proposition 12, the degree sequence of H is (2, 2, · · · , 2, 1, 1). Consequently, H
is isomorphic to the path graph Pn.

4.2 The cycle graph

Proposition 17. A simple graph G is isomorphic to the cycle Cn if and only
if

da(G;x, y) = nxyn−2 + nyn
n−1
∑

i=2

xi + xnyn+2, where n ≥ 3.

Proof. First, we show that a graph G which is isomorphic to a cycle Cn, has
the given defensive alliance polynomial.

The non-empty subsets of V (G) which induce connected subgraphs in G,
can be partitioned into the following parts: The part containing the sets of
cardinality one in which each set contributes the term xyn−2 and by summing,
we get the term nxyn−2. The part containing the sets of cardinality i in the

39



range of 2 ≤ i ≤ n− 1 in which each set contributes the term xiyn. By adding
the terms we get

nx2yn + nx3yn + · · ·+ nxn−1yn

= nyn
n−1
∑

i=2

xi.

Finally, the part containing V (G) in which V (G) contributes the term xnyn+2.
Now we prove the converse. Let n be an integer where n ≥ 3, and H is a

graph with the defensive alliance polynomial

da(H ;x, y) = nxyn−2 + nyn
n−1
∑

i=2

xi + xnyn+2.

By Proposition 9, the order of H equals n. By Proposition 11, H is connected.
By Proposition 12, the degree sequence of H is (2, 2, · · · , 2).

Consequently, H is isomorphic to the cycle graph Cn.

4.3 The star graph

Definition 18. Let n be a positive integer. The star graph denoted by Sn is
defined by the graph join nK1+K1. Further the vertex with the maximum degree
is called the center.

Proposition 19. A simple graph G is isomorphic to the star Sn if and only if

da(G;x, y) = xy+nxyn−1+

⌊n
2
⌋

∑

i=1

(

n

i

)

xi+1y2i+

n
∑

i=⌈n+1

2
⌉

(

n

i

)

xi+1yn+1, where n ≥ 1.

Proof. First, we show that a graph G which is isomorphic to a star Sn, has the
given defensive alliance polynomial. Let G be of the form in Figure 2.

v0

v1

v2

v3 v4

vn

Figure 2: A star graph

The non-empty subsets of V (G) which induce connected subgraphs in G,
can be partitioned into the following parts: The part {{v0}} in which {v0}
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contributes the term xy. The part {{v1}, {v2}, · · · , {vn}} in which each set
contributes the term xyn−1 and by summing, we get the term nxyn−1. The part
containing the sets of cardinality i in the range of 2 ≤ i ≤ ⌊n

2 ⌋ in which each

set contributes the term xi+1y2i+1 and by summing, we get
∑⌊n

2
⌋

i=1

(

n
i

)

xi+1y2i+1.
The part containing the sets of cardinality i in the range of ⌈n+1

2 ⌉ ≤ i ≤
n in which each set contributes the term xi+1yn+1 and by summing, we get
∑i=n

⌈n+1

2
⌉

(

n

i

)

xi+1yn+1.

Now we prove the converse. Let n be an integer where n ≥ 1, and H is a
graph with the defensive alliance polynomial

da(H ;x, y) = xy + nxyn−1 +

⌊n
2
⌋

∑

i=1

(

n

i

)

xi+1y2i +

n
∑

i=⌈n+1

2
⌉

(

n

i

)

xi+1yn+1.

By Proposition 9, the order of H equals n + 1. By Proposition 10, the size
of H equals n. By Proposition 11, H is connected. Hence, H is a tree. By
Proposition 12, the degree sequence of H is (n, 1, 1 · · · , 1). Consequently, H is
isomorphic to the star graph Sn.

4.4 The complete graph

Proposition 20. A simple graph G is isomorphic to the complete graph Kn if
and only if

da(G;x, y) =
(1 + xy2)n − 1

y
, where n ≥ 1 and y 6= 0.

Proof. First, we show that a graph G which is isomorphic to a complete graph
Kn, has the given defensive alliance polynomial.

