HELLY-TYPE THEOREMS IN R¢ FOR INFINITE
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MARILYN BREEN

ABSTRACT. Let X be a family of sets in R%. For each countable
subfamily {Ky;, : m > 1} of X, assume that N{Km : m > 1} is
consistent relative to staircase paths and starshaped via staircase
paths, with a staircase kernel that contains a convex set of dimension
d. Then N{K : K in X} has these properties as well.

For n fixed, n > 1, an analogous result holds for sets starshaped via
staircase n-paths.

1. INTRODUCTION

We begin with a short introduction to the problem. Precise definitions
for corresponding concepts appear in Section 2.

Many results in convexity that involve the usual notion of visibility via
straight line segments have interesting analogues that instead use the idea
of visibility via staircase paths. For example, the familiar Kranosel’skii
theorem [11] says that, for S a nonempty compact set in the plane, S
is starshaped via segments if and only if every three points of S see via
segments in S a common point. In the staircase analogue [5], for § a
nonempty simply connected orthogonal polygon in the plane, S is staircase
starshaped if and only if every two points of S see via staircase paths in
S a common point. Moreover, in an interesting study involving median
graphs as well as median polyhedra in the rectilinear space R?, Chepoi
[7] has generalized the planar result to any finite union of boxes in R?
whose corresponding intersection graph is a tree. As he observes, every
simply connected orthogonal polygon may be expressed as such a union.
Appropriately, the staircase kernel of such a set will be staircase convex [4,
Theorem 1].

Similarly, N. A. Bobylev [1] has established the following Helly-type
theorem for starshaped sets: For X a family of compact sets in R?, if every
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d + 1 (not necessarity distinct) members of X have an intersection that is
nonempty and starshaped (via segments), then the intersection of all the
sets is nonempty and starshaped. In (3], a staircase analogue of Bobylev’s
result is obtained for a family of orthogonal polytopes in R4, imposing the
requirement that our polytopes be finite unions of boxes whose intersection
graphs are trees. For such a family X, if every d + 1 (not necessarily
distinct) members of X meet in a (nonempty) staircase starshaped set,
then S =N{K : K in X} is nonempty and staircase starshaped.

Another familiar theorem, one by Victor Klee [10], establishes the fol-
lowing Helly-type theorem for countable intersections of convex sets : Let
€ be a family of convex sets in R?. If every countable subfamily of € has
nonempty intersection, then N{C : C in €} is nonempty. Furthermore, re-
sults in [2] provide the following analogue of Klee’s theorem for sets that
are starshaped via segments: Let k and d be fixed integers, 0 < k < d, and
let X be a family of sets in R%. If every countable subfamily of K has as its
intersection a starshaped set whose kernel is at least k-dimensional, then
all members of X have such an intersection.

In case d is 2 (see [6, Theorem 1]), we have the following staircase
analogue: Let X be a family of simply connected sets in the plane, and
let k£ be 0, 1, or 2. For every countable subfamily {K,, : m > 1} of X,
assume that N{K,, : m > 1} is starshaped via staircase paths and that
its staircase kernel contains a convex set of dimension at least k. Then
N{K : K in X} has these properties. In this paper, we replace the notion
of a simply connected set with a weaker requirement that we call consistent
relative to staircase paths, allowing us to obtain a d-dimensional analogue of
an earlier planar result. Since planar sets satisfying the new condition need
not be simply connected, the new result also provides a small improvement
for the planar case.

2. DEFINITIONS AND NOTATION

This section includes definitions and comments, some of which appear
in [3]. A set B in R? is called a bor if and only if B is a convex polytope
(possibly degenerate) whose edges are parallel to the coordinate axes. A
nonempty set S in R is an orthogonal polytope if and only if S is a connected
union of finitely many boxes. An orthogonal polytope in R? is an orthogonal
polygon. Let A be a simple polygonal path in R? whose edges are parallel to
the coordinate axes. That is, let A be a simple rectilinear path in R¢. For
points x and y in S, the path A is called an « — y path if and only if A lies
in S and has endpoints z and y. The z — y path A is a staircase path (or
simply a staircase) if and only if, as we travel along A from z to y, no two
edges of X\ have opposite directions. That is , for each standard basis vector
ei, 1 <1 < d, either each edge of A parallel to e; is a positive multiple of e;
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or each edge of A parallel to e; is a negative multiple of ¢;. For n > 1, the
staircase path A is called a staircase n-path if and only if A is a union of
at most n edges. Staircase paths A and p are compatible if and only if no
edge of A is a negative multiple of an edge of p.

