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Abstract: M. Klei¢ et al. characterized graphs G; and G5 for which
the crossing number of their Cartesian product G1[JG, equals one or
two. In this paper, their results are extended by given the necessary
and sufficient conditions for all pairs of graphs Gy and G5 for which
the crossing number of their Cartesian product G;[JG5 equals three,
if one of the graphs G; and G5 is a cycle.
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1 Introduction

All graphs considered here are simple, undirected and are also connected.
A drawing of a graph G = (V, E) is a mapping ¢ that assigns to each vertex
in V a distinct point in the plane and to each edge uv in E a continuous
arc (i.e., a homeomorphic image of a closed interval) connecting ¢(u) and
#(v), not passing through the image of any other vertex. For simplicity,
we impose the following conditions on a drawing: (a) no three edges have
an interior point in common, (b) if two edges share an interior point p,
then they cross at p, and (c) any two edges of a drawing have only a finite
number of crossings {common interior points). The crossing number, cr(G),
of a graph G is the minimum number of edge crossings in any drawing of
G. Let D be a drawing of the graph G, we denote the number of crossings
in D by erp(G). It is easy to see that a drawing with minimum number of
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crossings (an optimal drawing) is always a good drawing, meaning that no
edge crosses itself, no two edges cross more than once, and no two edges
incident with the same vertex cross.

Determining the crossing numbers of graphs is a notorious problem in
Graph Theory, as in general it is quite easy to find a drawing of a sufficiently
“nice” graph in which the number of crossings can hardly be decreased,
but it is very difficult to prove that such a drawing indeed has the smallest
possible number of crossings. In fact, Garey and Johnson [1] have proved
that in general the problem of determining the crossing number of a graph
is NP-complete (the reader can also refer to two results on complexity of
the crossing number of graphs in (2,3], respectively). At present, exact
values are known only for very restricted classes of graphs. For more about
crossing number, see [4] and the references therein.

The Cartesian product G10G; of graphs G; and G, has vertex set
V(Gy) x V(G3) and edge set E(G10Gs) = {(z1, 11 )(x2,y2)|z1 = 22 and
viy2 € E(G2) or y1 = yp and w122 € E(G))}. Let C,, and P, be the cycle
and the pa.th of length n, respectively, and let S,, denote the star K ,. Let
Q, Fy, Fy, F3, H, J, K be the seven graphs depicted in Figure 1, respectively.
We denote by G the subdivision of G. The length of the shortest cycle
in a graph is called the girth of G and is denoted by ¢g(G). If G has no
cycle, then g(G) = oo. For graphical notation and terminology without
explanation in this paper, we refer the reader to [5].

K- <L,
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Figure 1: The special graph Q, Fy, Fy, F3, H, J, K

M. Behzad and S. E. Mahmoodian [6] started to characterize graphs
G, and G, for which their Cartesian product G;[0G, is planar. M. Kles¢
et al. [7-8] characterized graphs G; and G, for which the crossing number
of their Cartesian product G31[JG2 equals one or two. More precisely, they
obtain the following results in [8] for value two.

Theorem A. Let Gy and G, be connected graphs and let G, is isomorphic
to a cycle C,, n > 3. Then cr{(G100G,) = 2 if and only if one of the



following conditions holds:

a) Gy = C,; and G, is S3 or S§,

b) Gy = C3 and G is one of Sy, SY, H, and H®.

In this paper, the above result is extended by given the necessary and
sufficient conditions for graphs G; and G, for which the crossing number
of their Cartesian product G;[JG2 equals three, if one of the graphs G
and G is a cycle.

2 Preliminary results
Lemma 1([9]). Let T be a tree and n > 1. Then, for d, = degr(v),

er(S,0T) = > er(Kid,n)-
vEV(T),d,>2

Lemma 2. cor(C300F) = er(C30F,) = 3 and CT(C';DFg) > 4.

Proof. Both F} and F; contain C3 as a subgraph and therefore, the
Cartesian products of them with the cycle C3 contain C3[1C5 as a sub-
graph and cr(C30C3) = 3, see [10]. This implies that cr(C30F) > 3
and er(C300F;) > 3. The reverse inequalities follow from two drawings in
Figures 2 and 3.

It is not difficult to verify that the graph P,[1F: contains a subdivi-
sion of the graph C300C3 as a subgraph. This confirms that cr(P,0F) >
er(C30C3) = 3. As the graph C3[F3 contains the graph Po[1F} as a sub-
graph, its crossing number is at least three. Let C%, i = 0,1,2, denote
the 3-cycle in the i-th copy F} of C3(0F;. Assume now that there is a
good drawing D of C300F; with only three crossings. Then, for any edge
e € E(C30F3) and e g E(C} UC3 UC3), there is no crossing appearing on
the edge e. Otherwise, the removing of the edge e results in the drawing
with at most two crossings, this contradicts the fact that C3(JFs — e con-
tains a subgraph homeomorphic with C3[0Cs or Po[0F3 and cr(P00F;) >
er(C3[0C3) = 3. Therefore, erp{Ca0F3) = erp(CYUCZUCE). As D is
a good drawing, the three edges of the 3-cycle Ci do not cross each other
for any i = 0,1, 2 and crp(Cg,Céc) is an even number, [,k = 0,1, 2. Hence,
erp{Csl0F3) = erp(C UCE U C3) > 4, a contradiction. This completes
the proof.

Lemma 3. or(C30K) = or(C30K*) = 3.