The non-empty subsets of V (G) which induce connected subgraphs in G,
can be partitioned into one part: The part containing the sets of cardinality i

in the range of 1 ≤ i ≤ n in which each set contributes the term xiy2i−1 and by
summing, we get:

(

n

1

)

x1y1 +

(

n

2

)

x2y3 + · · ·+

(

n

n

)

xny2n−1

=

n
∑

i=1

(

n

i

)

xiy2i−1

=
1

y
(

n
∑

i=0

(

n

i

)

(xy2)i − 1)

=
(1 + xy2)n − 1

y
.

Now we prove the converse. Let n be an integer where n ≥ 1 and H is

a graph with the defensive alliance polynomial, da(H ;x, y) = (1+xy2)n−1
y

. By
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Proposition 9, the order of H equals n. By Proposition 12, the degree sequence
of H is (n− 1, n− 1, · · · , n− 1). Consequently, H is isomorphic to the complete
graph Kn.

4.5 The regular graph

Proposition 21. A simple graph G is isomorphic to a ∆-regular graph if and
only if [x]da(G;x, y) = nyn−∆.

Proof. First, we show that a graph G which is isomorphic to a ∆-regular graph
has [x]da(G;x, y) = nyn−∆. Every subset of V (G) which induces a connected
subgraph in G, contributes a term xyn−∆ and by summing, we get the term
nxyn−∆.

Now we prove the converse. Let H be a graph with [x]da(G;x, y) = nyn−∆.
By Proposition 9, the order of H equals n. By Proposition 12, the degree
sequence of H is (∆,∆, · · · ,∆). Consequently, H is isomorphic to a ∆-regular
graph.

Lemma 22. Let G be a ∆-regular graph. A subset of V (G) of cardinality k

induces a component in G if and only if it contributes in da(G;x, y) a term
xky∆+n.

Proof. Every component of order k in a ∆-regular graph, contributes a term
with xky∆+n.

To prove the converse, let S be a subset of V (G) of cardinality k which
contributes in da(G;x, y) a term xky∆+n. For sake of contradiction, assume
that S is not a component. Hence, there is a vertex in S which is connected to
other vertices outside S. Let the maximum number of vertices connected to a
vertex in S from outside of S to be t. Hence S contributes in da(G;x, y) a term
xkyn+(∆−t)−t = xkyn+∆−2t, contradiction since t 6= 0. Consequently, t = 0 and
S contributes a component in G.

Lemma 23. For a ∆-regular graph G, the number of components with cardi-
nality k is = [xky∆+n]da(G;x, y).

Proof. From Lemma 22, every subset of V (G) with cardinality k, induces a
component in G if and only if this subset contributes in da(G;x, y) a term
xky∆+n. By summing the terms, the result follows.

Corollary 24. Let G be a connected ∆-regular graph. [xn]da(G;x, y) = y∆+n.

Proof. From Lemma 23, the result follows.

4.6 The double star graph

Definition 25. Let r and t be positive integers. The star graph denoted by Sr,t

is defined by the graph union Sr ∪ St and connecting the two centers of the two
stars.
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Proposition 26. A simple graph G is isomorphic to the double star Sr,t if and
only if

[x]da(G;x, y) =(r + t)yr+t+1 + yr+1 + yt+1 and

[xr+t+2]da(G;x, y) =yr+t+3, where r and t are positive integers.

Proof. First, we show that a graph G which is isomorphic to a double star Sr,t,
has the above properties in the proposition. Let G be of the form in Figure 3.

r0

r1

r2

r3

rr

t0

t1
t2

t3

tt

Figure 3: A double star graph

The subsets of V (G) with cardinality one which induce connected subgraphs
in G, can be partitioned into the following parts: The part {{r0}} in which {r0}
contributes the term xyt+1. The part {{t0}} in which {t0} contributes the term
xyr+1. The part {{r1}, {r2}, · · · , {rr}, {t1}, {t2}, · · · , {tt}} in which each set
contributes the term xyr+t+1 and by summing, we get the term (r+ t)xyr+t+1.

The set V (G) contributes the term xr+t+2yr+t+3.
Now we prove the converse. Let r and t be integers and H is a graph with

[x]da(G;x, y) =(r + t)yr+t+1 + yr+1 + yt+1 and

[xr+t+2]da(G;x, y) =yr+t+3.

