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Abstract

Let K, g,,....9. be a complete n-partite graph with partite sets of
sizes g; for 1 < ¢ < n. A complete n~-partite is balanced if each partite
set has g vertices. In this paper, we will solve the problem of finding a
maximum packing of the balanced complete n-partite graph, n even,
with edge-disjoint 5-cycles when the leave is a 1-factor.

1 Introduction

Let H be a simple graph and G a set of simple graphs. An (H, G)-packing
is a pair (X,B) where X is the vertex set of H and B is a collection of
subgraphs (called blocks) of H, such that each block is isomorphic to a
graph of G, and each edge of H is contained in at most one blocks of B. If
G contains a single graph G, we speak of an (H, G)-packing.

The leave L of an (H, G)-packing (X, B) is the subgraph induced by the
set of edges of H that do not occur in any block B € B. For fixed H and G,
an (H, G)-packing (X, B) is called mazimum if it has the minimum leave
L, a leave with minimum number of edges, among all (H, G)-packings. If
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the leave of an (H, G)-packing is null, then such a packing is maximum,
and referred to as an (H, G)-design.

Let Ky, g,,....9. D€ a complete n-partite graph with partite sets of sizes g;
for 1 <1 < n. A complete n-partite graph is balanced if each partite set has
g vertices, which is denoted by K, (g). A (Ku, juz,...,ues G)-packing is said to
be a group divisible packing (each partite set is called a group), written as a
G-GDP of type {uy,uz,...,us}. The multiset {ug,uz,...,u:} is called the
group type (or type) of the GDP. For simplicity, we will use an “exponential”
notation to describe group types: type gi’g5° - grr indicates that there
are n; groups of size g;. A (Ky, u,,.. u. G)-design is often said to be a
group divisible design, denoted by G-GDD of type {ui,uz,...,u}. We
always write G-MGDP instead of maximum G-GDP.

When G is Cg, a cycle of length k, the existence problem for Cy-GDDs
of type g™ has been studied for more than 40 years. The necessary and
sufficient conditions have been determined for n € {3,4,5} [1, 2]. For
general n, the spectrum has also been determined for k = 3 [12]; k = 5 [5];
k € {4,6,8} [9]; prime k > 7 [15]; k twice or thrice a prime [19, 20] and
prime square [21, 22]. For recent progress on Cg-GDDs, the readers may
refer to [7, 17].

However, if we turn to the Cix-MGDPs of type g", relatively little is
known. The problem has been solved only for k£ = 3 [6, 13, 25|, k = 4
[3, 4] and k = 6 [11]. For the case of k = 5, some partial solutions to this
problem have been obtained. The existence problem for C5-GDDs of type
g™ has been completely solved by Billington et al. [5].

Lemma 1 [5] There exists a C5-GDD of type g™ if and only if n > 3,
g(n—1)=0 (mod2) and n(n—1)g? =0 (mod 10).

Cavenagh et al. [10] considered the existence problem for C5-GDDs of
type g2xl.

Lemma 2 [10] There exists a C5-GDD of type g?z! if and only if g/3 <
<29, g—2z=0 (mod?2), and g(g+2z) =0 (mod 5).

For two graphs G and H, the notation G U H represents the union of
graphs G and H without common vertices. We give one possible leave of
a C5-MGDP of type g™ in Table 1 in which the rows and the columns are
indexed by congruence classes of n and g modulo 10. Here F' is a 1-factor,
F; denotes a graph on gn vertices with gn/2 + i edges and each vertex has
odd degree, and 2Cj5 represents two Cg3 with one vertex in common.

Rosa and Zndm [18] first discussed the Cs-packing problem and showed
that a C5-MGDP of type 1* with leave given in Table 1 always exists.
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Lemma 3 [18] There exists a C5-MGDP of type 1™ with leave L in Table
1 for each integer n > 3.

Huang et al. [14] investigated the case of g > 1 and determined the
leave of a C5-MGDP of type g™ for any positive integer n =1 (mod 2).

Lemma 4 [1}] There exists a C5-MGDP of type g™ with leave L in Table
1 for each odd integer n > 3.