Proof. It follows from Lemma 1 and the fact that er(K; 23) = cr(K33) =
1 that er(P,0K) > 3. The graph C3[0K contains P,[1K as a subgraph, this
implies that er{C3[0K) > 3. On the other hand, the drawing of the graph
C3UJK® in Figure 4 shows that er(C300K*) < 3. Note that C3LIK* con-
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Figure 2: The graph C30F; with Figure 3: The graph C300F; with
three crossings three crossings

tains a subgraph homeomorphic with C30K,, it has cr(C30K) < or(C30K?),
the proof is done.

Figure 4: The graph C3[1K* with three crossings

Lemma 4. cr(C30J) = er(C30J%) = 3.

Proof. The drawing of the graph C3(1J* in Figure 5 implies that
er(C30J*) < 3. Note that cr(Ki24) = cr(K3z4) = 2. The reverse in-
equality follows from a similar argument to that used in Lemma 3 and the
details are omitted.

Figure 5: The graph C3(JJ* with three crossings

3 Main result

Theorem 1. Let Gy and G, be connected graphs and let Gy is isomorphic
to a cycle C,,. Then cr(G100G3) = 3 if and only if Gy = C3 and G; is one
of C3, Fy, F5, J, J*, K, and K°.



Proof. If Gy = C3 and G5 is one of C3, Fy, Fs, J, J* K, and K¢,
then it follows from [10] and Lemma 2,3,4 that er(G10G;) = 3. In order
to prove the converse we consider two cases.

Case 1. ¢(Ga) < +o0.

Both G} and G do not contain a cycle of length more than three, oth-
erwise the graph G;0G> contains C31Cy4 or its subdivision as a subgraph
and cr(C300Cy) = 4, see [10]. This enforces that G is Cj.

The graph G, contains exactly one cycle of length three. Otherwise, let
C’, C" be two different cycles of length three in G,. If [V(C')NV(C”)| = 2,
then G5 contains a cycle of length more than three, a contradiction. If
V(C') nV(C”)| = 1, then G100G> contains two subgraphs C3[0C3; with
exactly one common 3-cycle. Consider a good drawing, the edges of the
common 3-cycle do not cross each other, thus, er(G10G2) > 2¢r(C30C3) =
6, a contradiction. If |V(C')NV(C")| = 0, then G;00G, contains two edge-
disjoint subgraphs C300C3, this implies that or(G100G2) > 2¢r(C50CS) =
6, a contradiction again.

The degree of vertices of G2 are less than three except for that in a
cycle, otherwise the graph G;[JG. contains two edge-disjoint subgraphs
C3[0C3; and C300S3. Note that or{C300C3) = 3 and or(C3[1S3) = 1, see
(10,11]. Hence, cr(G10G,) > 4, a contradiction.

The degree of vertices in a cycle are less than four, otherwise the graph
G10G2 contains C300Q as a subgraph and er(G10Q) = 4, see [12].

The previous analysis, together with Lemma 2, implies that G2 must
be one of C3, Fy, F,.

Case 2. g(G2) = 0.

As er(C,0P,,) = 0 for all m > 1,n > 3, the condition cr(G1[0G,) = 3
enforces that the graph G must contain a vertex of degree more than two.
Hence, the graph G, must be a tree other than a path. Moreover, G; is
Ca or Cy, because cr(C,[0S3) > 4 for n > 5, see [11]. The graph G does
not contain a vertex of degree more than four, otherwise the graph G{0G>
contains PaL1S5 as a subgraph and er(P,[1S5) = 4, see [13].

Consider first the graph G; = Cj. The graph G, does not contain a ver-
tex of degree more than three, because er(C4[18,) = 4, see [14]. The graph
G contains exactly one vertex of degree three, otherwise C4[1G5 contains
a subgraph homeomorphic to the graph C4{JH with crossing number four,
see [15]. Hence, the graph G2 must be the graph S3 or S¢. On the other
hand, note also that cr(C400S3) = cr(C405%) = 2 by Theorem A. The
contradiction enforces that the graph G can’t be Cy.

Consider now the graph G; = C3. It is clear that C3[JG, contains
Py[1Gy as a subgraph. Let G2 has n; vertices of degree 4, it follows from
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er(P0G) = Y omal 5115 ) (3.1)

i>2
The condition cr(C3[0G2) = 3 enforces that A(Gq) < 4 and G» contains
at most one vertex of degree four, otherwise cr(C30G2) > cr(P0G?) > 4
by equation (3.1).

Assume first that A(G2) = 4. Then the graph G2 has one and only
one vertex of degree three. Because, if the degree of all vertices but the
maximum degree vertex of G2 are at most two, then G2 is the graph Sy
or §¢ and cr(Cs[18y) = er(C35¢) = 2 by Theorem A. If there are at
least two vertices of degree three, then cr{C301G,) > er(P[0G:) > 4 by
equation (3.1). Every such graph is homeomorphic to the graph J and
er(C300G3) = 3, see Lemma 4.

Assume now that A(Gz) = 3. Then the graph G, contains at most
three vertices of degree three, otherwise cr(C30G2) > cr(P0G2) > 4
by equation (3.1). Every connected graph with three vertices of degree
three is homeomorphic to the graph K and in this case ¢r(Cs00G>) = 3.
As every connected graph with less than three vertices of degree three is
homeomorphic to the graph S3 or H and cr(C300G2) < 2, see [8], the proof
is done.
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