By Proposition 9, the order of H equals r + t + 2. By Proposition 11,
H is connected. By Proposition 12, the degree sequence of H is (r + 1, s +
1, 1, 1, · · · , 1). Let the vertex with degree r+1 be r0 and the vertex with degree
t+ 1 be t0. Connect r0 with r + 1 vertices. If all those vertices connected to r0
are with degree one, then the graph will be disconnected which is contradiction.
Then r0 is connected to t0. By connecting the rest of the vertcies to t0, H is
reconstructed. Consequently, H is isomorphic to the double star graph Sr,t.
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4.7 The complete bipartite graph

Lemma 27. Let G be a simple graph. Let k3 be the number of the subsets which
induce connected subgraphs in G with order three. Let the number of connected
subgraphs in G with order three and size two be S3,2 and with order three and
size three be S3,3, then

k3 = S3,2 − 2S3,3.

Proof. Any induced connected subgraph in G with order three will be isomor-
phic either to a cycle or a path of order three. If the induced connected subgraph
in G with order three is a cycle then it will count three subgraphs which are
isomorphic to a path of order three.

Lemma 28. Let G be a ∆-regular simple graph. then

S3,2 = n

(

∆

2

)

.

Proof. The number of connected subgraphs in G with order three and size two
containing a specific vertex v as the common vertex between the two edges is
formed by choosing any two vertices from the neighbors is =

(

∆
2

)

. By multiplying
with the number of all vertices n, the result follows.

Lemma 29. Let G be a ∆-regular connected simple graph with order 2∆. G is
isomorphic to K∆,∆ if and only if k3 = n

(

∆
2

)

.

Proof. First, we show that if a graph G is isomorphic to K∆,∆ then k3 = n
(

∆
2

)

.
G is isomorphic to K∆,∆ then G has no cycles of order three. By Lemma 27

and Lemma 28, the result follows.

Now we prove the converse. By Lemma 27, k3 = S3,2 and S3,3 = 0. G is
free of cycles of order three. Any vertex v is adjacent to ∆ pairwise nonadjacent
vertices which have a degree ∆ and need to be adjacent to ∆− 1 other vertices
which are not adjacent to v. By constructing the graph, we obtain that G is
isomorphic to K∆,∆.

Proposition 30. A simple graph G is isomorphic to the complete bipartite
graph Kn,m if and only if

da(G;x, y) = nxyn +mxym + yn+m

n
∑

i=1

m
∑

j=1

(

n

i

)(

m

j

)

xi+jymin{2i−n,2j−m},

where n,m are positive integers.

Proof. First, we show that a simple graph G which is isomorphic to the complete
bipartite graph Kn,m, has the given defensive alliance polynomial. Let Kn,m be
of the form G(U ∪ W,E) where |U | = n, |W | = m and U,W are the parts of
Kn,m.

44



The non-empty subsets of V (G) which induce connected subgraphs in G,
can be partitioned into the following parts: The part containing the sets of
cardinality one from U in which each set contributes the term xyn and by
summing, we get the term nxyn. The part containing the sets of cardinality
one from W in which each set contributes the term mxym and by summing,
we get the term mxym. The part containing the sets of cardinality more than
one in which we choose subset of cardinality i from U and another subset of
cardinality j from W which contributes the term yn+m

(

xi+jymin{2i−m,2j−n}
)

and by summing, we get the term
yn+m

∑n

i=1

∑m

j=1

(

n
i

)(

m
j

)

xi+jymin{2j−m,2i−n}.
Now we prove the converse. Let n,m be positive integers, and H is a graph

with

da(H ;x, y) = nxyn +mxym + yn+m

n
∑

i=1

m
∑

j=1

(

n

i

)(

m

j

)

xi+jymin{2i−n,2j−m}.

By Proposition 9, the order of H equals n+m. By Proposition 10, the size of H
equals nm. By Proposition 11, H is connected. By Proposition 12, the degree
sequence of H is (n, n, · · · , n,m,m, · · · ,m). Partition V (H) into two sets W,U

where W contains all vertices with degree n and U contain all vertices of degree
m.

• Case 1: n 6= m, assume n > m. Note that [x2ym+2]da(G;x, y) = 0, since
this happens only if there is no edge between two vertices with degree
n. By counting the edges and joining the vertices from W to U , H is
isomorphic to Kn,m

• Case 2: n = m then H is regular. Note that:

k3 =[x3]da(G;x, 1)

=2n

(

n

2

)

.