This paper is a continuation of [14], and we are concerned about Cs-
MGDPs of type ¢" withn =0 (mod 2). As the main result of this paper,
we show that a C5-MGDP of type g with leave F' (those in Table 1) always
exists, i.e., we are to prove

Theorem 5 There exists a C5-MGDP of type g" with leave F if and only
if one of the follounng conditions holds.

(1) n=0 (mod10),n>3 andg=1 (mod 2);

(2) n=2 (mod10),n>3 andg=1,5 (mod 10);

B)n=4 (mod10),n>3 and g =5,7 (mod 10);

(4)n=6 (mod10),n>3 andg=5 (mod 10);

(5) n=8 (mod 10),n >3 and g =3,5 (mod 10).

The rest of this paper is structured as follows. In Sections 2 and 3,
we introduce two auxiliary designs, i.e., holey group divisible design and
incomplete group divisible packing respectively, to build new combinatorial
constructions for C5-MGDPs of type g”. Finally, we obtain the main result
of this paper in Section 4.

2 Holey group divisible designs

In what follows, we always assume that I,, = {0,1,...,n — 1} and denote
by Z, the additive group of integers modulo v.

Let 51,59, ..., St41 be disjoint subsets of the vertex set of the balanced
complete n-partite graph K, (n:4.w) With partite sets G;, 1 < ¢ < n, sat-
isfying |Sj| = hn for 1 < 7 < ¢, |S¢41| = wn, and |G; N S| = h for any
1<i<nand1<j<t, |G;NSy1]=wforany 1 < i< n Let K[S)]
be the subgraph of K, (414, induced by S;. A (K, (ntyw) \Uﬁi}K [S;], G)-
design is referred to as a holey group divisible design and each S; is called
a hole. Such a design is denoted by a G-HGDD of type (n, htw!).
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The following “filling in holes” construction is straightforward.

Construction 6 Suppose that there exists a G-HGDD of type (n, h'w!)
with the hole set {S1,Sy,...,St41}. If there exist a G-GDP of type h™ with
leave L; for each hole S;, 1 < j < t, and a G-GDP of type w™ with leave
Liy1 for the hole Syy 1, then there exists a G-GDP of type (ht + w)™ with
leave U;ill L;.

We quote the following result for later use.

Lemma 7 [24] There ezists a C3-HGDD of type (n, ht) if and only if n,t >
3, t—=1}(n—1)h=0 (mod 2), and t(t — )n{n—1)h? =0 (mod 6).

Lemma 8 [16] There erists a C5-HGDD of type (n,1%) if and only if n, t >
3, —1)n—1)=0 (mod2) andt(t—1)n(n—1)=0 (mod 10).

We need to construct some more Cs-HGDDs.

Construction 9 If there exists a Cs-GDD of type g*z!, then there exists
a C5-HGDD of type (n, gtz!) for any n > 3.

Proof Suppose A is a set of blocks of a C5-GDD of type g*z! on vertex set
X with group set {G; : 1 < i < t+1}. Suppose B is a set of blocks of a Cs-
HGDD of type (3,1%) (from Lemma 7) on I3 x I,, with group set {{¢} x I, :
¢ € Iy} and hole set {I3 x {j} : j € I,}. For each A = {a,b,c,d, e} € A and
B ={(0,7),(1,9),(2,2)} € B, let

Ap = ((z,a), (¥, b), (2, ¢), (z,d), (y,€)).

Let C = Ugea(UpenAp). It is readily checked that C forms a set of blocks
of the desired C5s-HGDD of type (n, g*z!) on I, x X with group set {{i} x X :
t€l,} and hole set {I, x G;: 1 <i<t+1}. 0

Lemma 10 There exists a Cs-GDD of type 5'z! if z € {3,7} and t = 0
(mod 2).