For points = and y in a set .S, we say x sees y (z is visible from y) via
starrcase paths if and only if S contains an z — y staircase path. A set S
is staircase convez (orthogonally convez) if and only if, for every pair of
points x,y in S, x sees y via staircase paths. Similarly, a set S is staircase
stershaped (orthogonally starshaped) if and only if, for some point p in S, p
sees each point of S via staircase paths. The set of all such points p is
the staircase kernel of §, Ker S. Analogous definitions hold for staircase
n-paths.

Throughout the paper, we will use the following terminology and nota-
tion. We say that a planar set S is simply connected if and only if, for every
simple closed curve § C S, the bounded region determined by & lies in S.
If 6 is a simple path containing points z and y, then A(z,y) will denote
the subpath of A from z to y (ordered from z to y). For convenience, any
vector parallel to a standard basis vector in R? will be a coordinate vector.
Readers may refer to Valentine [13], to Lay [12], to Dangzer, Griinbaum,
Klee [8], and to Eckhoff [9] for discussions concerning Helly-type theorems,
visibility via straight line segments, and starshaped sets.

3. THE RESULTS

The following definitions will be helpful.

Definition 1. Let K be a set in R. We say that K is consistent relative
to staircase paths if and only if K satisfies this property: For every pair of
points v, w for which 9% is a coordinate vector in K , whenever v and w
see a common point p of K via compatible staircase n-paths in K for some
n 2> 1, then each point of [v, w] sees p via a staircase n-path in K.

Comments:

(1) Observe that for points v, w and p described in Definition 1 above,
any two staircase paths from points of [v, w] to p will be compatible.

(2) In Figure 1 below, points u and w see point p via staircase 2-paths
in set K. However, such paths cannot be compatible.

(3) It is easy to see that every simply connected set in the plane will
be consistent relative to staircase paths. However, sets that are
consistent relative to staircase paths need not be simply connected,
as Example 1 below demonstrates.

Example 1. Let K be an orthogonal polygon bounded by the bound-
aries of two squares in Figure 1. The set K is consistent relative to staircase
paths and is starshaped via staircase paths. (The staircase kernel comprises
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four rectangular regions, darkly shaded in the figure.) However, K certainly
is not simply connected.

FiGuRre 1

Definition 1 above allows us to obtain d-dimensional analogues of some
planar results in [6]. We begin with an important lemma.

Lemma 1. Let X be a family of sets in R, with points p and s in
N{K : KinX}. Let n be a fixed integer, n > 1. For each countable
subfamily of X, assume that the corresponding intersection is consistent
relative to staircase paths and that the intersection contains a staircase
n-path from p to s. Then N{K : K in X} contains such a path as well.

Proof. We modify a planar argument from [6, Lemma 1], using induction
on n. If n = 1, the result is immediate. Inductively, assume that the lemma
is true for natural numbers j, 1 < j < k, to prove for k. Let J represent the
family of all countable intersections of members of X. Certainly J satisfies
our hypotheses. Of course, every staircase path from p to s employs vectors
using exactly the same directions. Since the collection of directions is finite,
for one of these directions, say in the direction of the basis vector e,, every
countable intersection of members of J contains a staircase k-path from p
to s whose first vector is in the direction of e;. Then for each J in J, there
is a family of staircase k-paths A from p to s whose associated first segment
[p, t()\)] is in the direction of ey, p # t(A). Let T(J) represent the associated
collection of points £(A).

We assert that each set T'(J) is convex: For t and ¢’ in T'(J), t and ¢’ see
s via compatible staircase (k—1)-paths in J. By hypothesis, J is consistent
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relative to staircase paths. Hence each point u of [¢,t'] sees s via such a
path, and [p, u| serves as the first vector in a staircase k-path from p to s
in J. That is, T'(.J) is convex. Moreover, using our earlier comments, every
countable collection of sets T'(J), J in J, will have a nonempty intersection.
Thus we may apply Klee’s theorem {10} to conclude that N{7'(J) : J in J}
is nonempty.

Select ¢y in N{T(J) : J in d}. For every J in J, J contains a staircase
k-path from p to s having first segment [p,t;]. Then for every J in g,
J contains a staircase (k — 1)-path from #3 to s. Using our induction
hypothesis, N{K : K in X} contains a staircase (k — 1)-path from ¢y to s.
Let 6(to, s) represent such a path. Then [p, t5]Ud(to, s) is a staircase k-path
from p to s in N{K : K in X}. The lemma holds for k and, by induction,
holds for every integer n > 1, finishing the proof. O

Corollary 1. Let X be a family of sets in R?, with points p and s
in {K : K in X}. For each countable subfamily of X, assume that the
corresponding intersection is consistent relative to staircase paths and that
the intersection contains a staircase path from p to s. Then N{K : K in X}
contains such a path as well.