Consequently, by Lemma 29, H is isomorphic to the complete bipartite
graph Kn,n.

4.8 The wheel graph

Definition 31. Let n be a positive integer larger than three. The wheel graph
denoted by Wn is defined by the graph join Cn +K1.

Proposition 32. A simple graph G is isomorphic to the wheel Wn if and only
if

[x]da(G;x, y) =nyn−2 + y and

[xn]da(G;x, y) =(n+ 1)yn+2 and

[xn+1]da(G;x, y) =yn+4, where n ≥ 3.
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Proof. First, we show that a graph G which is isomorphic to a wheel Wn has
the above properties in the proposition. Let G be of the form in Figure 4.

v0

v1

v2

v3 vn−1

vn

Figure 4: A wheel graph

The subsets of V (G) with cardinality one which induce connected subgraphs
in G, can be partitioned into the following parts: The part {{v0}} in which
{v0} contributes the term xy. The part {{v1}, {v2}, · · · , {vn}} in which every
set contributes the term xyn−2 and by summing, we get the term nxyn−2.

The set V (G) contributes the term xn+1yn+4. And if we delete any vertex
from V (G), we get a set which contributes the term xnyn+2 and by summing,
we get (n+ 1)xnyn+2.

Now we prove the converse. Let n be an integer, n ≥ 3, and H is a graph
with

[x]da(H ;x, y) =nyn−2 + y and

[xn]da(H ;x, y) =(n+ 1)yn+2 and

[xn+1]da(H ;x, y) =yn+4.

By Proposition 9, the order of H equals n + 1. By Proposition 11, H is
connected. By Proposition 12, the degree sequence of H is (n, 3, 3, · · · , 3). By
Proposition 14, the number of cut vertices is zero. Hence all the subgraphs
G \ {v} where v ∈ V (G), are all connected. Let v0 be the vertex with degree n.
The specific graph G \ {v0} is connected and with degree sequence (2, 2, · · · , 2)
which is isomorphic to the cycle graph Cn. By connecting the vertex v0 to every
vertex in Cn, H is constructed which is isomorphic to the wheel graph Wn.

4.9 The open wheel graph

Definition 33. Let n be a positive integer larger than two. The open wheel
graph denoted by W

′

n is defined by the graph join Pn + K1. This graph is
sometimes also known as Fan.
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Proposition 34. A simple graph G is isomorphic to the open wheel W
′

n if and
only if

[x]da(G;x, y) =2yn−1 + (n− 2)yn−2 + xy and

[xn]da(G;x, y) =3yn+1 + (n− 2)yn+2 and

[xn+1]da(G;x, y) =yn+3, where n ≥ 4.

Proof. First, we show that a graph G which is isomorphic to an open wheel W
′

n,
has the above properties in the proposition. Let G be of the form in Figure 5.

v0

v1

v2

v3 vn−1

vn

Figure 5: An open wheel graph

The subsets of V (G) with cardinality one which induce connected subgraphs
in G, can be partitioned into the following parts: The part {{v0}} in which {v0}
contributes the term xy. The part {{v2}, {v3}, · · · , {vn−1}} in which every set
contributes the term xyn−2 and by summing, we get the term (n − 2)xyn−2.
The part {{v1}}, {vn}} in which each set contributes the term xyn−1 and by
summing, we get 2xyn−1.

The set V (G) contributes the term xn+1yn+3.
Each of the subsets V (G) \ {v2}, V (G) \ {vn−1} and V (G) \ {v0} contributes

the term xnyn+1 and by summing, we get the term 3xnyn+1. Each subset
of cardinality n but not the previous, contributes the term xnyn+2 and by
summing, we get (n− 2)xnyn+2.

Now we prove the converse. Let n be an integer, n ≥ 4, and H is a graph
with

[x]da(H ;x, y) =2yn−1 + (n− 2)yn−2 + xy and

[xn]da(H ;x, y) =3yn+1 + (n− 2)yn+2 and

[xn+1]da(H ;x, y) =yn+3.