Proof When t = 2, a C5-GDD of type 5%z! exists by Lemma 2. When
(t,z) = (4, 3), we construct the required design on vertex set X = I3 with
group set {{0,4,8,12,16} +: : 0 < i < 3} U {{20,21,22}}. We list all the
42 blocks as follows.
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(0,18,21,9,6),
(0,13, 6,20,14),
(1,4,2,7,12),
(1,21,13,11,6),
(2,11,4,18,17),
(2,3,6,16,5),
(4,14, 9,19, 20),
(4,6,15, 20,5),

(0,10,15,1,11),
(0,15,22,16,17),
(1,20,11, 22, 18),
(1,7,10,19,8),
(2,8,7,18,15),
(3,22,5,6,17),
(3,20,7,4,21),
(9,15,21, 14, 22),

(0,7,16,1,19),
(0,20, 8,10, 21),
(0,3,12,22,1),
(2,21,16, 18, 20),
(2,12,5, 3, 16),
(3,10,9,4,13),
(4,10,22,17,15),
(6,8,22,19,21),

(0,5,14,3,9),
(0,22,4,19,2),
(1,14,16,9,2),
(1,10,17,4,3),
(2,22,7,14,13),
(3,18,19,5,8),
(5,15,12,6,7),
(6,19,16,13,22),

(5,10,12,17,11),
(10,16,15,14,11),
(8,21,17,19,14),

(7,13,15,8,9),
(9,20,12,18,11),
(11,16, 20,13,12).

(7,17,14,12, 21),
(5,21,11,8,18),

(10,13, 8,17, 20),
(9,12,19,13,18),

When (¢, z) = (4,7), there exists a C5-GDD of type 104! by Lemma 2.
Take three infinite points and fill in the groups of size ten with the above
C5-GDD of type 523! to obtain a Cs5-GDD of type 571. When ¢ > 6, by
Lemma 1, there exists a C5-GDD of type 10*/2. Take « infinite points and
fill in the groups with a C5-GDD of type 5%z! from Lemma 2 to obtain a
Cs-GDD of type 5'z. 0

Lemma 11 There exists a Cs-HGDD of type (n,5'a?) foranyn > 3,t=0
(mod 2) and z € {3,7}.

Proof By Lemma 10, there is a C5-GDD of type 5'z!. Apply Construction
9 to complete the proof. o

Lemma 12 Let n > 3. There exists a Cs-HGDD of type (n,g*) for g(t —
D=1 (mod?2),tt—1)g°=0 (mod 10) andt > 3.

Proof By Lemma 1, we have C5-GDD of type g*. Apply Construction 9
to complete the proof. o

3 Incomplete group divisible packings

A G-GDP of type g"(gt)! is called an incomplete group divisible packing of
type g(*ttt) (briefly G-IGDP of type ¢{"**"), where the group of size gt
is said to be the hole. The following construction is simple but very useful.

Construction 138 If there exist a G-IGDP of type g™ with leave L and

a G-GDP of type g* with leave Ly, then there exists a G-GDP of type g™
with leave Ly U Lo.
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To present a construction for IGDPs, we shall introduce a special kind of
IGDP. A G-IGDP of type g{™? is said to have the “star” property, denoted
by G-IGDP* of type ¢{™*)| if the leave L of this IGDP forms a 1-factor of
the points outside the hole. It is readily checked that a G-IGDP* of type

g9 has (=L=H-1N0 =9 plocks. Note that a G-IGDP* of type
g% is actually a G-GDP of type g" with leave F.

Example 14 There exists a Cs-IGDP* of type g™ for (g,n,t) € {(5,6,2),
(3,18, 8), (7, 14, 4) ).

Proof For (g,n,t) = (5,6,2), the design is constructed on Z9 UY with
group set {{0,4,8,12,16} +7:0 <i < 3} U{Y}, where Y = {a, b, ¢, d, e} x
Zy. All the 68 blocks can be obtained by developing the following base
blocks by +5 mod 20. For (z,:) € Y, (z,%) +5 = (z,j), where j =i +5
(mod 2). The leave F is {{7,10 + 1} : 0 < 5 < 9}. We write z; instead of
(z,7) to save space.

(0,c0,14,5,6), (0,11,17,4,13), (0,e1,4,18,19), (1,do,19,17,a1),
(0,2,¢1,1,14), (0,15,¢0,3,a0), (1,2,81,17,18), (1,16,18,a0,19),
(0, ai, 2, dl, 7), (0, 3, 12, 18, eo), (1, bﬂ, 9, 14, ag), (2, Cp, 19, e, 17),
(0, d0,3, 5,b1), (1,00,8, 13, eo), (1,8, b1,13,d1), (2, 19,b1,11,e1),
(0,d,9,6,17).