Proof. 'The proof follows the argument in [6, Corollary] and is included for
completeness. We use a contrapositive argument. Suppose that N{K :
K in X} contains no staircase path from p to s. Then for every n >
I, "{K : K in X} contains no staircase n-path from p to s. Further-
more, using Lemma 1, there is a countable subfamily X,, of X such that
M{K : K in X} contains no staircase n-path from p to s. Thus N{K :
K in X, forsome n > 1} is a countable intersection of members of X
containing no staircase p — s path. The contrapositive of the statement
establishes the result. O]

Both Lemma 1 and its corollary fail if we delete the requirement that
countable intersections of members of K be consistent relative to staircase
paths. Consider the following example, adapted from [6, Example 1].

Example 2. For every real number r, let (r,0) be the associated point
on the z-axis, and let K, = R2~ {(r,0)} . Certainly countable intersections
of members of X are not consistent relative to staircase paths. For example,
letting v = (=v/5,1) , p = (=2,1) , w = (—v/2,1) , s = (1,—1) , the set
N{K, : r rational} contains a staircase 2-path from v to s and a staircase
2-path from w to s but no staircase 2-path from p to s. It is easy to see that
every countable intersection of members of X contains a staircase 3-path
from p to s. However, p and s lie in distinct components of N{ K. : r real},
so N{K, : r real}, contains no p — s path at all.

The following easy proposition from [6, Proposition 1] will be helpful.
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Proposition 1. Let X be any family of sets in R¢. If every countable
intersection of members of X has a nonempty interior, then N{K : K in X}
has a nonempty interior as well.

We are ready for our first theorem.

Theorem 1. Let X be a family of sets in R?. For each countable
subfamily {K,, : m > 1} of X, assume that N{K,, : m > 1} is consistent
relative to staircase paths, that N{ K, : m > 1} is starshaped via staircase
paths, and that the corresponding staircase kernel contains a convex set of
dimension d. Then N{K : K in X} has these properties as well.

Proof. Using Lemma 1, it is easy to see that N{K : K in X} is consistent
relative to staircase paths. The proof will show that the other proper-
ties hold. Since countable intersections of members of X have nonempty
interiors, by Proposition 1, N{K : K in X} has nonempty interior, too.
Let S = N{K : K in X} # @. To establish the theorem, we modify a
strategy used by Bobylev [1], employed in [6]. Let J represent the family
of all countable intersections of members of X. For each J, in g, define
M, = {z : z in J,,T sees via staircase paths in J, each point of S}. Let
M represent the family of all the M, sets.

We will show that each countable intersection of members of M has
nonempty interior, as does N{M, : M, in M}. First we observe that, for
any countable subfamily {M,, : m > 1} of M and corresponding subfamily
{IJm :m > 1} of 3, KerN {J : m > 1} €T N{M,, : m > 1}. Let 2
belong to Ker N {J,, : m > 1} # @. Then z sees via staircase paths
in N{Jy : m > 1} each point of S. Hence for each m > 1, z sees via
staircase paths in J,, each point of S, so z € N{M,, : m > 1}. That is,
KernN{Jy :m > 1} CN{My, : m > 1}. Since KerN {J, : m > 1}
has nonempty interior, so does N{M,, : m > 1}, and by Proposition 1,
N{M : M in M} has nonempty interior, too, the desired result.

Finally, we observe that N{M : M in M} = Ker S. To see that N{M :
M in M} C Ker S, let p belong to N{M : Min M} C S and let s belong to
S. For each countable intersection J, of members of X, = belongs to M,.
That is, z sees point s via staircase paths in J,. Since every countable
intersection J, of members of X contains a staircase path from p to s, by
Corollary 1, N{K : K in X} contains such a staircase, too. This holds for
every sin S,sop € Ker S. It is easy to see that the reverse inclusion holds
as well, and the sets are equal. We conclude that Ker S is nonempty and
contains a convex set of dimension d, finishing the proof. O

Replacing staircase paths with staircase n-paths for some fixed n, n > 1,
we have the following analogue of Theorem 1.
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Theorem 2. Let X be a family of sets in R%, and let n be a fixed
integer, n > 1. For each countable subfamily {K,, : m > 1} of X, assume
that N{K, : m > 1} is consistent relative to staircase paths, that N{ Ky, :
m > 1} is starshaped via staircase n-paths, and that the corresponding
staircase kernel contains a convex set of dimension d. Then N{K : K in X}
has these properties as well.

Proof. The proof follows the argument in Theorem 1, using Lemma. 1 in-
stead of Corollary 1. %

Furthermore, it is easy to see that Theorems 1 and 2 yield analogous
results for sets whose intersections are convex via staircase paths and for
sets whose intersections are convex via staircase n-paths.

Finally, [6, Example 2] demonstrates that we cannot replace countable
with finite in Theorem 1, even when finite intersections of members of X
are staircase convex orthogonal polygons.
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