By Proposition 9, the order of H equals n + 1. By Proposition 11, H is con-
nected. By Proposition 12, the degree sequence of H is (n, 3, 3, · · · , 3, 2, 2). By
Proposition 14, the number of cut vertices is zero. Hence all the graphs G \ {v}
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where v ∈ V (G), are all connected. Let the vertex with degree n be v0. The spe-
cific subgraph G \ {v0} is connected and with degree sequence (2, 2, · · · , 2, 1, 1)
which is isomorphic to the path graph Pn. By connecting the vertex v0 to every
vertex in Pn, H is constructed which is isomorphic to the open wheel graph
W

′

n.

4.10 The friendship graph

Definition 35. Let n be a positive integer. The friendship graph denoted by Fn

is defined by the graph join nK2 +K1. This graph is also known as Windmill
graph.

Proposition 36. A simple graph G is isomorphic to the friendship Fn if and
only if

[x]da(G;x, y) =2ny2n−1 + y, where n is a positive integer.

Proof. First, we show that a graph G which is isomorphic to a friendship graph
Fn, has the above properties in the proposition. Let G be of the form in Figure
6.

v0

v1

v2

v3

v4

v2n−1

v2n

Figure 6: A friendship graph

The subsets of V (G) with cardinality one which induce connected subgraphs
in G, can be partitioned into the following parts: The part {{v0}} in which {v0}
contributes the term xy. The part {{v1}, {v2}, · · · , {v2n}} in which every set
contributes the term xy2n−1 and by summing we get the term 2nxy2n−1.

Now we prove the converse. Let n be a positive integer, and H is a graph
with

[x]da(H ;x, y) =2ny2n−1 + y.

By Proposition 9, the order of H equals 2n+ 1. By Proposition 12, the degree
sequence of H is (2n, 2, 2, · · · , 2). We construct the graph by first connecting
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by an edge the vertex with degree 2n to every other vertex. Second every other
vertex choose any arbitrary vertex not the one with degree 2n and connect
it with an edge to complete its degree. Hence the constructed graph H is
isomorphic to the friendship graph Fn.

4.11 The triangular book graph

Definition 37. Let n be a positive integer. The triangular book graph denoted
by Bn is defined by the graph join nK1 +K2.

Proposition 38. A simple graph G is isomorphic to the triangular book graph
Bn if and only if

[x]da(G;x, y) =2y + nyn, where n is a positive integer.

Proof. First, we show that a simple graph G which is isomorphic to a triangular
book graph Bn, has the above properties in the proposition. Let G be of the
form in Figure 7.

va vb

v2v1 v3 vn

Figure 7: A triangular book graph

The subsets of V (G) with cardinality one which induce connected subgraphs
inG, can be partitioned into the following parts: The part {{v1}, {v2}, · · · , {vn}}
in which every set contributes the term xyn and by summing, we get the term
nxyn. The part {{va}, {vb}} in which every set contributes the term xy and by
summing, we get 2xy.

Now we prove the converse. Let n be a positive integer, and H is a graph
with

[x]da(H ;x, y) =2y + nyn.

By Proposition 9, the order of H equals n+2. By Proposition 12, the degree
sequence of H is (n+ 1, n+ 1, 2, 2, · · · , 2). By connecting the two vertices with
degree n+1 to every other vertex, H is constructed which is isomorphic to the
triangular book graph Bn.
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4.12 The quadrilateral book graph

Definition 39. Let n be a positive integer. The quadrilateral book graph de-
noted by Bn,2 is defined by the graph join nK2 + k2.

Proposition 40. A simple graph G is isomorphic to the quadrilateral book
graph Bn,2 if and only if

[x]da(G;x, y) =2yn+1 + 2ny2n and

[x2]da(G;x, y) =ny2n+2 + (2n+ 1)yn+3 and

[x2n+1]da(G;x, y) =(2n+ 2)y2n+2 and

[x2n+2]da(G;x, y) =y2n+4, where n is a positive integer.

Proof. First, we show that a simple graph G which is isomorphic to a quadri-
lateral book graph Bn,2, has the above properties in the proposition. Let G be
of the form in Figure 8.

va vb

v1a v1b v2a v2b vna vnb

Figure 8: A quadrilateral book graph

The subsets of V (G) with cardinality one which induce connected subgraphs
inG, can be partitioned into the following parts: The part {{v1a}, {v1b}, {v2a}, {v2b},
· · · , {vna}, {vnb}} in which every set contributes the term xy2n and by summing,
we get the term 2nxy2n. The part {{va}, {vb}} in which every set contributes
the term xyn+1 and by summing, we get 2xyn+1.