For (g,n,t) = (3,18,8), we construct the required design on Z3 UY
with group set {{0,10,20}+::0 < i < 9}U{Y}, where Y = {a, b, ¢, d} x Zs.
All the 222 blocks can be obtained by developing the following base blocks
(+10 mod 30 for the first fourteen base blocks and +1 mod 30 for the last
six base blocks). For z; € Y, z; + 1 = z;, where j =i+ 1 (mod 6). The
leave F' is {{1,156 4+ i} : 0 < i < 14}.

(0,1,28,6,14),  (0,29,7,18,19),  (0,22,14,5,8), (0,11,19,5,13),
(0,27,6,7,21),  (1,2,3,24,23),  (1,12,9,26,15), (1,22,8,29,18),

(2,13,10,27,16), (1,14,15,7,4),  (5,2,15,4,18), (5,26,29,20,6),
(4,23,7,8,17),  (3,16,13,29,12), (0,a0,1,7,50),  (2,a0,3,5,bo),
(4,00,5,9,60),  (0,c0,1,13,da),  (2,¢0,3,10,d0), (5,¢0,4,9,do).

For (g,n,t) = (7, 14, 4), we construct the required design on Z;oUY with
group set {{0,10,...,60} +::0 <: < 9} U {Y}, where Y = {a,b} x Zj4.
All the 826 blocks can be obtained by developing the following base blocks
(+1 mod 70 for the first eleven base blocks and +10 mod 70 for the last
eight base blocks). For z; € Y, z;+ 1 = z;, where j =i+ 1 (mod 14).
The leave F is {{7,35+:}:0 < i < 34}.
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(0, 56, ao, 63,9), (0,41,43,62,44), (0,59,44,12,57), (0,12, 65, 22, 28),
(0,62,a7,25, bo), (0,3, by, 68, a2), (0, 65,18, b5, 66), (0, a13, 35,04, 24),
(0,36,b13,51,b7), (0,a5,49,b1,37), (0,as,8,39,b10), (0, 48,69, 62, 63),
(0,69,47,48,49), (1,49,56,57,50), (3,51,58,65, 66), (0, 22,15, 64, 1);
(5,26,47,54,53), (4,53,32,31,52), (18,66,44,45,67).

The following construction is a generalization of Construction 4.21 in
[23]. It is a routine matter to check the “star” property.

Construction 15 Suppose a G-GDD of type (gto)! (gt1)™ (gt2)™2 - - (gtg)™
exists. If there exists a G-IGDP¥* of type ¢¢t%€) for each 1 < i < q, then
there exists a G-IGDP* of type g(nteto+e) wheren =to+Y .7, ting. If fur-
ther there exists a G-IGDP* of type g'*1®°), then there exists a G-IGDP*
of type gl"tee),

Now we apply Construction 15 to give some existence results of Cs-
IGDP*s.

Lemma 16 There exists a Cs-IGDP* of type 59 for anyn =2 (mod 4)
and n > 14.

Proof By Lemma 1, there exists a C5-GDD of type 20(7=2/4 Apply
Construction 15 with a Cs-IGDP* of type 5(62) (from Example 14) to
obtain a C5-IGDP* of type 5(™%) w

Lemma 17 There exists a C5-IGDP* of type 3*®) for anyn =8 (mod 10)
and n > 18.

Proof For n = 18, by Example 14, there exists a Cs-IGDP* of type 3(18:8),
For n = 28, by Lemma 2, there exists a C5-GDD of type 30%24!. Filling
in the groups of size 30 with a C5-IGDP* of type 3(1010:0) which is also a
C5-GDP of type 3!° (from Lemma 19), we have a C5-IGDP* of type 3(388)
by Construction 15 . For n > 38, by Lemma 1, there exists a C5-GDD of
type 30(»—#)/10  Rilling in the groups with the above Cs-IGDP* of type
3088) we have a Cs-IGDP* of type 3(™8) by Construction 15. o

Lemma 18 There exists a Cs5-IGDP* of type 7% for anyn =4 (mod 10)
and n > 14.
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Proof For n = 14, by Example 14, there exists a C5-IGDP* of type 7144,
For n = 24, by Lemma 2, there exists a C5-GDD of type 70%28!. Filling in
the groups of size 70 with a Cs5-IGDP* of type 7(10+%.9) (from Lemma 19),
we have a Cs-IGDP* of type 7?4 by Construction 15. For n > 34, by
Lemma 1, there exists a Cs5-GDD of type 70("~9/10_ Apply Construction

15 with the above Cs5-IGDP* of type 71149 we have a C5-IGDP* of type
7’(”'4)_ 3

Remark: The results of Lemma 19 are used in Lemmas 17 and 18,
respectively. Note that the constructions of Lemma 19 only need the con-
clusions of Lemmas 3 and 12.