The subsets of V (G) with cardinality two which induce connected subgraphs
inG, can be partitioned into the following parts: The part {{v1a, v1b}, {v2a, v2b}, · · · ,
{vna, vnb}} in which every set contributes the term x2y2n+2 and by summing, we
get the term nx2y2n+2. The part {{va, vb}, {va, v1a}, {va, v2a}, · · · , {va, vna}, {vb, v1b}, {vb, v2b},
· · · , {vb, vnb}} in which every set contributes the term x2yn+3 and by summing,
we get (2n+ 1)x2yn+3,

The set V (G) contributes the term x2n+2y2n+4. And if we delete any ver-
tex from V (G), we get a set which contributes the term x2n+1y2n+2 and by
summing, we get (2n+ 2)x2n+1y2n+2.

Now we prove the converse. Let n be a positive integer, and H is a graph
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with

[x]da(H ;x, y) =2yn+1 + 2ny2n and

[x2]da(H ;x, y) =ny2n+2 + (2n+ 1)yn+3 and

[x2n+1]da(H ;x, y) =(2n+ 2)y2n+2 and

[x2n+2]da(H ;x, y) =y2n+4 .

By Proposition 9, the order of H equals 2n+ 2. By Proposition 10, the size
of H equals 3n + 1. By Proposition 11, H is connected. By Proposition 12,
the degree sequence of H is (n + 1, n + 1, 2, 2, · · · , 2). By Proposition 14, the
number of cut vertices is zero. Let the two vertices with degree n+1 be va and
vb respectively. A subset of cardinality two which induces a connected subgraph
in G, and contains two vertices of degree two is the only subset of cardinality
two which contributes a term [x2y2n+2]. Then, the number of edges connecting
two vertices of degree two is [x2y2n+2]da(G;x, y) and equals n. The number of
the rest edges is 2n+1. But the number of edges which are incident to vertices
of degree two are necessary only 2n. Hence, the last edge is necessarily between
the two vertices of degree n + 1. At this point we have a graph like the one
in Figure 9 where the number in the vertices is its degree. The two vertices of

n+ 1 n+ 1

2 2 2 2 2 2

Figure 9: A quadrilateral book graph

degree n+1 need to be connected to n vertices of degree two. But a vertex with
degree n+1 will never be connected to two adjacent vertices of degree two, since
this will make this vertex of degree n + 1 a cut vertex which contradicts the
statement that H has no cut vertices. This means that every vertex of degree
n+1 will be connected to only non-adjacent vertices of degree two, which yields
the quadrilateral book graph H .

5 Attaching a vertex to a complete graph

Proposition 41. Let v0 be a vertex and n a positive integer. Let H be a simple
graph formed from Kn∪{v0} by joining some vertices to v0. Let V (H) \ {v0} =
R ∪ S where R = {r1, r2, · · · , rr}, r = |R| where R is the set of vertices in H

which are adjacent to v0 and S = {s1, s2, · · · , ss}, s = |S| where S is the set
of vertices in H which are not adjacent to v0. Let G be a simple graph. G is
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isomorphic to H if and only if

da(G;x, y) =(1 + xy2)da(Kr;x, y) + y da(Ks;x, y) + y da(Kr;x, y)da(Ks;x, y)

+ xyn+1−r + xy da(Kr;x, y)

s
∑

j=1

(

s

j

)

xjymin{2j,s+1} .

Proof. The subsets of V (G) with cardinality one which induce connected sub-
graphs in G, can be partitioned into the following parts: The part {{v0}} in
which {v0} contributes the term xyn+1−r.
The part containing the sets of cardinality i in the range of 1 ≤ i ≤ r formed
only from vertices in R in which each set contributes the term xiy2i−1 and by
summing, we get:

(

r

1

)

x1y1 +

(

r

2

)

x2y3 + · · ·+

(

r

r

)

xry2r−1

=

r
∑

i=1

(

r

i

)

xiy2i−1

=
1

y

(

r
∑

i=0

(

r

i

)

(

xy2
)i

− 1

)

=

(

1 + xy2
)r

− 1

y

= da(Kr;x, y).

The part containing the sets of cardinality i in the range of 1 ≤ i ≤ s arises
only from the vertices in S in which each set contributes the term xiy2i and by
summing, we get:

(

s

1

)

x1y2 +

(

s

2

)

x2y4 + · · ·+

(

s

s

)

xsy2s

=

s
∑

i=1

(

s

i

)

xiy2i

= y
1

y

(

s
∑

i=0

(

s

i

)

(

xy2
)i

− 1

)

= y

(

1 + xy2
)s

− 1

y

= y da(Ks;x, y).

The part containing the sets of cardinality i in the range of 2 ≤ i ≤ r + 1
results from {v0} and the vertices in R in which each set contributes the term
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xi+1y2i+1 and by summing, we get:

(

r

1

)

x2y3 +

(

r

2

)

x3y5 + · · ·+

(

r

r

)

xr+1y2r+1

=

r
∑

i=1

(

r

i

)

xi+1y2i+1

= xy2
1

y

(

r
∑

i=0

(

r

i

)

(

xy2
)i

− 1

)

= xy2
(

1 + xy2
)r

− 1

y

= xy2da(Kr;x, y).

The part containing the sets formed from subsets of R of cardinality i in the
range of 1 ≤ i ≤ r and subsets of S of cardinality j in the range of 1 ≤ j ≤ s in
which each set contributes the term xi+jy(r+s+1)+(i+j−1)−(r+s+1−i−j) and by
summing, we get:

y

(

r

1

)

x1y1
(

s

1

)

x1y1 + y

(

r

1

)

x1y1
(

s

2

)

x2y3 + · · ·+ y

(

r

1

)

x1y1
(

s

3

)

x3y5

+ y

(

r

2

)

x2y3
(

s

1

)

x1y1 + y

(

r

2

)

x2y3
(

s

2

)

x2y3 + · · ·+ y

(

r

2

)

x2y3
(

s

3

)

x3y5

...

+ y

(

r

r

)

xry2r−1

(

s

1

)

x1y1 + y

(

r

r

)

xry2r−1

(

s

2

)

x2y3 + · · ·

+ y

(

r

r

)

xry2r−1

(

s

s

)

xsy2s−1

= y

r
∑

i=1

(

r

i

)

xiy2i−1
s
∑

j=1

(

s

j

)

xjy2j−1

= y
1

y

(

r
∑

i=0

(

r

i

)

(

xy2
)i

− 1

)

1

y





s
∑

j=0

(

s

j

)

(

xy2
)j

− 1





= y

(

1 + xy2
)r

− 1

y

(

1 + xy2
)s

− 1

y

= y da(Kr;x, y) da(Ks;x, y).

The part containing the sets formed from v0 and subsets of R of cardinality
i in the range of 1 ≤ i ≤ r and subsets of S of cardinality j in the range of
1 ≤ j ≤ s in which each set contributes the term xi+j+1y2i+min{2j,s+1} and by
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summing, we get:

xy

(

r

1

)

x1y1
(

s

1

)

x1ymin{2,s+1} + xy

(

r

1

)

x1y1
(

s

2

)

x2ymin{4,s+1} + · · ·

+ xy

(

r

1

)

x1y1
(

s

s

)

xsymin{2s,s+1}

+ xy

(

r

2

)

x2y3
(

s

1

)

x1ymin{2,s+1} + xy

(

r

2

)

x2y3
(

s

2

)

x2ymin{4,s+1} + · · ·

+ xy

(

r

2

)

x2y3
(

s

s

)

xsymin{2s,s+1}

...

+ xy

(

r

r

)

xry2r−1

(

s

1

)

x1ymin{2,s+1} + xy

(

r

r

)

xry2r−1

(

s

2

)

x2ymin{4,s+1} + · · ·

+ xy

(

r

r

)

xry2r−1

(

s

s

)

xsymin{2s,s+1}

= xy

r
∑

i=1

(

r

i

)

xiy2i−1
s
∑

j=1

(

s

j

)

xjymin{2j,s+1}

= xy
1

y

(

r
∑

i=0

(

r

i

)

(

xy2
)i

− 1

)

s
∑

j=1

(

s

j

)

xjymin{2j,s+1}

= xy

(

1 + xy2
)r

− 1

y

s
∑

j=1

(

s

j

)

xjymin{2j,s+1}

= xy da(Kr;x, y)

s
∑

j=1

(

s

j

)

xjymin{2j,s+1}.