4 Main result

To avoid confusion, in the proof of the following lemmas, we write F'(g, n)
instead of F to distinguish different F' for different ¢ and n.

Lemma 19 There exists a Cs-MGDP of type g™ with leave F for any g = 1
(mod 2) and n=0 (mod 10).

Proof For g = 1, the conclusion holds by Lemma 3. For ¢ > 3, by Lemma
8, there exists a C5-HGDD of type (n, 19). Filling in the holes with a Cs-
MGDP of type 1™ with leave F(1, n) (from Lemma 3), we have a Cs-MGDP
of type g™ with leave F (g, n) by Construction 6. O

Lemma 20 There erists a C5-MGDP of type g™ with leave F foranyg=1
(mod 10) and n =2 (mod 10) and n > 12.

Proof For g = 1, the conclusion holds by Lemma 3. For g > 11, by
Lemma 8, there exists a C5-HGDD of type (n,19). Fill in the holes with
a C5-MGDP of type 1™ with leave F(1,n) (from Lemma 3) to obtain a
C5-MGDP of type g™ with leave F(g,n) by Construction 6. O

Lemma 21 There exists a Cs-MGDP of type 5™ with leave F for any n €
{4,86, 8).

Proof Let the vertex set be Zs,, and the group set {{i,n+1,...,4n +4}:
0<:<n-—1}. For n =4, all the blocks are listed below.
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(0,1,7,14,3), (0,9,4,18,19),  (0,2,4,5,6), (0,5,7,2,11),
(0,15,2,8,17),  (0,13,4,3,18),  (0,14,4,10,7),  (1,4,19,6,3),

(1,19,2,9,6), (1,16,18,5,10),  (1,8,13,6,11),  (2,12,5,3,16),
(4,6,8,7,17), (1,2,17,18,12), (3,8,14,15,9),  (1,14,17,6,15),
(3,10,15,16,13), (2,3,12,14,13),  (4,7,9,8,11), (5,15,17,10,11),

(5,14,19,17,16), (5,19,9,18,8),  (6,7,16,19,12),  (7,18,15,12,13),
(8,10,19,13,15), (9,16,14,11,12), (9,11,18,13,10), (10,16,11,17,12).

For n = 6, all the blocks can be obtained by developing the following
base blocks by +10 mod 30.

(0,1,2,3,4), (0,2,4,1,3), (0,5,1,6,7), (0,8,1,9,10),
(0,9,2,5,13),  (0,11,1,10,26), (0,14,1,12,17), (0,19,2,6,22),
(0,23,1,15,25), (0,27,1,17,28), (1,18,2,13,22), (1,24,2,15,26),
(1,28,2,25,29), (2,12,7,3,29), (3,5,4,6,8), (3,6,5,7,14),
(3,13,4,7,16),  (3,17,4,8,19),  (3,26,4,14,28), (4,9,6,15,29),
(4,15,7,8,25), (5,8,9,7,28),  (6,16,8,28,19), (6,17,27,19,29).

For n = 8, all the blocks can be obtained by developing the following
base blocks by +5 mod 40.

(0,1,2,3,4), (0,2,4,1,3), (0,5,1,6,12),  (0,6,2,5,14),
(0,7,2,8,10),  (0,11,1,8,13), (0,15,1,10,27), (0,18,1,12,19),
(0,21,2,11,23), (0,22,3,6,28), (0,29,1,14,33), (0,34,1,16,39),
(1,19,2,12,27), (1,28,2,13,39), (2,14,3,7,29), (2,33,3,9,39),
(3,18,9,14, 39).