Now we prove the converse. Let r and s be integers and H is a graph with
the defensive alliance polynomial,

da(H ;x, y) = (1 + xy2)da(Kr;x, y) + y da(Ks;x, y) + y da(Kr;x, y)da(Ks;x, y)

+xyn+1−r + xy da(Kr;x, y)
s
∑

j=1

(

s

j

)

xjymin{2j,s+1}.

By Proposition 9, the order of H equals r+s+1. Let r+s = n. By Proposition
12, the degree sequence of H consist of n r times then (n − 1) s times then r
one time: (n, n, · · · , n, n − 1, n − 1 · · · , n − 1, r). By constructing first all the
vertices with degree n. Note that no term left of the form ax2y(r+s+1)+1−(r−1),
hence no vertex with degree n− 1 is connected to the vertex of degree r. Hence
we choose arbitrary s vertices and connect them to each other.
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6 The distinctive power of the defensive alliance

polynomial

The authors in [Carballosa et al., 2014], showed how the alliance polynomial
can characterize some classes of graphs which were not characterized by other
well-known graph polynomials like the tutte polynomial, the domination poly-
nomial, the independence polynomial, the matching polynomial, the bivariate
polynomial, and the subgraph component polynomial.

As a generalization for the alliance polynomial, the defensive alliance polyno-
mial has at least the same power. In this section, we present two pairs of graphs
that cannot be characterized by the alliance polynomial but can be character-
ized by the defensive alliance polynomial.

G1 G2

Figure 10: First pair of graphs

The alliance polynomial of the two graphs in the Figure 10 is:

A(G1;x) = A(G2;x) = x10 + 7x9 + 37x8 + 63x7 + 4x6 + 4x5.

The defensive alliance polynomial of G1:

da(G1;x, y) =x8y10 + 2x7y9 + 6x7y8 + x6y9 + 14x6y8 + 7x6y7

+ 2x5y9 + 10x5y8 + 16x5y7 + 2x4y9 + 4x4y8 + 17x4y7

+ 2x3y8 + 14x3y7 + x2y8 + 9x2y7 + 4xy6 + 4xy5.

The defensive alliance polynomial of G2:

da(G2;x, y) =x8y10 + 3x7y9 + 5x7y8 + x6y9 + 15x6y8 + 7x6y7

+ x5y9 + 11x5y8 + 15x5y7 + 2x4y9 + 2x4y8 + 19x4y7

+ 3x3y8 + 13x3y7 + x2y8 + 9x2y7 + 4xy6 + 4xy5.

Another pair of graphs:
The alliance polynomial of the two graphs in the Figure 11 is:

A(G3;x) = A(G4;x) = 8x9 + 26x8 + 20x7 + 11x6 + 2x5 + x4.
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G3 G4

Figure 11: Second pair of graphs

The defensive alliance polynomial of G3 is:

da(G3;x, y) =x8y9 + 3x7y9 + 2x7y8 + 9x6y8 + x6y7 + x5y9

+ 7x5y8 + 3x5y7 + x5y6 + 2x4y9 + 3x4y8 + 5x4y7

+ 2x4y6 + x3y9 + 4x3y8 + 5x3y7 + x3y6 + x2y8

+ 4x2y7 + 4x2y6 + 2xy7 + 3xy6 + 2xy5 + xy4.

The defensive alliance polynomial of G4 is:

da(G4;x, y) =x8y9 + 3x7y9 + 2x7y8 + 2x6y9 + 7x6y8 + x6y7

+ x5y9 + 7x5y8 + 3x5y7 + x5y6 + 5x4y8 + 5x4y7

+ 2x4y6 + x3y9 + 4x3y8 + 5x3y7 + x3y6 + x2y8

+ 4x2y7 + 4x2y6 + 2xy7 + 3xy6 + 2xy5 + xy4.
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