The leave is {{0, 10}, {1, 18}, {2, 5}, {3, 17}, {4, 15}, {6, 16}, {7, 12}, {8, 19},
{9, 14}, {11,13}} for n = 4, and the leave is {{i,5n/2+:} : 0 <7 < 5n/2-1}
for n € {6, 8}. m]

Lemma 22 There exists a C5-MGDP of type g™ with leave F' for any g = 5
(mod 10), n=0 (mod 2) and n > 4.

Proof For (g,n) € {(5,4),(5,6),(5,8)}, we construct the required Cs-
MGDPs directly in Lemma 21.

For (g,n) = (5,10), by Lemma 8, there exists a Cs5-HGDD of type
(10,1%). Apply Construction 6 with a C5-MGDP of type 1° with leave

F(1,10) from Lemma 3 to obtain a Cs-MGDP of type 5!° with leave
F(5, 10).

For g =5, n=0 (mod4) and n > 12, start from a Cs-GDD of type
20™/4, which exists by Lemma 1. Apply Construction 15 with a C5-IGDP*
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of type 5(+0) (which is the above C5-MGDP of type 5% with leave F(5,4))
to obtain a C5-MGDP of type 5™ with leave F'(5,n).

For g =5, n =2 (mod4) and » > 14, apply Construction 13 with
a Cs-IGDP* of type 5% (from Lemma 16) and a C5-MGDP of type 5°
with leave F(5, 6) to obtain a C5-MGDP of type 5" with leave F'(5,n).

For g > 15, by Lemma 12, there exists a C5-HGDD of type (n,59/°).
Filling in the holes with the above C5-MGDP of type 5" with leave F(5,n),
we have a C5-MGDP of type g™ with leave F(g,n) by Construction 6. O

Lemma 23 There ezists a C5-MGDP of type g™ with leave F for any g = 3
(mod 10) and n =8 (mod 10).

Proof For (g,n) = (3,8), we construct a C5-MGDP of type 3% with leave
F(3,8) on Za4, where the group set is {{i,8 4+14,16 +4} : 0 < i < 7}. All
the blocks can be obtained by developing (0, 1, 3, 6, 10) and (0, 5,11, 4, 13)
by +1 mod 24. Here the leave is {{i,12+4}:0<i < 11}.

For g =3, n =8 (mod 10) and n > 18, applying Construction 13
with a C5-IGDP* of type 30™® from Lemma 17 and the above Cs-MGDP
of type 3% with leave F'(3,8), we have a Cs-MGDP of type 3™ with leave
F(3,n).

When g > 13, let g = 5¢+3. Thent =0 (mod 2). By Lemma 11, there
exists a C5-HGDD of type (n, 5'3!). Filling in the holes with a C5-MGDP
of type 5™ with leave F'(5,n) from Lemma 22 and a C5-MGDP of type 3"
with leave F'(3,n), we have a C5-MGDP of type g” with leave F(g,n) by
Construction 6. O

Lemma 24 There exists a Cs-MGDP of type g" with leave F for any g =7
(mod 10) and n =4 (mod 10).

Proof For (g,n) = (7,4), we construct a Cs-MGDP of type 7* with leave
F(7,4) on Zgs, where the group set is {{0,4,---,24} +¢:0 < i < 3}. All
the blocks can be obtained by developing the following eight base blocks
by +4 mod 28.

(0,1,2,3,5), (0,9,2,8,19), (0,6,1,7,10),  (0,17,26,7,18),
(0,2,4,1,3), (0,7,2,5,15), (0,13,3,10,21), (0,23,1,14,27).

Here the leave is {{¢,14 4+i}:0 < ¢ < 13}.

For g =7, n = 4 (mod 10) and n > 14, applying Construction 13
with a Cs5-IGDP* of type 7(™% from Lemma 18 and the above Cs-MGDP

137



of type 7% with leave F(7,4), we have a C5-MGDP of type 7" with leave
F(7,n).

When g > 17, let g = 5t + 7. Clearly, t = 0 (mod 2). By Lemma
11, there exists a C5-HGDD of type (n,5'7!). Filling in the holes with a
Cs-MGDP of type 5™ with leave F'(5,n) from Lemma 22 and a C5-MGDP
of type 7* with leave F(7,n), we have a C5-MGDP of type ¢” with leave
F(g,n) by Construction 6. a

Proof of Theorem 5. The conclusion follows from Lemmas 19-24.
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